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Segmentations of retinal optical coherence tomography (OCT) images provide

valuable information about each specific retinal layer. However, processing

images from degenerative retina remains challenging. This study developed

artificial intelligence (AI)-based segmentation to analyze structure changes

in sodium iodate (SI)-treated mice. The software is capable of segmenting

seven retinal layers and one choroid layer. Analyzing OCT images captured

at days post SI-injection (PI) revealed early changes in the retinal pigment

epithelium (RPE) layer, with increase in thickness and reduction in reflectance

calculated by estimated Attenuation Coe�cients (eAC). On the other hand,

eAC for outer nuclear layer (ONL) exhibited early and sustained increase

after SI treatment. SI induced exponential reduction in ONL thickness with

a half-reduction time of about 3 days, indicating progressive photoreceptor

degeneration. The extent of degeneration was correlated with ONL eAC level

at PI1. Inner retinal layers showed bi-phasic reactions, with initial increases in

layer thickness that peaked at around PI3, followed by gradual reduction to lower

than baseline levels. In addition, SI also induced transient increases in vitreous

particles concentrated around the optic nerve head. Furthermore, there was a

gradual reduction of choroid thickness after SI treatment. These results indicate

the AI-segmentation tool’s usefulness for providing a sensitive and accurate

assessment of structure changes in diseased retina and revealed more detailed

characterization of SI-induced degeneration in all retinal layers with distinct time

courses. Our results also support ONL reflectance changes as an early biomarker

for retinal degeneration.
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1 Introduction

Optical Coherence Tomography (OCT) is a well-developed non-invasive imaging

technology that provides depth-penetrating images of living biological tissue, including

the retina (Fischer et al., 2009; Kubo and Akasaka, 2010; Vinekar et al., 2010; Baghaie

et al., 2015). Differences in tissue scattering and reflectivity provide image contrast. Retinal
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images are thereby segmented to reveal vital information about the

retinal structure, layer thickness, and reflective intensity (Fischer

et al., 2009; Genead et al., 2011; Baghaie et al., 2015; Zeng et al.,

2016; Tatham and Medeiros, 2017; Zeng et al., 2024). OCT is

widely used to clinically track conditions like macular degeneration

(AMD), diabetic retinopathy (DR), glaucoma retina, and inherited

retinal diseases in human and animal models (Spaide, 2013; Kwan

and Fawzi, 2019; Ling et al., 2020; Tong et al., 2023) because

abnormalities in retinal layer thickness or OCT reflectivity imply

disease. These specific findings can reveal clues about disease

progression and underlying mechanisms (Furashova and Matthe,

2017; Bannai et al., 2020; Gersch et al., 2022; Moraes et al.,

2024; Riazi-Esfahani et al., 2024). Improvements in measurement

accuracy for each layer’s thickness and reflectivity will presumably

enhance the clinical and basic science value of OCT images.

Historically, quantitative analysis of retinal OCT images relied

on labor-consuming manual measurements, or explicitly defining

features of specific retinal layers within a software package,

automating some of the work. The latter is often frustrated by

diseases of the retina, precisely because of the OCT abnormalities

they cause. Recent advancements in artificial intelligence (AI) allow

for automated measurement with greater flexibility, offering a

standardized and objective method of quantifying abnormalities

in retinal disease (Kwan and Fawzi, 2019; Schmidt-Erfurth et al.,

2020; Keenan et al., 2021; Yang et al., 2021). AI-based programs

are particularly useful in field of ophthalmology, with multi-

modulatory imaging data unveiling new clinical and pathogenic

insights into retinal diseases (Lee et al., 2017; Lu et al., 2019;

Narendra Rao et al., 2019; Schmidt-Erfurth et al., 2020; Mares et al.,

2024). In this study, we adapted an AI-based segmentation program

to OCT images of the degenerated retina from a mouse model.

