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Background: Cognitive reserve (CR) refers to the discrepancy between brain
pathology and observed cognitive decline. While education is a key indicator
of CR, its role as a potential moderator in the relationships between brain
morphology and cognitive impairments in Parkinson’s disease (PD) remains
unclear. This study examined whether education affects the relationship between
brain age and cognitive impairments in patients with PD.
Methods: Data from 58 patients with PD were analyzed using a secondary
dataset from the OpenNeuro database. Participants aged ≥55 years were
on stable medications and underwent standardized neuropsychological
assessments. Brain age predictions were generated from T1-weighted magnetic
resonance imaging (MRI) using the brainageR package, and the brain age
difference (BAD) was calculated after correction for regression dilution.
The moderation effect of education on the relationship between BAD and
cognition was assessed using Hayes’ PROCESS macro. The primary outcome
was cognitive performance across six domains: attention, executive function,
language, learning and memory, visuospatial ability, and global cognition.
Results: Among the six domains, a significant moderation effect of education
was found only for language ability (β = 0.01, p = 0.013, R2 = 0.20). The
relationship between BAD and language was steeper at lower education levels.
No statistically significant moderation was found in the remaining five domains.
Conclusion: Having more years of education is associated with buffering the
effects of accelerated brain aging on language ability in PD.

KEYWORDS

brain age, Parkinson’s disease, education, moderation analyses, cognitive reserve,
language function

Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects motor
control; however, non-motor symptoms, particularly cognitive impairment, are often the
debilitating aspect of PD (Christopher and Strafella, 2013; Kehagia et al., 2010).

The concept of “brain age” has emerged to comprehend the aging brain and its
associated neurodegenerative processes (Eickhoff et al., 2021; Franke and Gaser, 2019).
Brain age models estimate an individual’s brain age based on the brain MRI data, and
the individual deviation of biological “brain age” from chronological age—the brain age
difference (BAD)—is widely recognized as a marker of brain health (Cole et al., 2019).
As PD shows evidence of robust brain atrophy (Xu et al., 2020), several studies have
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investigated brain age in this context (Beheshti et al., 2019; Eickhoff
et al., 2021; Teipel et al., 2024). Recently, using the Parkinson’s
Progression Markers Initiative database, a study discovered that
higher BAD in PD is primarily associated with global gray matter
volume and with the basal forebrain, which is atrophied in both
PD and Alzheimer’s disease (Teipel et al., 2024). Interestingly,
the magnitude of accelerated brain aging in patients with PD is
constantly reported to be associated not only with motor but also
with cognitive impairment (Chen et al., 2024; Eickhoff et al., 2021).

Meanwhile, the cognitive reserve (CR) theory seeks to
explain the observed mismatch between the degree of brain
pathology and clinical manifestations (Hindle et al., 2016). Indirect
proxies are commonly used to measure CR, such as years of
education, intelligence quotient, occupational attainment, and
cognitive lifestyles (Hindle et al., 2017; Loftus et al., 2021;
Stern, 2009). Previous studies discovered that years of education
may protect against cognitive impairment associated with PD
(Hindle et al., 2016; Loftus et al., 2021). Reportedly, higher
educational attainment is associated with improved baseline
cognitive performance across various domains in patients with PD
(Gu and Xu, 2022). Therefore, education may contribute to a higher
CR, providing individuals with a greater cognitive capacity and
helping to buffer against the impact of neurodegeneration.

Based on the findings from studies explaining cognitive decline
in PD in terms of BAD and CR, we hypothesized that higher years
of education might modulate the cognitive decline associated with
neurodegeneration in PD. Specifically, the study explored whether
years of education moderate the relationship between BAD and
multiple domains of cognitive decline in PD.

