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Cell-type specific repertoire of 
responses to natural scenes in 
primate retinal ganglion cells 
Alexandra Kling1*, Nora Brackbill1 , Colleen Rhoades1 , 
Alex Gogliettino1 , Alexander Sher2 , Alan Litke2 and 
E. J. Chichilnisky1 

1 Department of Neurosurgery, Stanford University, Stanford, CA, United States, 2 Physics Department, 
University of California, Santa Cruz, Santa Cruz, CA, United States 

At least 20 distinct retinal ganglion cell (RGC) types have been identified 

morphologically in the primate retina, but our understanding of the distinctive 

visual messages they send to various targets in the brain remains limited, 

particularly for naturalistic stimuli. Here, we use large-scale multi-electrode 

recordings to examine how multiple functionally distinct RGC types in the 

macaque retina respond to flashed natural images. Responses to white noise 

visual stimulation were used to functionally identify 936 RGCs of 12 types in 

three recordings. Each cell type was confirmed by the mosaic organization of 

receptive fields, and seven cell types were cross-identified between recordings. 

Responses to thousands of natural images were used to examine the average 

firing rate kinetics in each RGC type as well as the repertoire of distinct firing 

patterns that each type produced. The average response across images was 

highly stereotyped for cells of each type and distinct for cells of different 

types. The responses to natural images more clearly distinguished certain cell 

types than did the response to white noise stimulation. Moreover, the full 

repertoires of firing patterns produced by different cell types, assessed by their 

latency and duration, were largely distinct in most cases and in some cases 

non-overlapping. Together these data provide an overview of the diversity 

of RGC signals transmitted from the primate retina to the brain in natural 

viewing conditions. 

KEYWORDS 

retinal ganglion cells, primate retina, natural image processing, retinal output diversity, 
multi-electrode array recordings 

Introduction 

In primates, at least 20 types of retinal ganglion cells (RGCs) convey visual 
information to diverse brain regions, including the lateral geniculate nucleus, superior 
colliculus, and pretectum, where it is further processed to support perception and 
visually guided behavior (Martersteck et al., 2017; Huberman et al., 2008). Much 
progress has been made in characterizing the visual signaling properties of the 
numerically dominant primate RGCs (ON and OFF parasol and midget cells) 
using artificial stimuli, such as white noise, contrast steps, and frequency chirps 
(Chichilnisky, 2001; Chichilnisky and Kalmar, 2002; Turner and Rieke, 2016; Karamanlis 
et al., 2023). More recently, the responses of these major cell types to naturalistic 
images, which contain richer spatial and temporal structure that engages retinal 
processing in complex ways, have also been examined (Freedland and Rieke, 2022; 
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Brackbill et al., 2020; Karamanlis et al., 2023; Turner and Rieke, 
2016), revealing substantial deviations from traditional models of 
RGC response. However, few studies have examined responses 
to naturalistic stimuli in the ∼16 or so lower-density RGC types 
(Karamanlis et al., 2025; Dacey, 2004), which constitute about a 
third of the fibers in the optic nerve and have dierent retinal 
connectivity and patterns of projection in the brain than the four 
numerically dominant types. Thus, our understanding of visual 
signaling in natural conditions by the diverse visual pathways 
emanating from the primate retina remains limited. 

As a first step, in this study we characterize the average response 
and response repertoire of diverse primate RGC types to a large 
set of naturalistic stimuli. By combining large-scale multi-electrode 
array recordings with quantitative analysis of response dynamics, 
we show that the temporal neural code is highly varied across 
RGC types: some pairs of cell types exhibit totally non-overlapping 
response repertoires, and only a few exhibit substantial overlap. We 
further show that the diverse naturalistic signaling patterns can be 
used to distinguish the many RGC types, including cell types not as 
easily distinguished using artificial visual stimuli. 

