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Behavior arises from coordinated brain-wide neural and glial networks, enabling

organisms to perceive, interpret, and respond to stimuli. Astrocytes play an

important role in shaping behavioral output, yet the underlying molecular

mechanisms are not fully understood. Astrocytes respond to intrinsic and

extrinsic cues with calcium (Ca2+) fluctuations, which are highly heterogeneous

across spatio-temporal scales, contexts, and brain regions. This heterogeneity

allows astrocytes to exert dynamic regulatory effects on neuronal function but

has made it challenging to understand the precise mechanisms and pathways

linking astrocytic Ca2+ to specific behavioral outcomes, and the functional

relevance of these signals remains unclear. Here, we review recent literature

uncovering roles for astrocytic Ca2+ signaling in a wide array of behaviors,

including cognitive, homeostatic, and affective focusing on its physiological

roles, and potential pathological implications. We specifically highlight how

different types of astrocytic Ca2+ signals are linked to distinct behavioral

outcomes and discuss limitations and unanswered questions that remain to

be addressed.
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Introduction

Behavior emerges from the coordinated activity of brain-wide cellular networks including
neurons and glia, which modulate an organism’s ability to perceive, interpret, and
appropriately respond to environmental or intrinsic stimuli (McCormick et al., 2020; Wu
Y. et al., 2024). It is now well established that astrocytes, a major type of glia, play key
roles in shaping behavioral responses by regulating multiple aspects of neuronal function
such as synaptic formation and function (Farhy-Tselnicker and Allen, 2018; Tan et al.,
2021), plasticity (Ota et al., 2013; Wang et al., 2022), and circuit dynamics (Hirrlinger and
Nimmerjahn, 2022; Oliveira and Araque, 2022). Tiling every region of the brain where
they closely associate with the vasculature as well as hundreds of thousands of synapses
in rodents (Bushong et al., 2002; Sofroniew, 2021; Hösli et al., 2022; Lorin et al., 2024) [and
millions in humans (Oberheim et al., 2009; Oberheim et al., 2012)], astrocytes monitor the
brain’s microenvironment and tune the responses of neurons and other glial cells to network
activity and metabolic states (Jha et al., 2019; Nutma et al., 2020; Rueda-Carrasco et al., 2021;
Xie et al., 2022; Molina-Gonzalez et al., 2023; Hu et al., 2024; Imrie et al., 2024). However,
the specific cellular mechanisms linking astrocytic function and behavioral outputs are not
fully understood.
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GRAPHICAL ABSTRACT

Astrocytic Ca2+ regulates behavioral output. Confocal images of astrocyte network (top left) and single astrocyte (top right) from P14 mouse visual
cortex expressing AAV5 GfaABC1D lck-eGFP, scale bar = 10 µm. Diagram (bottom) outlining differential behavioral outputs and corresponding
changes in calcium levels. *denotes conditions where different effects were reported depending on brain region.

Astrocytic signaling is primarily mediated by changes in
calcium (Ca2+) levels [reviewed in Khakh and Deneen (2019),
Goenaga et al. (2023), Ahrens et al. (2024), and Bai et al.
(2024)] which are highly heterogeneous across multiple spatial
and temporal scales (Srinivasan et al., 2015; Bindocci et al., 2017;
Semyanov, 2019).

Microdomain Ca2+ transients occur within the fine astrocytic
processes that contact synapses, allowing modulation of synaptic
activity by influencing gliotransmitter release, neurotransmitter
uptake and extracellular ion homeostasis with precise spatio-
temporal control (Shigetomi et al., 2010; Shigetomi et al., 2013a;
Agarwal et al., 2017; Ahmadpour et al., 2021; Lia et al., 2021;
Denizot et al., 2022) (Figure 1). Astrocytes can also generate
larger-scale somatic Ca2+ changes which are primarily mediated
by the release of Ca2+ stored in the endoplasmic reticulum
(ER) (Srinivasan et al., 2015; Stobart et al., 2018; Sherwood
et al., 2021). These fluctuations can occur spontaneously as well
as through extrinsic signaling via G protein coupled receptor
(GPCR)-mediated inositol trisphosphate (IP3) pathway, which in
astrocytes is predominantly mediated via the inositol trisphosphate
3 receptor type 2 (IP3R2). It was shown that unlike in neurons,
activating both modulatory (Gαq) and inhibitory (Gαi)-coupled
GPCRs in astrocytes can elicit stored Ca2+ release, demonstrating
the complex nature of astrocytic Ca2+ dynamics (Kofuji and
Araque, 2021b; Vaidyanathan et al., 2021; Denizot et al., 2022).
Somatic Ca2+ fluctuations can further propagate as intracellular
Ca2+ “waves” or “surges,” which can travel within the cell body and
processes and extend to other astrocytes via gap junctions, thus
facilitating communication within glial networks and coordinating
activity across brain regions (Scemes and Giaume, 2006;
Fujii et al., 2017).