Materials and methods

Patient selection and demographics

This study used secondary data from an open-access
dataset available on OpenNeuro at https://openneuro.org/
datasets/ds004392/versions/1.0.0 (Wylie et al., 2023). Sixty-eight
patients with PD were recruited through the University of
Colorado Hospital’s Movement Disorder, Memory Disorder, and
Neuropsychology Clinics. Diagnosis of PD was defined using UK
Brain Bank Criteria (Hughes et al., 1992). All participants provided
informed consent to participate in the study, which was approved
by the Colorado Multiple Institution Review Board and conducted
in accordance with the Declaration of Helsinki (Wylie et al., 2023).
According to the original study from which the data were pooled,
the exclusion criteria included features suggestive of other causes
of parkinsonism or Parkinson-plus syndromes; features suggestive
of other causes of dementia, including moderate to severe
cerebrovascular disease by history or imaging; history of major
head trauma; history of deep brain stimulation, ablation surgery,
or other brain surgery; evidence of moderate depression based
on the Hospital Anxiety Depression Scale; and MRI exclusion
factors (Figure 1A) (Wylie et al., 2023). Finally, 58 participants
were included after applying the selection criteria.

All patients underwent a comprehensive battery of
neuropsychological tests, including the Montreal Cognitive
Assessment, Mattis Dementia Rating Scale 2, Trail Making Test

Parts A and B, Brief Test of Attention, Boston Naming Test (BNT),
Verbal Phonemic Fluency (FAS), California Verbal Learning
Test Second Edition, Judgment of Line Orientation (JLO), and
the Symbol Digit Modality Test. These tests were chosen based
on previous study that validated the PD-MCI diagnostic criteria
(Goldman et al., 2013). From the full battery of tests, five cognitive
domains (attention, executive function, language, learning and
memory, and global cognition) were defined using principal
component analysis (PCA), with raw scores from two tests put
into each conceptual component, e.g., BNT and FAS for the
“language” domain. Finally, the visuospatial domain, derived from
a sample-based z-score of JLO scores, completed the set of six
cognitive domains analyzed in this study (Wylie et al., 2023).

MRI acquisition, quality control, and brain
age estimation

MRI scans were performed using a 3.0 T Signa scanner (GE
Healthcare, Milwaukee, WI) with an eight-channel head coil and
a 3D inversion recovery spoiled gradient-recalled echo imaging
sequence with a dynamic range. The structural scans were acquired
with the following parameters: TR= 2,200 ms, TE= 2 ms, matrix=
256 × 256, voxel size = 1 × 1 mm2, slice thickness = 1 mm, and flip
angle = 8◦. All first-level datasets were visually inspected to ensure
data quality.

Brain age was estimated using brainageR (v2.1), open-
access software for generating brain-predicted age from raw T1-
weighted MRI scans (https://github.com/james-cole/brainageR)
(Cole et al., 2019). BrainageR primarily involves the preprocessing
and prediction stages. In preprocessing, the images are segmented
and normalized via SPM12 (https://www.fil.ion.ucl.ac.uk/spm/
software/spm12/). For quality control, the FSL slicesdir function
was used to generate two-dimensional slices of the segmentation
and normalization outputs. Next, normalized images were loaded
into R and converted to vectors (R Core Team, 2013). Using a 0.3
threshold from the mean image template based on the brainageR
model training dataset, gray matter, white matter, and cerebrospinal
fluid vectors were masked and combined. In prediction, the
brainageR model was applied to vectorized and masked study
images to estimate a brain age score for each. BrainageR had been
previously trained to predict age from normalized brain volumetric
maps in 3,377 healthy individuals from 7 publicly available datasets
using a Gaussian process regression (see Appendix for a list
of training datasets) (Biondo et al., 2022). Using PCA, the top
principal components capturing 80% of the variance in brain
volumes were retained. The resulting rotation matrix for the 435
PCs was then applied to the new imaging data for predicting age
(Biondo et al., 2022).