Sodium iodate (NaIO3, SI), a chemical known to induce retinal

cell death via oxidative stress, is commonly used to produce retinal

degenerative animal models. Both intraperitoneal and intravenous

applications of SI induce dose-dependent retinal degeneration in

various animal models (Ou et al., 2018; Koh et al., 2019; Ahn

et al., 2020; Koster et al., 2022). It is well established that SI

first impacts retinal pigment epithelium (RPE) activity (Noell,

1953, 1954; Moriguchi et al., 2018; Liu et al., 2019). With SI-

induced retinal degeneration monitored by OCT imaging, we

hypothesize that accurate segmentation of the retinal layers with

the AI-based program will not only reveal expected damage to

the RPE and thinning of the photoreceptor layer but also uncover

novel effects of NaIO3 in all retinal layers. In this study, we

monitored retinal structure changes during the time course of

degeneration in mice that received an intraperitoneal injection of

SI with OCT imaging. Using the AI-based segmentation program,

we segmented OCT images captured at different stages of diseased

retinas following several timepoints post-SI injection. Information

about each retinal layer’s thickness and reflectance intensity were

analyzed to characterize retinal degeneration in the mouse model.

To quantify reflectance changes in the retinal layers, we calculated

estimated Attenuation Coefficient (eAC; Vermeer et al., 2013;

Moriguchi et al., 2018; Chang and Bowden, 2019; Sakai et al.,

2024; Bissig et al., 2025), as raw OCT intensity is influenced by

many factors, including the optical quality of the cornea and

anterior chamber. eAC was used to correlate early changes in

ONL reflectance with the extent of photoreceptor degeneration.

Furthermore, we also explored the thickness of the inner retina

and choroid layer with our AI-based segmentation program—and

opportunity to provide additional sensitive and unbiased layer-

specific metrics, including the first quantitative analysis of choroid

thickness for SI-induced retinal degeneration.

2 Methods and materials

2.1 Animal

This research was conducted in accordance with the ARVO

Statement for the Use of Animals in Ophthalmic and Vision

Research and was approved by the Animal Care and Use

Committee of the National Eye Institute. C57BL/6J mice were

reared under 50-104 lux cyclic lighting (12 h:12 h) with food and

water available ad libitum. Seven 2-month-old male C57BL/6J mice

were intraperitoneally injected with 25 mg/kg of NaIO3. The size

of animal used in this study is typical for investigating SI-induced

retinal degenerations (Arifin and Zahiruddin, 2017; Moriguchi

et al., 2018; Kim et al., 2022).

2.2 OCT image collection and image
processing

OCT images were collected from both eyes of the animals

before (baseline) and 1, 3, 6, 13, and 20 days post-SI injection.

Prior to imaging, the animals were anesthetized with xylazine

6 mg/kg and ketamine 100 mg/kg. Drops of tropicamide (1%)

and phenylephrine (2.5%) were then topically applied to the eyes

for pupil dilation. OCT images of the mice were obtained with

Bioptigen’s Envisu R2210 system (axial resolution 1.7 µm/pixel),

using a protocol for 4 B-scans of the retina (1.4mm) at 45-degree

intervals with each B-scan sampled 40 times. Averaged Bscan

images (4 per eye) were fed to AI models for retinal layer

segmentation. A total of 112 image sets were analyzed at each

time points.

eAC were calculated based on published methods (Vermeer

et al., 2013; Bissig et al., 2025). Briefly, OCT b-scans were

transformed so that grayscale pixel values were linearly

proportional to the power of the signal measured by the device. In

each A-scan, attenuation is described by pixel size, the brightness

of a pixel, and the relative brightness of remaining pixels more

distant from the OCT device. In our commercial system, there

was very little variance in retinal distance from the OCT sensor

so the signal decay factor was ignored in these calculations [using

the variable names of Vermeer et al. (2013), we stipulate I(z) =

U(z)-N(z)]. Acknowledging this slight change from Vermeer et al.

and the existence of other strategies to calculate the attenuation

coefficient (Chang and Bowden, 2019), we refer to our results as

estimated attenuation coefficients (eAC) with units of m−1 and

expressed on a logarithmic scale.