The sources of astrocytic cytosolic Ca2+ depend on the type
of signaling initiated in the cell (Figure 1). While the ER serves

as a primary reservoir for somatic fluctuations (Okubo, 2020) in
response to GPCR activation, it is also shown to contribute to
microdomain signals (Lia et al., 2021; Denizot et al., 2022). Further,
the mitochondria, which interact with the ER, play a dual role by
both buffering intracellular Ca2+ levels and regulating its release,
thereby shaping the amplitude and duration of Ca2+ transients
(Agarwal et al., 2017; MacVicar and Ko, 2017; Serrat et al.,
2022). Extracellular Ca2+ influx also contributes significantly to
astrocytic activity, occurring through multiple pathways including
transient receptor potential (TRP) channels (Shigetomi et al.,
2013b; Verkhratsky et al., 2014; Bosson et al., 2017), voltage-gated
Ca2+ channels (VGCCs) (Cheli et al., 2016; Zamora et al., 2020),
purinergic P2X receptors (Ahmadpour et al., 2021), transporters
(such as Na+-Ca2+ exchanger, NCX) (Rose et al., 2020), store-
operated Ca2+ entry (SOCE) mechanisms (Toth et al., 2019)
(such as Ca2+ Release-Activated Ca2+ (CRAC) channels), and
activation of Ca2+ permeable ionotropic receptors (or ligand-
gated channels, LGCCs), such as N-methyl-D-aspartate receptors
(NMDARs) which, in addition to neurons, are also expressed by
astrocytes [reviewed in Imrie et al. (2024)]. How these signals
intersect to produce cellular responses is not well understood, but
the dynamic relationship between these sources and the cellular
pathways they activate allows astrocytes to integrate diverse signals
and regulate neuronal activity with high versatility.

The development of tools allowing for the visualization,
quantification, and manipulation of astrocytic Ca2+ signals has
been central to understanding their physiological relevance.
Visualization of astrocytic Ca2+ signals is largely executed through
imaging of fluorescent dyes or genetically encoded Ca2+ indicators
(GECIs) such as green or red fluorescent protein conjugated
calmodulin-M13 peptides (G/RCaMP) (Lohr et al., 2021). These
indicators are used across multiple experimental models including
cultured cells (Ryu et al., 2024), ex vivo slices (Srinivasan et al.,
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FIGURE 1

Cellular pathways involved in astrocytic Ca2+ signaling. A diagram of astrocytic cellular compartments (top panel) and the signaling pathways
involved in Ca2+ dynamics (bottom panels) within them. (A) Astrocytic Ca2+ signals via gap junctions facilitate astrocytic network communication.
(B, C) Diverse pathways mediated via receptors, transporters, channels, and cellular organelles activating Ca2+ fluctuations in soma and major
processes (B), as well as in fine processes (C) such as those contacting synapses (synapses not depicted). VGCC, voltage-gated Ca2+ channels;
LGCC, ligand-gated Ca2+ channels (including ionotropic receptors such as NMDAR); TRP, transient receptor potential channel; CRAC, Ca2+

release-activated Ca2+ channel; P2XR, purinergic receptor P2X; NCX, Na+-Ca2+ exchanger; GPCR, G protein coupled receptor; IP3R2, inositol
trisphosphate receptor type 2. Biorender.

2015), or in vivo in head-fixed or freely behaving animals
(Qin et al., 2020; Gau et al., 2024). Additionally, astrocytic Ca2+

signals can be manipulated to assess upstream effectors and
downstream consequences. These include reductions via chelators
(Sasaki et al., 2014), genetic removal of IP3R2 (Srinivasan et al.,
2015), or via Ca2+ extrusion pumps such as CalEx (Yu et al., 2018),
or activation through stimulation of GPCRs (Kofuji and Araque,
2021b), including chemogenetic stimulation of designer receptors
exclusively activated by designer drugs (DREADDS) (Roth, 2016;
Lee et al., 2023). Several analysis tools to decode astrocytic Ca2+

signals have been utilized including GECIquant (Sharmila, 2019)
and Astrocyte Quantitative Analysis (AQuA) (Wang et al., 2019),
providing high resolution signal detection and quantification.
While these methods provide robust representations of Ca2+

events, their physiological relevance should be carefully considered,
as Ca2+ buffering by indicators, insufficient labeling (such as
lack of signal in the fine processes), or off target effects (such
as gliosis due to overexpression of modified fluorescent proteins)
are a possibility (Semyanov et al., 2020). Furthermore, when
manipulating astrocytic Ca2+ signaling, discerning whether the
effects accurately represent endogenous physiological activity is
a challenge. For example, recent work using in vivo imaging of

mouse cortex has shown that activation of Gq-DREADDs strongly
yet transiently increases astrocytic Ca2+, followed by persistent
suppression of Ca2+ signals (Vaidyanathan et al., 2021). For
detailed reviews on this topic see: (Khakh and McCarthy, 2015;
Shigetomi et al., 2016; Semyanov et al., 2020; Bai et al., 2024).

A large body of work in recent years using primarily
mammalian models has strongly implicated astrocytic Ca2+

signaling in a wide range of central nervous system functions
including behavioral output [for further reading see (Guerra-
Gomes et al., 2018; Kofuji and Araque, 2021a; Lyon and Allen,
2022)], while disruptions in astrocytic Ca2+ homeostasis have
been observed in neurological and psychiatric disorders in both
rodent models and human tissue (Shah et al., 2022; Sobolczyk
and Boczek, 2022; González-Arias et al., 2023), underscoring the
importance of understanding these processes in both physiological
and pathological contexts. Despite these prominent findings, the
functional relevance of astrocytic Ca2+ signaling has been a
controversial topic (Nizar et al., 2013; Takata et al., 2013; Bonder
and McCarthy, 2014; Jego et al., 2014; Petravicz et al., 2014),
and a comprehensive understanding of the mechanisms by which
astrocytic Ca2+ signaling modulates behavior is lacking. In this
review, we highlight recent advances in our understanding of

Frontiers in Cellular Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fncel.2025.1606265
https://www.Biorender.com
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-19-1606265 May 12, 2025 Time: 17:46 # 4

Imrie and Farhy-Tselnicker 10.3389/fncel.2025.1606265

how astrocytic Ca2+ signaling contributes to behavioral output
focusing on findings which characterize astrocytic Ca2+ dynamics
underlying various cognitive and emotional processes and neural
circuit function. By integrating results from cellular, systems, and
behavioral studies, we provide a comprehensive perspective on the
role of astrocytic Ca2+ signaling in brain function and subsequent
behavioral responses.