Methods 

Tissue preparation 

Retinas were obtained from macaque monkeys following 
terminal procedures conducted in compliance with Stanford 
Institutional Animal Care and Use Committee guidelines. 
Following enucleation, the eyes were hemisected and the 
vitreous was removed. Small retinal segments (approximately 
2 mm × 3 mm) with the retinal pigment epithelium attached 
were dissected from regions 8–16 mm from the fovea, after which 
the choroid was trimmed to optimize tissue oxygenation. Retinal 
eccentricity was measured with a precision of 1–2 mm. Distance 
and the angle from the fovea were converted into horizontal and 
vertical visual degrees as described in Chichilnisky and Kalmar 
(2002). For the six out of seven recordings used in this work, 
the locations were recorded and corresponded to 36◦–54◦ of 
eccentricity (temporal equivalent). In particular, horizontal and 
vertical eccentricity was: (1) 40◦ , 0◦; (2) −14◦ , 53◦; (3) −31◦ , 54◦; 
(4) −69◦ , −40◦; (5) 40◦ , 0◦; and (6) 0◦ , 60◦ . Positive numbers 
correspond to temporal or superior locations, negative numbers 
correspond to nasal or inferior locations. 

Multi-electrode array recordings and 
spike sorting 

Retinal ganglion cell activity was recorded using custom multi-
electrode arrays (MEAs) with 512 electrodes arranged in a 16 × 32 
isosceles triangular grid with a 60 µm separation between rows and 
between electrodes in a row, covering roughly 1 mm × 2 mm. The 
retina was mounted RGC side down onto the MEA and secured 
with a permeable membrane. During recordings, the tissue was 
continuously perfused with oxygenated Ames’ solution (Sigma, St. 
Louis, MO, USA) maintained at 31◦C–33◦C. Voltage signals were 
band-pass filtered, amplified, and digitized at 20 kHz using custom 

electronics (Litke et al., 2004). Spike sorting was performed with 
Kilosort2 (Pachitariu et al., 2024), and only cells meeting rigorous 
quality criteria (no refractory period violations, distinct electrical 
images, and consistent receptive field properties across cells of 
each identified type) were included in the analysis. Because some 
identified cell types exhibited incomplete receptive field mosaics 
due to unrecorded cells or spike sorting limitations, the number 
of identified cells per type does not reflect their true density. In 
the retinal periphery, cell types other than parasol, midget, or small 
bistratified each constitute 1.1%–4% (Kim et al., 2022) of the entire 
RGC population. 

Visual stimulation 

Two types of visual stimuli were presented on a computer 
display and focused onto the photoreceptor layer. The display 
intensity produced on average 800–2,200, 800–2,200, and 400– 
900 photoisomerizations per second for the L, M, and S cones 
respectively. For cell classification and receptive field mapping, a 
series of 4–8 white noise stimuli (flickering checkerboards) was 
presented, each lasting 30–60 min and with diering pixel size 
and refresh time. In these stimuli, the contrast of each pixel 
was selected randomly and independently over space and from 
a binary distribution at each refresh. In some cases the three 
display primaries were modulated independently, in other cases the 
three primaries were yoked. For naturalistic stimulation, grayscale 
images from the ImageNet dataset (Fei-Fei et al., 2010) were used. 
Each image was presented for 100 ms, followed by 400 ms of a 
uniform gray background at mean luminance, a design intended 
to isolate individual responses and minimize adaptation. A total of 
10,000 unique images was shown. A block of 150 repeated images 
was presented after every 1,000 unique images to monitor recording 
stability. 

White noise analysis 

The responses to white noise were analyzed as described 
elsewhere (Field et al., 2007; Rhoades et al., 2019; Kling et al., 
2024). Briefly, the spike-triggered average (STA) from the white 
noise stimulus was used to extract spatial and temporal response 
properties, facilitating cell type classification based on time course, 
inter-spike interval distributions, and mosaic (Kling et al., 2024). 
Cells were then categorized into known types (e.g., ON/OFF 
parasol, midget, smooth monostratified types, and broad thorny 
type) (Kling et al., 2024) and other putative types based on 
similarity of these parameters and the mosaic organization of 
receptive fields. 

To compute the time courses, significant pixels in the STA 
were identified as follows. First, the dominant STA frame was 
determined by selecting the frame with the maximal absolute pixel 
intensity. Within that frame, pixels were considered significant if 
their intensity exceeded four times the robust standard deviation 
calculated across all pixels. These significant pixels were then 
grouped by polarity (sign), and their spatial average was computed 
for each STA frame separately for each group, resulting in two 
time courses for each display primary (only the dominant polarity 
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is shown). For the blue and green channels, the time course 
corresponding to the dominant polarity (i.e., with the highest 
absolute amplitude) was selected. 