The vitreous portion of the image was identified as everything

above the first segmentation line (boundary of inner limiting

membrane with vitreous). Particles in vitreous were determined

using the “Analyze Particles” function in ImageJ. A size range of

5 to 500 was selected to exclude small artifacts and the large optic

nerve head in images.
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2.3 AI-based OCT segmentation

The program for building of machine learning models were

described previously (Berkowitz et al., 2022). Briefly, the model

was based on a U-net convolutional neural network trained using

the “dice loss” function and the Adam optimizer (learning rate

= 0.001). A shortest-path algorithm was applied to improve the

model’s performance. Using “U-net” architecture, five models were

built from annotated OCT images with training parameters varied

in the number of convolution layers, kernel, starting neurons,

and pool layers. Five attentional models were built with the

same training parameters but from annotated OCT images pre-

processed using a contrast-enhancing algorithm (Girard et al.,

2011). Furthermore, two additional models were made with

“deeplabv3plus” architecture. A custom-made MATLAB program

displayed OCT images superimposed with the segmentation lines

generated by each model, along with a segmentation line based

on the median values of selected models. The accuracy of each

segmentation line was verified manually by either selecting best fit

from model-predicted pools or making manual corrections using

Pisces2D (v2.1.8342, Voxeleron). As OCT images were captured

with the optic nerve head centered, segmentations on either side

of the optic nerve head were independently evaluated.

2.4 Data analysis

For each B-scan, two-200-pixel (A-scan) region (350 to 630 um

away from center of ON head) were selected for measurement (Gao

et al., 2021). Unless specified otherwise, averaged values from 8

ROIs were used to represent each eye and data are presented as

mean ± SEM. Paired t-tests were used to check for significance

of change from the baseline values. Statistics were performed with

Prism (V10.2.3, GraphPad software).

3 Results

3.1 AI-models and retina segmentation

Figure 1A shows examples of retinal OCT images captured

from the same eye at indicated time points before and after

SI treatment. We generated 10 “U-net” models (normal retina

models) based on annotated OCT images previously captured from

normal mouse retinas. These models segment OCT images with

nine lines to produce seven retinal layers and a choroid layer

(Figure 1B). The normal retina models can successfully segment

OCT images captured at baseline, PI1, and PI3, with very few

FIGURE 1

OCT images of NaIO3 -induced retinal degeneration with segmented lines. (A) longitudinal scans of the same mouse eye before (baseline) and at day

1, day 3, day 6, day 13, and day 20 of post injection (PI). (B) Magnified view of baseline image with segmentation. (C) Magnified view of Day 20 image

with segmentation. Segmented layers are labeled: NFL nerve fiber layer, IPL inner plexiform layer, INL inner nuclear layer, OPL outer plexiform layer,

ONL outer nuclear layer, OR outer retina (ELM external limiting membrane, IS + OS photoreceptor cell inner and outer segments, and RPE retinal

pigment epithelium). Scale bar: 100µm.
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FIGURE 2

Usage rate of each AI-generated model for segmenting OCT images

of mouse retina. (A) normal retinal models; (B) degenerative retina

models. Lines starts from vitreoretinal boundary, and the last line

represent the end of choroid. L: left-field, R: right-field of OCT

image with optic nerve head placed in the center.

(<0.2%) manual corrections needed. To compare each model,

we calculated usage rate, ratio of image user selected as the

best fit vs. total number of images analyzed. Usage rates for

each normal retina model are summarized in Figure 2A (with

details listed in Supplementary Table 1 and DICE score listed

in Supplementary Table 2). We also calculated the median point

for every A-scan from values 10 models predicted and called

“Model_median”, which had the highest usage. On the other hand,

each of 10 individual models had its own success rate indicating all

models are useful in predicting segmentation lines.