Astrocytic Ca2+ signaling regulates
cortical network states, learning,
and memory

Cortical network states

Cortical network states define how populations of brain cells
interact and process information (Buonomano and Maass, 2009;
Wu M. et al., 2024). In this context, “states” refers to distinct
activity patterns which facilitate different kinds of behaviors and
can be measured by recording local field potentials to quantify
oscillatory dynamics (Colgin, 2011; Liu et al., 2022; Chen et al.,
2024). For instance, deep sleep is characterized by delta oscillations
at 0.5–4 Hz (Kim et al., 2019), while sensory processing, attention,
and working memory are characterized by gamma oscillations at
30–100 Hz (Buzsáki and Wang, 2012). Astrocytic Ca2+ signaling
diversely regulates cortical state maintenance and transitions,
underlying multiple modes of behavioral output. Studies pairing
in vivo Ca2+ imaging using genetically encoded Ca2+ indicators
(GECIs) with behavioral tracking or electrophysiology show that
cortical astrocyte Ca2+ fluctuations are critical for cortical network
state switching, which drives initiation and cessation of behaviors
including sleep, arousal, feeding, and exploration (Poskanzer and
Yuste, 2016; Reitman et al., 2023; Gau et al., 2024). It was shown that
Ca2+ signals within the fine astrocytic processes underlie a switch
to a slow-oscillation dominated state which is critical for behavioral
regulation in both quiescent and active states (Anand et al., 2024),
and which is associated with enhanced extracellular glutamate
levels (Poskanzer and Yuste, 2016). Interestingly, astrocytic Ca2+

signals appear to be suppressed during habitual or familiar
behaviors, but increase during unexpected behaviors, such as
exploration of novel stimuli. Notably, these astrocytic Ca2+

responses decline with repeated exposure, suggesting an adaptive
mechanism for encoding contextual behavioral salience changes
(Gau et al., 2024).

State dependent cortical astrocyte Ca2+ signals are encoded
by the distinct actions of specific neurotransmitters and
neuromodulators. Studies leveraging in vivo astrocytic Ca2+

imaging in combination with neurotransmitter uncaging show that
brief neurotransmitter input leads to long lasting network-wide
astrocyte Ca2+ changes, which may serve as a mechanism for
prolonged neuronal network activity integration. Glutamate
and GABA uncaging both induced prolonged and spatially
extensive astrocyte Ca2+ activity, with glutamate preferentially
increasing propagative Ca2+ waves, which appear to modulate
information flow within astrocytic networks (Cahill et al., 2024).
Importantly, in these studies, astrocytic Ca2+ responses were
context dependent, with baseline propagative activity inversely

correlated with responsiveness to neurotransmitter input.
Additionally, norepinephrine (NE) is shown to drive astrocyte
Ca2+ transients involved in cortical synchronization, important
for transitions from quiescent to active states and behavioral timing
(Reitman et al., 2023; Gau et al., 2024), while acetylcholine (ACh)
modulates cortical astrocyte Ca2+ transient amplitude during
novel experience (Gau et al., 2024).

Sensory perception

Network states allow organisms to make sense of
environmental stimuli in a contextually relevant manner,
supporting a role for astrocytic Ca2+ activity in sensory perception
and processing. Indeed, recent work using Ca2+ imaging and
electrocorticography (ECoG) in mice shows that astrocytes in
the primary somatosensory cortex exhibit stimulus dependent
Ca2+ elevations in response to sensory stimulation, which
temporally correlate with neural network activity, specifically
gamma oscillations, linked to sensory processing and cortical
excitability. In mice lacking the ER receptor IP3R2 and subsequent
store-released Ca2+ signaling in astrocytes, gamma oscillation
steady state is increased and its temporal decline during sensory
stimulation is diminished. Further, manipulation of astrocytic
Ca2+ levels using a chemogenetic approach with Gαq-coupled
designer receptors exclusively activated by designer drugs (Gq-
DREADDs) reduced cortical gamma frequency responses to
sensory stimulation, suggesting that astrocytic Ca2+ plays an
important role in modulating sensory-evoked gamma activity
by regulating its upper limits (Lines et al., 2020). Notably, since
DREADD mediated activation of astrocytic Gαq-coupled pathways
is pancellular, it may mask the contributions of compartmentalized
astrocytic Ca2+ signals in this context. Astrocytic microdomain
Ca2+ transients are also implied in cortical responses to sensory
stimulation. Virally mediated knock-down of astrocytic NMDARs,
activation of VGCCs, and metabotropic signaling caused neural
network desynchronization and impaired adaptation to whisker
stimulation in the mouse barrel cortex (Ahmadpour et al., 2024).