An elliptical fit of the spatial receptive field was obtained by 
fitting a 2D Gaussian to the STA frame with the maximum signal 
amplitude. The 2-standard deviation contour of this fit is shown in 
Figure 1 to illustrate the mosaic organization. 

Natural image analysis 

For naturalistic stimuli, spike responses were aligned to 
stimulus onset, smoothed with a Gaussian kernel (σ = 10 ms) 
and averaged over a 500 ms window to obtain the evoked mean 
firing rate for each cell (Figure 2). To capture the full repertoire of 
responses, two temporal features for each response were computed: 
latency (defined as the time to peak amplitude) and duration 
(defined as the time from the peak until the response decayed to 
25% of its maximum). These features were calculated for a random 
subset of 1,500 responses per cell, after excluding trials with zero or 
one spikes, to ensure only stimulus-driven responses were analyzed. 
The results were robust to resampling and to varying the subset 
of selected trials between 500 and 3,000 images (across cells, the 
total number of trials after filtering for the number of spikes varied 
between 2,000 and 9,500). Alternate definitions of latency (the time 
at which half the spikes in the trial were recorded) and duration 
(full width at half-height for the largest peak) yielded results similar 
to those obtained with the original definitions. The dierence 
between metrics after normalization was similar in magnitude to 
the dierence across resamplings of 1,500 trials. 

The distance between the response repertoires of two cells was 
quantified by (latency2 + duration2)1/2 . For each response from cell 
1, the k smallest distances (typically k = 10) to responses from cell 
2 were identified, and the inverse of their average was taken as a 
similarity score. 

Two-dimensional representation of cell 
properties 

To visualize cell type clusters (Figures 3a–c), principal 
components analysis was applied to several groups of parameters: 
(1) normalized time course of the blue and green display primaries 
(Figure 1, column 3) concatenated with the normalized interspike 
interval distribution obtained during white noise stimulation 
(Figure 1, column 4): total vector length 160 values per cell; (2) 
normalized average response time courses (Figure 2b) for natural 
image stimuli (see above): total vector length 500 values per cell; 
and (3) a concatenation of 1 and 2, total vector length 660 values 
per cell. All normalizations were performed with the L-2 norm. 
The t-distributed Stochastic Neighbor Embedding (t-SNE; van der 
Maaten and Hinton, 2008) was used on the first 10 principal 
components to reduce the data into two dimensions. 

To estimate cluster separability (Figure 3d–f), pairwise 
Euclidean distance was computed using the first 10 principal 
component scores of response features as described above, across 
all cells selected for the analysis in a recording, separately for each 
condition (natural image only, white noise only, and combined). 
For each condition, intra-cluster distance was defined as the mean 

pairwise distance between all cells of the same type. Inter-cluster 
distance was defined as the mean pairwise distance between all 
cells of one type and all cells of a dierent type. All distances were 
then normalized by the mean of intra-cluster distances within the 
corresponding condition. 

Results 

Kinetics of mean response to natural 
images vary substantially across cells 

The visually evoked spiking activity of hundreds of peripheral 
primate RGCs was recorded ex vivo on a custom 512-electrode 
recording system (Litke et al., 2004; Frechette et al., 2005). 
To characterize light response properties and classify cells, a 
white noise stimulus (flickering checkerboard) was used (see 
Chichilnisky, 2001; Field et al., 2007; Kling et al., 2024; Rhoades 
et al., 2019; Litke et al., 2004). Cell types were distinguished based 
on the STA stimulus time courses and the interspike interval 
distribution observed during white noise stimulation. The accuracy 
of cell type classification was confirmed by the mosaic organization 
of the receptive fields of cells of each type (Kling et al., 2024; 
Figure 1). Note that the number of recorded cells of each type 
does not necessarily reflect their true density in the retina because 
of sampling biases associated with extracellular recordings (see 
section “Methods”). 