However, normal retina models performed poorly for images

captured at PI6, PI13, and PI20 when retinal degeneration

becomes imminent. We generated 11 models using both “U-net”

and “deeplabv3plus” architectures (degenerative retina models).

Training dataset includes annotated OCT images previously

captured from rd10 mice and images from normal retina with

the photoreceptor layer artificially reduced. These models contain

8 segmentation lines to produce 6 retinal layers and a choroid

layer (Figure 1C). Usage rates for these models in analyzing images

captured at PI6, PI13, and PI20 are summarized in Figure 2B (with

details listed in Supplementary Table 3 and DICE score listed in

Supplementary Table 4). The median point for every A-scan from

values 11 models predicted and called “DR_median”, which also

had the highest success rate, whereas all individual “degenerative

retina” models were useful in predicting segmentation lines. All

OCT images were able to be analyzed with existing models and no

manual correction was needed.

3.2 Segmentation of retinal and choroid
layers

Example segmentation lines are superimposed on OCT images

in Figure 1A. Images from baseline, PI1, and PI3 are segmented

with “normal retina” model, which uses nine segment lines to

separate an image into eight layers: the nerve fiber layer (NFL),

inner plexiform layer (IPL), inner nuclear layer (INL), outer

plexiform layer (OPL), outer nuclear layer (ONL), inner and

outer segment layer (IS + OS), retinal pigment epithelium (RPE)

and choroid layer. The magnified view of a baseline OCT image

outlined by a yellow box is shown in Figure 1B. It better-illustrates

the placement of the nine lines. Starting at PI6, retinal degeneration

became more extensive, illustrated by thinning of photoreceptor

layers, merging of photoreceptor and RPE layers, and reduced

prominence of the external limiting membrane (ELM). OCT

images obtained from these injured retinas could not be adequately

processed with “normal retina”model.We developed “degenerative

retina”model to analyze these images, with eight segmentation lines

to separate seven layers. As the IS+OS and RPE layers merged, we

used the outer retina (OR) to define this merged layer. A magnified

image of the region outlined by a yellow box for PI20 OCT is shown

in Figure 1C.

3.3 E�ect of NaIO3 on RPE and
photoreceptor layers

Using the “normal retina” model, the RPE layer can be

separated from OCT images captured from baseline, PI1, and PI3

eyes. As shown in Figure 3A, there is a significant increase in RPE

layer thickness after SI injection for both PI1 and PI3, consistent

with swelling of RPE cells in response to SI. We used estimated

Attenuation Coefficient (eAC) to probe SI induced reflectance

changes on the RPE layer (Vermeer et al., 2013; Moriguchi et al.,

2018; Chang and Bowden, 2019; Sakai et al., 2024). Examples of

eAC images calculated from the original OCT images are shown

in Figure 3E. The effects of SI treatment on RPE layer reflectivity

are summarized in Figure 3B. There is a significant reduction of

reflectance in RPE cells after SI application.

SI is known to induce photoreceptor degeneration. Figure 3C

plots ONL thickness during the course of the study, which
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FIGURE 3

E�ects of SI on RPE and photoreceptor layers. (A) RPE layer thickness. (B) RPE layer eAC. (C) ONL thickness. (D) ONL eAC. (E) Examples of eAC

derived from OCT images. Scale bar: 100µm.

showed gradual reduction after SI application. The time course

of photoreceptor degeneration can fit with an exponential decay

with a half-decay time of ∼3 days. Application of SI also changed

reflectivity of the ONL layer: there, eAC values are visibly elevated

on PI1, and this elevated level of reflectivity is maintained thereafter

(Figure 3). Photoreceptor degeneration reduces thickness for both

ONL and OR. Consequently, there is a high correlation between

ONL thickness and OR thickness following application of SI, as

shown in Figure 4A.