Learning

Dynamic modulation of neural responses to relevant stimuli
underlies the acquisition of behavior, which can be innate or
learned (Shahaf and Marom, 2001; Aizenberg et al., 2015; Inácio
et al., 2025). Encoding of reward drives learning through changes
in synaptic plasticity brought about by signaling molecules that
transmit information regarding expected and elicited outcomes
(Ding et al., 2022). Recent evidence provides a framework for the
role of astrocytic Ca2+ signaling in these processes. Using the
AstroLight tool, which employs a light-sensitive transcriptional
switch that only activates gene expression in the presence of high
intracellular Ca2+ and blue light application, it was shown that
astrocytes in the nucleus accumbens (NAc) form ensembles that
mediate cue-motivated behaviors in mice. Though AstroLight is
a powerful tool for identifying contextually respondent astrocytes,
the manipulation of broad populations of astrocytes using opsins
may lead to cellular activity changes that deviate from physiological
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norms. Fiber photometry and Ca2+ imaging showed progressive
recruitment of astrocytic Ca2+ activity in the NAc during cue–
reward learning. Optogenetic and chemogenetic modulation of
these ensembles is sufficient to modulate behavior, demonstrating
that astrocytes integrate motivational information through Ca2+

signaling to contribute to decision making processes (Serra et al.,
2025). These findings are consistent with evidence in the globus
pallidus externus, where astrocytic Ca2+ is shown to gradually
reduce as habit formation progresses (Kang et al., 2023), while
in the hippocampus, CA1 astrocytes chronically imaged in vivo
were shown to gradually “ramp up” Ca2+ activity during reward
seeking in a previously learned location (Doron et al., 2022). In the
NAc these effects are diversely mediated by unique glutamatergic
circuits, displaying input region-specific astrocytic Ca2+ responses:
inputs from the medial prefrontal cortex (mPFC) trigger high levels
of Ca2+ activity in astrocytes of the NAc core and shell, amygdala
inputs enhance astrocytic Ca2+ signals in the dorsal NAc, while
ventral hippocampus inputs broadly activate astrocytic networks
(Serra et al., 2022).

Memory

Memory is essential for learning, and the neural and glial
mechanisms underlying these processes are closely interrelated,
mutually driving behavioral output shaped by experience.
Accumulated evidence suggests an important role for astrocytic
Ca2+ in multiple aspects of memory function including formation,
consolidation, and retrieval (Huang et al., 2020; Escalada et al.,
2024). In vivo Ca2+ imaging studies in mice show that hippocampal
CA1 astrocytes integrate information from salient past events such
that Ca2+ signals from distal astrocytic processes are followed
by Ca2+ changes in the soma, generating specific patterns of
networked Ca2+ activity dependent on arousal state and past Ca2+

signaling events (Rupprecht et al., 2024). This also has important
implications for neuronal plasticity necessary for memory
formation and allocation, which are enhanced by optogenetic or
chemogenetic Gq-DREADD induced astrocytic Ca2+ changes
which facilitate NMDAR-dependent long-term potentiation in
CA1 (Adamsky et al., 2018; Suthard et al., 2023a). These effects
may in part be mediated by the activity of astrocytic α4-nAChRs,
which drive Ca2+ transients that regulate the co-agonist supply for
NMDARs, strengthening temporal association memory, an effect
that was diminished by attenuation of astrocytic Ca2+ (Ma et al.,
2023). Recent work also reveals an important role for Gαi-GPCR-
mediated astrocytic Ca2+ changes in CA1, which impair remote
but not recent memory when chemogenetically modulated during
learning. This manipulation also affected neuronal activity in the
anterior cingulate cortex through the disruption of CA3 to CA1
communication, indicating an astrocytic role in circuit-specific
regulation of memory (Kol et al., 2020).

This was also observed in the basolateral amygdala, where
astrocytic Ca2+ extrusion by virally mediated expression of the
CalEx pump impaired context dependent memory recall (Sun et al.,
2024). The molecular mechanisms underlying astrocytic Ca2+

signaling in memory are still largely unknown, but work leveraging
electrophysiological recording in mouse brain slices has uncovered
that store-operated Ca2+ release-activated Ca2+ (CRAC) channels

comprised of Orai1 and STIM1 are necessary for the development
of sustained and oscillatory Ca2+ signals in response to GPCR
stimulation, and subsequent release of ATP in CA1 (Toth et al.,
2019). Additionally, rescuing STIM1 expression enhanced long-
term plasticity in Alzheimer’s disease (AD) models in female mice,
which display decreased astrocytic Ca2+ activity associated with
store-released Ca2+ dysfunction (Lia et al., 2023).

To summarize, astrocytic Ca2+ signaling is emerging as
a central regulator in cortical network state maintenance,
sensory perception, learning, and memory, which are all critical
components in the acquisition and elicitation of behavioral output.
Through neurotransmitter-specific responses and regionally
distinct signaling mechanisms, astrocytes adaptively encode
environmental stimuli and behavioral salience via dynamic
changes in Ca2+ fluctuations, reinforcing their importance in
experience-dependent plasticity. Though recent work has made
great progress in identifying the specific effects of upregulation
or abrogation of astrocytic Ca2+ signaling in these functions,
studies investigating the specific molecular mechanisms and
subcellular pathways that are activated in response to astrocytic
Ca2+ manipulation are lacking. Expanded investigations focusing
on the interactions between CRAC mediated Ca2+ entry and other
Ca2+ sources in vivo will be important for identifying how these
pathways contribute to behavior. Ultimately, studies describing the
context, temporal, and circuit dependent mechanisms by which
astrocytic Ca2+ signaling mediates cortical state, learning, and
memory will be critical for determining how astrocytes regulate
behavioral output at its earliest stages.