To explore the behavior of the diverse RGC types in naturalistic 
conditions, the responses to 10,000 flashed grayscale natural images 
were recorded. Each image was presented for 100 ms, followed 
by 400 ms of a gray background with intensity equal to the 
mean intensity of all images, a protocol designed to temporally 
separate responses to distinct stimuli and to minimize adaptation. 
A specific sequence of 150 images was repeated after each block 
of 1,000 unique images to monitor response stability. All cells 
selected for subsequent analysis exhibited a reproducible pattern of 
spiking response to the repeated images (Figure 1). As expected, 
the responses of a given cell to distinct images were, in general, 
markedly dierent (Figure 1). Also, as expected, a given image 
elicited clearly distinct response kinetics in dierent cells. 

To capture the typical kinetics of responses to natural images 
produced by each cell, its measured responses to all images were 
aligned to the stimulus onset (Figure 2a), temporally smoothed, 
and averaged across images (Figure 2b). Despite the variability of 
responses across images (Figure 1), the mean response exhibited 
distinct average kinetics in each cell type (Figure 2b, black lines) 
and similar kinetics in cells of the same type (Figure 2b, red lines). 
This consistency indicates that the average response to a large set of 
natural images reveals a response signature representative of each 
cell type, in a similar manner as the STA signature obtained with 
white noise stimuli (Kling et al., 2024). 

The average kinetics of responses to natural images exhibited 
several trends across cell types. First, as expected, parasol cell 
responses were more transient than midget cell responses. Second, 
for morphologically paired cell types (e.g., ON vs. OFF parasol 
cells), OFF cells tended to have a shorter time to peak on average 
than ON cells (see Figure 4a), in agreement with some previous 
work (Gollisch and Meister, 2008) (but see Chichilnisky and 
Kalmar, 2002). Third, low-density cell types exhibited a degree 
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FIGURE 1 

Distinct responses to white noise and natural images in 12 RGC types. Each row of five panels shows results for multiple cells of one type. (Left to 
right) The spatial RF of one cell obtained from the spike-triggered average (see section “Methods”); the mosaic of elliptical fits to the RF profile; time 
courses for green and blue display primaries obtained from the spike-triggered average; inter-spike interval distributions in the presence of the white 
noise stimulus; rasters of spike responses to 10 repeated trials of 4 consecutive natural images. Each image was presented for 100 ms; red vertical 
lines separate distinct image trials (0.5 s trial duration). Scale bar for RFs: 200 µm, for mosaics: 500 µm. 

FIGURE 2 

Individual and average responses of 12 RGC types to natural images. (a) Raster of responses to 500 randomly selected flashed images (rows), for a 
representative cell of each distinct type (columns). (b) Mean firing rate across the full set of 10,000 images (L2-normalized) for multiple cells of each 
type (red traces) and average for all cells of each type (black trace). 

of response transience more similar to parasol than to midget 
cells. Interestingly, most of the low-density cell types – ON and 

OFF smooth monostratified, broad thorny, OFF 1 and OFF 2 

types – exhibited more transient responses than parasol cells, 
while no cell types with more sustained responses than midget 
cells were identified. Fourth, some cell types – such as parasol 
and smooth monostratified cells – exhibited strong responses to 

both image onset and oset (corresponding to the two peaks in 

Figure 2b), while other cell types – including OFF midget and blue 

2 cells – responded predominantly to image onset or oset. These 

observations reveal the diversity of the average natural visual signal 
across primate RGC types. 

Cell types can be identified by the 
average kinetics of responses to natural 
images 

To test if the average response signature could be used to 
reliably classify distinct RGC types, t-SNE (van der Maaten and 
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FIGURE 3 

Separability of RGC light responses in one recording. (a) t-SNE representation of recorded firing rates (see Figure 2) of 141 RGCs in response to 
flashed natural images. Cell types were identified using responses to white noise stimuli (Figure 1, see section “Methods”). Black arrows point to 
well-separated clusters, red arrows point to clusters that are more difficult to distinguish. The axes of t-SNE plots are not readily interpretable; thus, 
this representation of clustering serves primarily as an illustration. (b) t-SNE representation of spike-triggered average time course and inter-spike 
interval (see section “Methods”) of the same cells with white noise stimuli. Black and red arrows point to the same groups of cells as in panel (a). (c) 
t-SNE for the same cells based on both natural image and white noise data. (d) Mean intra-cluster and inter-cluster Euclidean distances of the first 
10 principal components of responses to natural images, normalized to the mean intra-cluster distances (see section “Methods”). (e) Same, for 
spike-triggered average time course and interspike interval with white noise stimuli. (f) Same, for combined natural image and white noise data. 