3.4 Correlation of reflectance elevation
with retinal degeneration

We hypothesized that elevated reflectance for the ONL layer

could serve as an indication of photoreceptor stress. To test

this hypothesis, we calculated the correlation of the eAC values

of ONL observed on PI1 and the extent of photoreceptor

degeneration at PI20. Results are shown in Figure 4B. A linear

fit of the data indicates good correlation (R2 = 0.50) between
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the eAC on P-I1 and amount of ONL reduction on PI-20,

suggesting that ONL reflectance could serve as an early marker for

photoreceptor degeneration.

It has been suggested that the Dip ratio (OCT intensity of IS

band divided by the intensity of the hyporeflective zone between

IS and OS, illustrated in Supplementary Figure 1) could serve as

an early biomarker for retinal degeneration (Zeng et al., 2024).

Figure 4C presents the Dip ratio calculated from OCT images

captured at baseline, PI-1 and PI-3. Compared with baseline levels,

a significant reduction in Dip ratio was observed at the PI-3 time

point, providing additional support that Dip ratios could serve as

a biomarker for retinal degeneration. On the other hand, there is

no significant different in the Dip ratios between PI-1 and baseline,

suggesting this biomarker lags ONL reflectivity in predicting SI-

induced degeneration.

3.5 E�ect of SI on inner retina

In addition to alterations in photoreceptor and RPE layers,

application of SI also elicited responses in the inner retinal layers.

Changes in inner retinal layer thicknesses are shown in Figure 5A,

and the thicknesses of each layer normalized to baseline value

are shown in Figure 5B. There is an increase of inner retinal

layer thicknesses after SI injection, suggesting swelling of all inner

retinal layers. Maximum swelling was observed at PI3, with OPL

and INL exhibiting large changes as shown on the normalized

plot (Figure 5B). This swelling slowly regresses with time, and at

PI20 most inner retinal layers (except NFL) showed a significant

reduction of layer thickness than baseline. Table 1 summarizes

retinal layer thicknesses at baseline and post-injection changes.

3.6 E�ect of SI on vitreous particles

During OCT image acquisition, we noticed the appearance

of many hyper-reflective spots floating in the vitreous cavity

near the optic nerve head after mice received SI, especially on

PI1 (Figure 1A). To quantify these vitreous particles, we isolated

vitreous images by subtracting the retina portion fromOCT images.

Examples are shown in Figure 6A. After SI treatment, many small

particles appear in vitreous around the vicinity of the optic nerve

head (indicated by red arrows). The number of these small particles

was quantified using ImageJ and results are shown in Figure 6B.

There is a large increase in vitreous particles after SI injection, and

the number progressively decreases with time. By PI13, the vitreous

particle number is not significantly different from the baseline.

3.7 E�ect of SI on choroid thickness

The application of SI also induces changes in the choroid

layer. Figure 7A show examples of segmented choroid layer from

OCT images. The mean thickness of choroid at baseline is 88.6

± 4.2 um (mean ± SD), similar to the published data measured

by magnetic resonance imaging (MRI) (Duong, 2014). The effects

of SI on choroid thickness are shown in Figure 7B. Choroid

FIGURE 4

(A) Correlation between ONL thickness and OR thickness (A) with

the 95% confidence interval for R2 of 0.91 to 0.96. (B) Correlation

between photoreceptor degeneration (ONL reduction at PI20) and

ONL eAC values at PI1 (B) with the 95% confidential interval of R2 of

0.22 to 0.91, (C) E�ects of SI on Dip ratio, defined as OCT intensity

at IS peak divided by the value at Dip region.

thickness showed some reduction at PI1. However, due to the

large variance of the value, the difference between PI1 and baseline

is not statistically significant. Choroid thickness showed further
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FIGURE 5

E�ects of SI on inner retinal layers. (A) SI induced layer thickness changes for four inner retina layers. (B) Layer thickness normalized to their

respective baseline value. Thickness of photoreceptor and RPE complex (PR + RPE) is also included for comparison with four inner retinal layers.