Astrocyte Ca2+ signaling regulates
homeostatic behaviors

Homeostatic behaviors such as sleep-wake cycles and food
intake are essential for survival, allowing organisms to maintain
stable internal conditions despite changes in their environment.
These behaviors originate when conditions deviating from
physiological ranges are detected and integrated by both neuronal
and glial networks to generate appropriate responses (Simard and
Nedergaard, 2004; Lam, 2010; Rosenberg and Rao, 2021; Ahn
et al., 2022). Through their extensive interactions with neuronal
synapses and CNS vasculature, astrocytic Ca2+ changes tune these
behavioral outputs in a contextually relevant manner (Parpura and
Verkhratsky, 2012; Murphy-Royal et al., 2017; Lee et al., 2021;
Tewari et al., 2024).

Circadian rhythmicity

Circadian rhythmicity is fundamental to the maintenance
of homeostatic functions in most animals (de Assis and Oster,
2021; Mortimer et al., 2025). Astrocytes express genes encoding
the molecular clock and show robust circadian rhythmicity
(Barca Mayo et al., 2019; Womac et al., 2009; Brancaccio et al.,
2017; Ruben and Hogenesch, 2017; Whalley, 2017; McCauley
et al., 2020; Coomans et al., 2021; Hastings et al., 2023; Ryu
et al., 2024). In mammals, core circadian output is generated
within the suprachiasmatic nucleus (SCN) of the hypothalamus,
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where astrocytic Ca2+ activity is anti-phase to neuronal Ca2+

activity, as shown by long term imaging of ex vivo organotypic
mouse brain slices expressing virally delivered GECIs. This anti-
phasic oscillatory pattern was observed in both the soma and
microdomains, with the latter showing particularly robust signals
in the dorsal SCN, implying that Ca2+ activity in astrocytic
processes has important functional relevance in this region. Indeed,
this study identified that the enhanced astrocytic Ca2+ signaling
corresponds with astrocytic glutamate release which suppresses
neural activity though increased GABAergic tone, mediated by
astrocytic NMDARs in the dorsal SCN (Brancaccio et al., 2017).

Astrocytic Ca2+ activity also shows circadian rhythmicity
in vivo. Leveraging long range fiberscope imaging in behaving
mice, it was shown that cortical astrocytes exhibit robust somatic
Ca2+ fluctuations corresponding with the animal’s activity, with
higher frequency and amplitude during active periods than during
quiescence (Gau et al., 2024). These oscillations in somatic Ca2+

signals may be driven by circadian changes in expression of the
glial ER receptor IP3R2. Recent evidence in primary cultured
cortical astrocytes demonstrates that rhythmic expression of heat
shock factor-1 regulated protein (HERP) regulates the degradation
of IP3Rs in a circadian manner. IP3R2 expression was found
to be anti-phase to HERP expression, and ATP induced somatic
Ca2+ transients, which are normally higher during subjective
night (corresponding to active periods for rodent astrocytes), lost
rhythmicity in Herp knockdown astrocytes (Ryu et al., 2024). HERP
mediated IP3R2 Ca2+ signaling was also linked to the rhythmic
phosphorylation of connexin 43, which is shown to reduce
gap junction conductance (Solan and Lampe, 2014; Nimlamool
et al., 2015), thereby modulating Ca2+ signaling across astrocyte
networks.

Sleep/wake

During sleep/wake cycles, astrocytic Ca2+ signaling
is heterogeneous across brain regions. Outside of the
SCN, astrocytic Ca2+ fluctuations generally correlate with
activity levels, decreasing/desynchronizing during sleep and
amplifying/synchronizing during wakefulness (Bojarskaite et al.,
2020; Ingiosi et al., 2020; Vaidyanathan et al., 2021; Peng et al., 2023;
Gau et al., 2024; Péter and Héja, 2024; Ryu et al., 2024). Conversely,
some brain regions such as the basolateral forebrain (BF) and
brainstem exhibit increased astrocytic Ca2+ signaling during rapid
eye movement (REM) sleep, characterized by high levels of neural
activity, muscle atonia, and dreaming. Chemogenetic modulation
of astrocytic Ca2+ using Gq-DREADDs generally reduced REM
sleep, while differentially impacting brain activity in the delta
frequency associated with non-REM sleep, reducing it in the BF
and increasing it in the brainstem, suggesting that astrocytic Ca2+

dependent modulation of sleep/wake activity is both sleep state
and brain region specific (Peng et al., 2023).

Recent work demonstrates that the arousal inducing effects of
astrocytic Ca2+ are prominent at the network level, with global
increases in intracellular astrocytic Ca2+ waves underlying the
transitions from quiescent to active behavior, an effect which was
strongly suppressed by inhibition of NE release from presynaptic
terminals, suggesting an important role for this neuromodulator

in elevating astrocytic Ca2+ during arousal (Gau et al., 2024).
Consistently, live imaging of GECI expressing astrocytes shows
that in the barrel cortex (BC), NE release from the locus coeruleus
toggles a switch from small Ca2+ signals (observed in the quiescent
BC during whisker stimulation) to large Ca2+ waves (observed
in the awake BC during whisker stimulation) in the astrocytic
processes (Wang et al., 2023). Interestingly, astrocytes in the
BC also show large Ca2+ fluctuations in somata and processes
underlying slow wave sleep to arousal, but not REM to arousal
transitions (Bojarskaite et al., 2020). Combining Ca2+ imaging
with local field potential recording in the BC showed that the
small Ca2+ transients (characteristic of BC astrocytes during sleep)
reduced EPSP amplitude, suppressing sensory transmission (Wang
et al., 2023) and providing a potential mechanism for the role
of astrocytic Ca2+ signaling in sleep modulation in this region.
Duality in astrocytic Ca2+ signals is also observed in drosophila,
where Ca2+ increases in somas and processes mediated by the
astrocyte specific temperature sensitive cation channel dTrpA1
resulted in two unique phenotypes: a fast elevation in sleep which
occurred at night, and delayed but persistent increase in sleep
during the day supporting that in flies, astrocytic Ca2+ signaling
encodes sleep pressure (Blum et al., 2021; Srinivasan, 2021). Taken
together these findings suggest that astrocytic Ca2+ fluctuations are
multimodal and intimately involved with state transitions between
sleep and arousal.