Hinton, 2008) was applied to the first 10 principal components 
of the average response profiles of all recorded cells. The 
results revealed that cells largely clustered into well-defined 
groups (Figure 3b) corresponding to the types determined above 
(Figure 1). For a direct comparison, t-SNE applied to the first 
10 principal components of the STA time course concatenated 
with the interspike interval distribution obtained using white noise 
stimulation also produced a set of clusters separating the identified 
cell types, as expected (Figure 3a, see section “Methods”). 

Interestingly, however, the two distinct types of stimuli more 
clearly and reliably distinguished dierent sets of RGC types. For 
example, as viewed in the t-SNE representation, white noise data 
did not reliably discriminate between cells of two OFF-dominated 
types that had similar inter-spike interval distributions and STA 
time courses (Figure 3b, black arrows; see Figure 1, OFF 1 and OFF 
2 types) – these cells were separated into two types in the preceding 
analysis (Figure 1) largely because they formed two overlapping 
mosaics (Kling et al., 2024). However, with naturalistic stimuli, 
these two cell types were readily distinguished (Figure 3a, black 
arrows). Conversely, two cell types that produced similar mean 
responses to natural images (Figure 3a, red arrows) were readily 
distinguished by white noise stimulation (Figure 3b, red arrows). 
A combined t-SNE analysis, applied to concatenated data from the 
two types of visual stimulation, yielded a clearer separation of cell 
types (Figure 3c). This result suggests that natural image responses 
provide discriminative power that augments the discriminative 
power provided by white noise stimuli. Note, however, that the 
t-SNE representation can be diÿcult to interpret and may not fully 
capture the quantitative separability of cell types. 

To quantitatively test the separability of cell types obtained 
using both types of stimuli, intra-cluster distances were 
compared to inter-cluster distances in the original principal 

components representation without the t-SNE dimension 
reduction (Figures 3d–f). Each stimulus type alone revealed that 
for the most part the inter- and intra-cluster distances were 
non-overlapping (Figures 3d, e), but combining the data from both 
stimulus types yielded a more clear separation (Figure 3f). Using 
half of the white noise data and half of the natural scenes data 
for the combined analysis had no discernible eect on the results 
(not shown), confirming that the enhanced separability was not 
attributable to using more data. 

Repertoire of responses to natural 
images is cell-type specific 

Although the average response kinetics provide a useful 
summary, they do not reveal the full repertoire of responses 
produced by each cell to many images. For example, a similar 
average response in two cells or cell types could be achieved with 
very dierent individual responses. Therefore, to understand the 
similarity of natural image signaling between cells and cell types, a 
simple comparison was performed on the repertoire of responses 
produced by pairs of cells. 

Specifically, the latency and duration of each response was 
computed, and the collection of latency and duration values 
across images was compared directly for pairs of cells (see section 
“Methods”). A range of relationships between cell types was 
observed: highly overlapping response repertoires (Figure 4a), 
partially overlapping repertoires (Figure 4b), subset repertoires 
(Figure 4c), and fully distinct repertoires (Figure 4d). Repertoires 
of cells of the same type typically fully overlapped with each 
other. The repertoires of cells of paired ON and OFF types (e.g., 
ON and OFF parasol) tended to overlap slightly less, due to the 
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FIGURE 4 