Error bars represent SEM (unless smaller than the size of the symbols).

TABLE 1 Retinal layer thickness at baseline and post SI treatment (mean ± SD in µm).

NFL IPL INL OPL ONL OR

Baseline 14.63± 0.58 51.25± 1.08 25.76± 0.31 15.99± 0.49 63.30± 0.54 57.83± 1.28

1 15.77± 1.02 52.62± 1.23 27.54± 1.70 16.67± 1.12 53.63± 2.43 47.56± 1.19

3 16.21± 0.55 50.22± 1.02 33.35± 1.54 21.67± 1.97 38.08± 5.6 46.86± 2.16

6 16.08± 0.54 47.53± 0.95 32.72± 0.57 17.27± 0.59 31.60± 5.09 27.32↑2.25

13 15.01± 0.59 43.89± 1.47 24.99± 0.72 15.44± 1.00 22.07± 5.30 16.36± 1.65

20 15.06± 0.62 43.19± 1.02 22.52± 2.42 13.94± 1.87 16.81± 4.84 13.07± 0.68

decrease with time, and all those values are significantly different

from the baseline.

4 Discussion

Development of AI-based segmentation tools greatly facilitated

analysis of OCT images. We have obtained “normal retina” models

that can accurately segment images captured at baseline and

PI1 and PI3 after SI injection, and “DR” models for segmenting

images captured from degenerative retina (Figure 1). To check

for potential bias between these two groups of models, we

compared inner retinal layer thicknesses for PI3 and PI6 images.

No significant differences were detected for values obtained with

“normal retina” model from those obtained with “DR” model.

The accurate segmentation of retinal layers enhances sensitivity to

detect layer thickness changes. For example, RPE layer exhibited

thickening by about 0.5µm after SI (Figure 3A), and this change is

statistically significant. Thickening of RPE layer is consistent with

known action of SI specifically targeting RPE (Sorsby, 1941; Hanus

et al., 2016; Hurley, 2021; Koster et al., 2022; Espitia-Arias et al.,

2023; Zhang et al., 2023) to induce cell swelling and eventually

death (Koh et al., 2019; Ahn et al., 2020; Hanna et al., 2022).

Retinal degeneration induces various changes in retinal

structure. In our study, we found that the RPE, IS, and OS bands

were merged after PI3, which might be attributed to the migration

of RPE cells into the photoreceptor layer (Enzbrenner et al., 2021;

Kim et al., 2022) and disorganization of photoreceptor segments

(Hanus et al., 2016). We developed “degenerative retina” models to

analyze OCT images with prominent photoreceptor degeneration

(Figure 2B). These models were successful in processing all OCT

images captures from degenerative retina. We anticipate more

improvements for future models as more annotated degenerative

retina images are available for new training sets.

With a combination of “normal retina” and “degenerative

retina” model segmentation, we were able to characterize

photoreceptor degeneration induced by SI. As shown in Figure 3C,

reduction of ONL thickness can be described by a single

exponential decay, with a half-decay constant of 3 days for the

SI dosage used in this study (25 mg/kg). As SI-induced retinal

degeneration is dose dependent (Moriguchi et al., 2018; Zhang

et al., 2021), it is likely that the degeneration rate constant

will also be dependent on SI dosage. We also detected an

exponential reduction of choroid thickness following application of

SI (Figure 7). Due to the large variation in choroid thickness at PI1,

it is not possible to directly compare the time constant for choroid

thickness change with ONL changes. We also investigated potential

regional differences in SI-induced photoreceptor degeneration by

plotting ONL and OR thickness at each of eight ROIs on the retina.