Astrocytic Ca2+ activity is also implied in sleep architecture,
which refers to the structured organization and progression of
sleep stages across a sleep period (Younes et al., 2022). In studies
combining Ca2+ imaging in behaving, head-fixed mice with
electrocorticography (ECoG), it was shown that inhibition of ER
released astrocytic Ca2+ through deletion of IP3R2 causes slow
wave sleep to become fragmented, corresponding with reduced
ECoG delta power (Bojarskaite et al., 2020), in agreement with
studies showing that high frequency somatic astrocytic Ca2+

oscillations in the delta (and theta) frequency are critical for
modulating slow wave sleep (Péter and Héja, 2024). The sleep
phenotypes resulting from IP3R2 KO are likely linked to an
inability to respond to both Gαq and Gαi-coupled GPCR-mediated
signaling pathways, which are shown to regulate sleep duration and
depth, respectively (Vaidyanathan et al., 2021).

Nutrient intake

Additional homeostatic behaviors modulated by astrocytic
Ca2+ dynamics include feeding and drinking. During these
behaviors under ad libitum conditions, cortical astrocytic Ca2+

transients are suppressed (Gau et al., 2024). However, after
starvation or water restriction, astrocytic Ca2+ signals increase
in response to food or water, and to a greater extent when
visual or olfactory cues are presented to deprived mice while
food is inaccessible. These data suggest that cortical astrocyte
activity drives these behaviors and is flexible to neuromodulation
dependent on internal motivation state (Gau et al., 2024). Indeed,
in the murine arcuate nucleus (ARC) of the hypothalamus,
which plays a central role in feeding behaviors (Zhang et al.,
2019), chemogenetic Gq-DREADD manipulation of astrocytes
induced robust somatic Ca2+ signaling driving food intake through
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increased activation of orexigenic AgRP/NPY neurons, which
inhibit satiety promoting neurons (Chen et al., 2016; Zhang
et al., 2019). These findings correspond with reports showing
that astrocytes modulate feeding behavior through the regulation
of extracellular adenosine levels, which is coupled to astrocytic
intracellular Ca2+ levels (Yang et al., 2015). Further, hypothalamic
astrocytes downstream of ARC nucleus show robust leptin
receptor expression which induces somatic Ca2+ signals upon
stimulation in mice. Leptin, a hormone produced by adipocytes,
has a prominent role in satiety behavior, with increased levels
leading to leptin resistance in obesity and metabolic syndromes
(Engin, 2017; Balland et al., 2019; Zhang et al., 2019). Astrocytic
leptin receptors and the related Ca2+ transients are increased
in mice subject to diet induced obesity (DIO), suggesting a
role for astrocytic Ca2+ in obesity linked metabolic disruption
(Hsuchou et al., 2009). Accordingly, a recent report demonstrates
that DIO in mice increases the frequency and amplitude of
Ca2+ signals in astrocytes in the paraventricular nucleus (PVN),
ARC, and dorsomedial nucleus of the hypothalamus (DMH),
without affecting astrocytic Ca2+ mobilization in the ventromedial
nucleus of the hypothalamus (VMH). Additionally, chemogenetic
manipulation of these Ca2+ signals had aggravating (via Gq-
DREADD) or alleviating (via Gi-DREADD) effects on metabolic
condition in mice subject to DIO (Herrera Moro Chao et al., 2022).

Taken together, these findings provide critical insight into
the role of astrocytic Ca2+ signaling in the modulation of
homeostatic behaviors. Astrocytes regulate these processes through
Ca2+ fluctuations at the network level and in multiple subcellular
compartments in a heterogeneous manner dependent on the brain
region and physiological context. Given its central role in arousal,
particularly in sleep-wake transitions characterized by enhanced
astrocytic Ca2+ signaling, NE is emerging as a key component in
these processes, potentially mediated by astrocytic α1-adrenergic
receptors. However, the specific interactions between neuronal NE
release and astrocytic Ca2+ dynamics remain unclear, calling for
further targeted investigations, especially with respect to spatially
and functionally distinct astrocytic Ca2+ signals across brain
regions. Furthermore, very little is known about the roles of
astrocytic Ca2+ in other survival behaviors such as defensive
responses, or how astrocytic Ca2+ integrates with metabolic signals,
such as leptin and adenosine. Uncovering these roles may provide
insights into how disruptions in relevant pathways contribute to
disorders of sleep, metabolism, and circadian misalignment.