Kinetic features extracted from recorded responses of pairs of simultaneously recorded cells and their similarity. (a–d) Each point represents the 
latency and duration of the response of one cell to a single flashed image, smoothed in time (see section “Results”). Image presentation period is 
marked with a horizontal line. (a) Two ON parasol cells (red and blue dots, respectively). (b) An ON parasol and an OFF parasol cell. (c) An ON parasol 
and an OFF 2 cell. (d) An ON smooth monostratified and a broad thorny cell. (e) Similarity scores (see section “Results”) for individual cells of 12 
distinct types in a single recording, sorted by type. At most five cells per type are shown. The rows show the similarity score with the cell listed on 
the ordinate as the reference cell. Blue rectangles highlight the asymmetrical similarity of ON parasol to OFF 2 cells compared to the reverse. Green 
rectangles highlight symmetric low scores between broad thorny and ON smooth monostratified cells. (f) Similarity scores for the same recording as 
panel (e), averaged across each cell type, for 7 identified types (1 through 7: ON parasol, OFF parasol, ON midget, OFF midget, ON smooth 
monostratified, OFF smooth monostratified, and broad thorny). (g,h) Same as panel (f), for two additional datasets. 

shorter latencies in OFF types (Figure 4b). Interestingly, some cell 
type pairs revealed complex relationships between their response 
repertoires. For instance, the onset responses of an OFF-dominated 
cell (OFF 2) formed a subset of the onset responses of an ON 
parasol cell, especially in terms of duration, while the collections 
of oset responses were more similar (Figure 4c). Finally, some 
cell types, such as ON smooth monostratified and broad thorny 
cells, appeared to have a fully distinct set of latencies – even the 
slowest responses of a ON smooth monostratified cell reached peak 
amplitude earlier than the fastest responses of a broad thorny cell. 
These findings reveal a complex retinal code during naturalistic 
stimulation. 

To quantify similarity in response latency and duration across 
cell pairs, the inverse of the mean Euclidean distance to the most 
similar responses was computed (see section “Methods”). This 
measure is asymmetric: if the responses of cell A form a subset of 
the responses of cell B (e.g., Figure 4c), the similarity of A to B will 

be high, while the similarity of B to A will be lower (e.g. compare 
lower and upper triangles of Figure 4e). 

The response repertoire similarity was consistent for all cell 
pairs composed of specific types within a recording, as revealed in 
the block-wise structure of the similarity matrix (Figure 4e). For 
instance, each broad thorny cell exhibited low similarity to each 
ON smooth monostratified cell, and vice versa (Figure 4e, green 
frames). On the other hand, each pair of OFF 2 and ON parasol cells 
exhibited consistently asymmetrical scores (Figure 4e, blue frames). 
The similarity score also revealed internal variability of the response 
repertoire: cells with a tighter distribution of response parameters 
exhibited a higher within-type similarity. For example, within-type 
pairs of ON and OFF smooth monostratified and broad thorny 
cells had higher similarity than within-type pairs of parasol, midget, 
and blue 1 and blue 2 cells. The type-specific response repertoire 
was also robust to variability between animals and experiments, as 
revealed in the consistent pattern of the per-type similarity matrix 
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across experiments for cells of known types (ON and OFF parasol, 
midget, smooth monostratified, and broad thorny) (Figures 4f– 
h). Thus, the diversity of average response properties of cells of 
dierent types also applies to the entire repertoire of their responses, 
within and across experimental preparations. 

Discussion 

Large-scale recordings from diverse types of macaque RGCs 
showed that both the mean response and the full repertoire of 
responses to natural images are highly stereotyped within each 
cell type and often distinctive in dierent cell types, including the 
less-understood low-density cell types. A few cell types exhibited 
very similar response repertoires and averages to one another, 
but most types diered substantially from others, in a consistent 
manner across retinas. Overall, each RGC type exhibited an 
intrinsic functional signature that is maintained under the complex 
conditions of naturalistic stimulation. 

The distinctions observed have practical implications for 
understanding cell type diversity in the retina, because responses to 
natural images highlighted distinctions between types (Figure 3a) 
that were not as readily visible with white noise stimulation 
(Figure 3b), a standard method for cell type identification in large-
scale recordings (Field et al., 2007; Kling et al., 2024; Rhoades et al., 
2019). A possible reason for this is that naturalistic stimulation 
engages non-linear processing mechanisms (Freedland and Rieke, 
2022; Turner and Rieke, 2016; Karamanlis et al., 2023) that generate 
richer temporal patterns of response. However, the practical utility 
of this finding may be limited because responses to natural images 
often present challenges for spike-sorting due to highly correlated 
responses across cells. Synthetic visual stimuli (e.g., Freedland and 
Rieke, 2022) could potentially leverage some of the advantages of 
natural images without compromising spike sorting as much, an 
area for further exploration. 