As shown in Supplementary Figure 2, there is no consistent pattern
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FIGURE 6

SI induced increase of particles in vitreous cavity. (A) Example of OCT vitreous cavity before and 1-, 3-, 6-, 13-, and 20-day post injection. Red arrows

point the position of optic nerve head. (B) Counted particle numbers in vitreous cavity at each time points.

for regional variation, and all 8 ROIs showed parallel ONL and OR

thickness reduction. In this study, we used themean value of 8 ROIs

to represent data for each eye.

We calculated eAC from OCT images to investigate SI induced

reflectance changes in retinal layers. Unlike raw OCT intensity

which is influenced by many factors, including the optical quality

of anterior segment, eAC is a much better measurement of tissue

scattering (Vermeer et al., 2013; Chang and Bowden, 2019; Sakai

et al., 2024; Bissig et al., 2025). For example, eAC is useful

in revealing tissue reflectance after shadow of big blood vessels

on the surface of retina. However, eAC can only be calculated

from original OCT intensity on linear scale, but not from images

generated by commercial instrument with modified pixel intensity

(such as contrast enhancement or background subtraction). In

this study, we noticed an early and persistent elevation of

eAC at ONL after SI injection. On the other hand, raw OCT

intensity showed slight but not statistically significant reductions

(Supplementary Figure 3), suggesting there might be SI-induced

optical changes in anterior chamber.

Interestingly, the level of ONL eAC observed at PI1 is highly

correlated with final extent of photoreceptor degeneration at PI20

(Figure 4B). Although value of R2 is relatively modest (0.5), it

should be noted that all mice in this study received the same dose

of SI and all of them had larger than 50% retinal degeneration. The

correlation exhibited a much larger R2 (0.84) with addition of a new

group of mice received no SI treatment (Supplementary Figure 4).

To further investigate this correlation, future studies may use

different doses of SI to produce variable amount of retinal

degeneration. While the mechanisms for ONL eAC elevation need

further investigation, it could serve as an early biomarker for cell

stress. Analyzing longitudinal OCT images from human patients

and calculate ONL eAC values at various time points before and

after diagnosis of retinal degeneration will be able to determine if

similar correlation also exists for human subjects.

In addition to damaging the RPE and photoreceptors, we

noticed that SI has impacts on all other retinal layers (Figure 5A),

including the inner plexiform layer (IPL), inner nuclear layer

(INL), and outer plexiform layer (OPL), but not nerve fiber
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FIGURE 7

E�ects of SI on choroid thickness. (A) Examples of OCT image with segmented choroid layer. (B) Choroid thickness measured at each time points.

layer (NFL), these layers have degeneration to different extents.

Interestingly, instead of a monotonic reduction of photoreceptors,

the changes in these layers are biphasic, as the thickness increased

in one of the early stages, followed by degeneration at a later

phase (Figure 5B). While the underlying mechanisms of inner

retinal changes might be different from those of photoreceptor

degeneration and need further investigation, there are reports that

indicate SI-induced inflammation in the retina (Moriguchi et al.,

2018; Enzbrenner et al., 2021; Zhang et al., 2021; Koster et al.,

2022). SI-induced inflammation is consistent with an increased

number of particles in vitreous cavity near the optic nerve head

(Figure 6). Interestingly, there were large increases in the number

of particles in the vitreous cavity at PI1, PI3, and PI6, the same

time points when inner retinal layers showed increases in thickness

(Figure 5).

Taken together, the improved AI-based segmentation tool

is capable of processing OCT images from both normal and

degenerative retinas. Accurate segmentation provides a reliable

and sensitive measurement of OCT signals, allowing for the

detection of subtle changes in degenerated retinal layers. Using

this tool, we detected SI-induced swelling of RPE, reflectance

increments of ONL, and transient swelling of inner retinal

layer possibly induced by inflammation. Precise segmentation

of OCT images provides quantitative description of retinal
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changes produced by degeneration, including an exponential

reduction in choroid thickness. Furthermore, we have identified

that ONL reflectance could serve as an early biomarker for

photoreceptor degeneration.
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