Astrocytic Ca2+ signaling regulates
affective and social behaviors

Fear

Affective behaviors such as fear and anxiety, are fundamental
to organismal responses to environmental stimuli (Raber et al.,
2019; Mendl and Paul, 2020), and astrocytic Ca2+ signaling has
been widely identified as a major component in mediating these
behaviors. In vivo Ca2+ imaging during air-puff evoked startle
demonstrated robust, global astrocytic Ca2+ responses in the cortex
which consisted of a fast α1-adrenoceptor dependent spike in
somatic Ca2+, and a phasic Ca2+ response with both early and late

components within the astrocytic processes that was unaffected by
α1-adrenoceptor blockade. In IP3R2 KO mice, somatic signals and
early responses within the astrocytic processes were abrogated, but
the late component was still readily identifiable, underscoring the
complexity of compartmentalized astrocyte activation in response
to relevant stimuli (Srinivasan et al., 2015). This air-puff-evoked
startle response could be attenuated through expression of the
GPCR signaling inhibitor, iβARK (Nagai et al., 2021). Astrocytic
Ca2+ transients also mediate startle responses in zebrafish, with
Ca2+ propagating bidirectionally from astrocytes in the rostral
spinal cord through gap junctions in glial networks in a glutamate
dependent manner, requiring adrenergic signaling for propagation
in the hindbrain (Orts-Del’Immagine et al., 2022).

Neural mechanisms underlying startle responses are tightly
interrelated with processes governing the more complex acquisition
of fear, which engages numerous brain regions responsible for
threat detection, stimulus integration, and contextual memory
(de Haan et al., 2018; Zheng and Schmid, 2023). Recent work
implies a prominent role for astrocytic Ca2+ signals in the
modulation of these effects in the basolateral amygdala (BLA).
During foot shock, BLA astrocytic Ca2+ signals were significantly
elevated relative to non-shocked controls, indicating their role
in encoding stimulus salience. Fascinatingly, different stages of
fear acquisition appear to engage potentially distinct populations
of astrocytes with unique Ca2+ kinetics (Suthard et al., 2023b).
In the medial subdivision of the central amygdala (CeM),
astrocytes respond to both endogenous endocannabinoid or
exogenous Gq-DREADDs stimulation with robust Ca2+ transients,
which enhanced inhibitory signaling at lateral central amygdala
to CeM synapses, dampening excitatory signaling at BLA-
CeM synapses and reducing fear expression in a delayed fear
conditioning paradigm (Martin-Fernandez et al., 2017). Together
these results demonstrate that context, population, and synapse
specific astrocytic Ca2+ signals are highly diverse across different
components of fear behavior.

Anxiety

While startle and fear represent acute responses to aversive
stimuli, anxiety is characterized by a prolonged anticipation of and
often disproportionate response to potential danger (Duval et al.,
2015). Extruding Ca2+ from NaC astrocytes by overexpression
of the CalEx pump led to pronounced reductions in anxiety
behavior, increasing exploratory behaviors in mice. However,
this manipulation also increased compulsive behaviors, such as
perseverative responses in five choice serial reaction time task
and enhanced hedonia in sucrose preference test (Peyton et al.,
2025). These findings underscore a potential role for astrocytic
Ca2+ not only in anxiety, but at the intersection between
anxiogenesis and compulsive hedonic behaviors, which is a major
factor underlying addiction (Koob, 2008). The hippocampus
is also strongly implicated in the development of anxiety
like behaviors, and recent evidence demonstrates an important
role for astrocytic Ca2+ signaling in these processes. In vivo
Ca2+ imaging in head-fixed mice revealed robust increases in
astrocytic Ca2+ during the anxiogenic phase of a virtual reality
paradigm, while mice in non-anxiogenic phases had minimal Ca2+
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elevations. Interestingly while most astrocytes within the field
of view responded to the anxiogenic phase, a smaller fraction
of astrocytes responded specifically to the non-anxiogenic phase,
suggesting heterogeneously respondent hippocampal astrocyte
populations, and reinforcing the notion that astrocytes encode
behavioral salience (Cho et al., 2022). Others show that anxiety-
linked astrocytic Ca2+ increases are specifically abundant in the
ventral hippocampus during anxiogenic behaviors, and conditional
knockout of astrocytic IP3R2 was anxiolytic, implying a role for
store-released Ca2+ in anxiety modulation. In these studies, it was
also shown that chemogenetic manipulation of astrocytic Ca2+

signaling increased anxiogenic conditions through the enhanced
release of glutamate, which contributes to stress susceptibility
through neuronal NMDAR stimulation which could be ameliorated
with specific NMDAR antagonists (Li et al., 2024). These effects
may be modulated by metabotropic glutamate receptor (mGluR)
signaling. MGluR5 induces robust IP3 mediated Ca2+ release in
astrocytes, and its specific knockdown is associated with reduced
inhibitory synaptic inputs in CA1 which correspond with increased
anxiety-like behaviors (Li et al., 2023). In mice with chronically
activated Gq-DREADDs, astrocytic Ca2+ signals in the ventral
CA1 and anxiety-like behaviors were increased, but only in three
month old mice, while six month old mice exhibited no change
relative to controls (Suthard et al., 2023a). These findings highlight
the importance of considering developmental timepoint, however,
effects may also be due to compensatory astrocytic mechanisms,
as chronic Gq-DREADD stimulation would also generate chronic
Ca2+ depletion.

Depression

Persistent anxiety, among other factors, can contribute to the
development of depression (Ross et al., 2017), an affective behavior
characterized by prolonged emotional dysregulation and reduced
motivation and pleasure. Given the findings linking aberrant
astrocytic Ca2+ signaling to anxiety, it is unsurprising that it is
also implied in depressive phenotypes. Reducing astrocytic Ca2+

via CalEx pump extrusion during a critical period in mouse
development (postnatal week 2–3) led to synaptic hyperexcitation
and depressive like behaviors in adults, including anti-social
behaviors and prolonged immobility in tail suspension and
forced swim tests which could be rescued through Gq-DREADD
stimulation (Luo et al., 2023). Further, in chronically corticosterone
treated juvenile mice, mPFC astrocytic Ca2+ fluctuations were
aberrant at baseline and reduced during social and exploration
behaviors relative to untreated controls, and serotonin (5-HT)
evoked astrocytic Ca2+ signals were diminished (González-Arias
et al., 2023). These age specific findings introduce important
questions regarding the developmental nature of astrocytic Ca2+

signals, and how disruptions at specific timepoints may contribute
to long term consequences.