The stimuli used in this study were presented at a low photopic 
light level for both white noise and natural image conditions. In 
the future experiments, testing dierent photopic and scotopic light 
levels could provide insight into dierential light adaptation across 
cell types and perhaps further enhance their separability. 

The striking distinctions in response repertoires observed 
during natural stimulation suggest the possibility that downstream 
mechanisms in the brain could exploit these patterns during 
development for cell type specific refinement of synaptic contacts. 
Many studies of visual system development focus on the molecular 
mechanisms that contribute to specific connectivity in retinal 
targets (Sperry, 1963; Huberman et al., 2008; Feldheim and O’Leary, 
2010). However, a large body of work also points to the importance 
of visually driven activity in segregating retinal inputs to central 
structures (Sengpiel and Kind, 2002; Huberman, 2007). Although 
a dominant theory is that correlated firing over space is a driving 
factor (Wong, 1999; Torborg and Feller, 2005; Xu et al., 2016), 
the distinctive natural patterns of activity in dierent RGC types 
could also play a role. The present results show that there is enough 
distinction in response repertoires to support such a mechanism. 

Some of the distinctions between cell types were consistent 
with what would be predicted based on previous studies using 

simpler non-naturalistic stimuli such as white noise, gratings, 
and contrast steps (Chichilnisky, 2001; Turner and Rieke, 2016; 
Soto et al., 2020; Karamanlis et al., 2023). Specifically, midget 
RGCs displayed more sustained responses than parasol RGCs 
(Soto et al., 2020; Chichilnisky and Kalmar, 2002), ON and OFF 
RGCs of morphologically matched types (midget, parasol, and 
smooth monostratified) had very similar response repertoires and 
mean responses, and OFF RGCs tended to have slightly shorter 
response latencies than ON RGCs of morphologically matched 
types (Gollisch and Meister, 2008). Thus, some of the major cell 
type distinctions seen in earlier studies are applicable to natural 
vision. 

However, some distinctions between cell types, particularly the 
less-studied types, have not been reported previously, and could 
potentially be important for understanding their role in natural 
visual signaling. The response latencies of smooth cells varied 
little across images compared to the latencies of other cell types 
(Figure 4), including parasol cells, an invariance that could support 
a role in signaling the timing of events in the visual scene to the 
brain. Some less-studied RGC types exhibited consistent response 
durations across dierent images, unlike midget and parasol cells 
which had response durations that varied strongly with image 
content (Figure 4), and several cell types exhibited more transient 
responses than parasol cells (Figure 2). The mechanisms for these 
distinctions in response kinetics across cell types are not known. 
In principle, such dierences could arise from dierent spike 
generation mechanisms (Wienbar and Schwartz, 2022), synaptic 
input properties (Awatramani and Slaughter, 2000), or strong 
inhibitory input from amacrine cells (e.g., Puller et al., 2015; 
Bordt et al., 2021). However, the specific visual features that drive 
responses in dierent cell types and the underlying mechanisms 
will require further investigation. 

Three primary limitations of the present work could be 
important for its interpretation. First, the stimulus set consisted 
of grayscale flashed natural images, which may not fully engage 
the dynamic response properties of certain RGC types. Second, 
the use of only two kinetic features (latency and duration) to 
analyze cell type distinctions may not reveal the full diversity 
of responses. Future studies incorporating stimuli with color, 
object motion, optic flow, as well as analysis of a broader 
range of response features such as burstiness and ON/OFF 
asymmetry will be important to understand the full range of 
RGC responses across cell types in natural viewing conditions. 
Finally, the present analysis was limited to the mid-peripheral 
retina because of the technical challenges of large-scale recording 
near the fovea. Comparison to the central retina would provide 
valuable insights into the relevance of the present findings for 
high-acuity vision. 
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