Social behavior

Astrocytic Ca2+ signaling is also implicated in social behaviors,
contributing to social interactions and disorders characterized by

their dysregulation. Recent evidence shows that social dominance
behaviors are modulated by these signals, with astrocytic Ca2+

increasing in the mPFC during assertive and resistant behaviors
between male mice, with higher amplitude responses recorded
in dominant mice compared to subordinates. The study also
identified that these behaviors were mediated by astrocytic release
of glutamate and ATP, which regulate cortical excitation/inhibition
(E/I) balance (Noh et al., 2023). This in part may be modulated
by store-released Ca2+ signaling, as IP3R2 KO mice exhibited
a delay in the assertion of dominance behaviors relative to
wild type controls, with no effect on competitive outcome,
suggesting the involvement of other pathways in these behaviors
(Guillot de Suduiraut et al., 2021). Moreover, astrocytic Ca2+

signaling is implied in the social behavioral deficits observed
in autism spectrum disorders (ASD). Transplantation of ASD
derived human astrocytes into mouse brains induced deficits
including repetitive compulsive behaviors (perseverative digging)
and attenuated fear memory. The ASD derived astrocytes
elicited aberrant, exaggerated Ca2+ signals relative to wild
type astrocytes, implying that increased Ca2+ and subsequent
gliotransmitter release underlies ASD like behavioral dysfunction
in mice (Allen et al., 2022). IP3R2 mediated Ca2+ transients
are linked to ASD like behaviors in mice, with IP3R2 KO
mice exhibiting antisocial behavior in a place preference test
and increased repetitive behaviors including perseverative
digging as well as compulsive-like grooming behaviors. These
behavioral deficits, as well as GABAergic neurotransmission,
which was abrogated by IP3R2 KO, could be rescued by
treatment with ATP or ATPyS, a gliotransmitter which is
reduced in IP3R2 KO mice, implying a potential mechanism for
astrocytic store-released Ca2+ signals in ASD related behavioral
pathology (Wang et al., 2021). In agreement with these results,
repetitive grooming behaviors were also observed following
CalEx pump-mediated extrusion of astrocytic Ca2+ which
disrupted striatal microcircuits, suggesting the involvement
of astrocytic Ca2+ in this brain region in ASD pathology
(Yu et al., 2018).

Thus, astrocytic Ca2+ signaling plays a crucial role in
modulating affective and social behaviors, influencing processes
like startle response, fear acquisition, anxiety regulation, and
social dominance. However, unanswered questions remain
regarding specific facets of astrocytic Ca2+ in these processes,
for instance: how does gap junction mediated networked Ca2+

activity contribute to the development and maintenance of
fear linked behaviors? What are the long-term effects of Ca2+

dysregulation in affective disorders, and are they limited to
specific subsets of astrocytes? As transplanted human ASD
astrocytes induced pathological phenotypes in rodents, can this
approach be leveraged to investigate other disorders? Future
studies considering the heterogeneity of astrocytes that regulate
these behaviors, such as regional subpopulations, molecular
signatures, specific gliotransmitter release, and different Ca2+

signaling pathways will be imperative to the identification of
precise regulatory mechanisms involved in these processes.
Importantly, because many of the neural pathways involved
and phenotypes observed overlap between affective and social
behaviors, studies characterizing their outcomes should be
attentive to how astrocytic Ca2+ dynamics differ across these
distinct behavioral responses.
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Conclusion and perspectives

There is mounting evidence that astrocytic Ca2+ signaling
is a prominent and fundamental regulator of neural processing,
influencing a wide range of behaviors from sensory perception
and learning to affective and social interactions. The dynamic and
regionally heterogeneous nature of astrocytic Ca2+ fluctuations
emphasize the importance of their role in the contextually specific
encoding of critical determinants of behavior, including stimulus
salience and transitions between activity states. While significant
progress has been made in characterizing the diverse modes of
Ca2+ activity correlating with behavioral outputs, questions remain
regarding the molecular mechanisms underlying these effects as
well as the relationships between astrocytic Ca2+ signaling and
other neuromodulatory systems in the CNS that drive behavioral
output. Investigating the role of neurotransmitters such as NE
which is emerging as a major modulator of astrocytic Ca2+ activity,
will be necessary to discern the distinct circuit dependent roles of
astrocytic Ca2+ signaling in behavioral regulation. Additionally,
attention to the different sources and types of Ca2+ signals, and
the underlying mechanisms that induce or suppress them, will
be imperative to understanding how astrocytes leverage Ca2+ to
process information. Ascertaining which of these signals lead to
gliotransmitter release, and in which contexts, will improve our
understanding of how astrocytic Ca2+ modulates neuronal activity.
Further, interactions with other glial cells in the behavioral context
are largely unexplored. Future research leveraging high resolution
imaging, genetic manipulations, and circuit level analyses will be
critical to understanding the roles of astrocytic Ca2+ signals at the
subcellular, single cell, and global network level. Such investigations
will provide deeper insight into the role of astrocytic Ca2+ signaling
in fundamental neurobiological processes involved in behavior and
identify novel therapeutic targets for behavioral disorders.
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