After calculating the predicted brain age for each subject, BAD
was calculated. BAD was initially measured by subtracting the true
brain age from the predicted brain age; a higher BAD implies an
older brain morphology compared to the chronological age. Owing
to regression dilution, regression models may bias the predicted
brain age toward the mean, underestimating and overestimating
the ages of older and younger participants, respectively. Herein, to
rectify this bias, BAD has been defined as the difference between
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FIGURE 1

Flow diagram of data acquisition (A) and the scatterplot of brain age predictions (B) for patients with Parkinson’s disease. The red diagonal line in (B)
represents a perfect prediction accuracy. Dots above the line represent a predicted brain age older than the chronological age, while those below
represents a predicted brain age younger than the chronological age (Pearson’s r = 0.769, p < 0.001).

individual and expected BADs (measurement fitted over the entire
sample set using the regression model and leave-one-out cross-
validation) (Kang et al., 2023).

Statistical analysis

The collected data were analyzed using R version 4.4.3 (R Core
Team, 2013). Descriptive statistics were used to characterize the
sample demographics and the correlation between BAD and the
six cognitive domains studied. Finally, the study examined the
moderating or interaction effect of years of education (moderator,
W) on the relationship between BAD (continuous, X) and cognitive
measures (continuous, Y), with the Hayes PROCESS Macro Ver. 4.1
(Hayes, 2017). False discovery rate (FDR) correction, as well as the
Hommel method, were applied to consider multiple comparisons
of these six moderation models (Benjamini and Hochberg, 1995;
Hommel, 1988). The sample size was additionally determined

through power analysis using G∗Power software (Faul et al., 2007).
With a medium effect size (f 2 = 0.15), a power level of 0.80,
and an alpha level of 0.05, the calculation indicated that 55
participants were required to achieve sufficient statistical power.
Our study included 58 participants, which closely approximate the
calculated requirements.

Results

Table 1 and Figure 1 present the characteristics of the study
participants and the brain age estimation process. As shown in
the scatter plot in Figure 1B, brain age tends to increase with
chronological age, with a Pearson’s correlation of r = 0.769 (p
< 0.001). The mean absolute error of brain age prediction is
6.05 ± 4.48. There was variability in antiparkinsonian medication
doses, which may affect cognitive performance and limit the
generalizability of the results.
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Among the six cognitive domains, only the moderation model
with language ability as the dependent variable showed model
significance with an FDR- and the Hommel-adjusted p-value of
0.0492 (raw p = 0.0093 for language), which means that BAD,
years of education, and their interaction explain a relevant portion
of the variance in language ability. A sensitivity analysis using
Bayesian estimation revealed a Bayes factor of 4.60, indicating
moderate evidence in favor of the alternative hypothesis over the
null hypothesis (Van Doorn et al., 2021). The model had an R2

of 0.2001, indicating that this model accounted for approximately
20.01% of the language score variation. The remaining five
domains—global cognition (R2 = 0.12, Hommel-adjusted p =
0.17), attention (R2 = 0.04, adjusted p = 0.51), learning and
memory (R2 = 0.11, adjusted p = 0.23), executive (R2 = 0.15,
adjusted p = 0.15), and visuospatial (R2 = 0.18, adjusted p =
0.08)—did not yield significant moderation effects after multiple
comparison correction.

Notably, the moderation model with language as the dependent
variable had significant model coefficients (Table 2, Figure 2A).
There was a significant interaction between years of education
and BAD [β (95% CI) = 0.0106 (0.0023–0.0188)]. Furthermore,
we examined the effect of BAD on language changes at different
education levels—specifically at the 16th, 50th, and 84th percentile
ranks—within the sample of 58 subjects. At the 16th percentile
(having 13.96 years of education), the effect of BAD on language
ability was 0.0425 and statistically significant (p = 0.0141,
Figure 2B); this finding indicates that, for participants with low
years of education, a high BAD was associated with a significant
decrease in language scores.

TABLE 1 Clinical characteristics of the study population.

Variable Mean (SD) Range (min:max)

Sex (male and female) n = 39, n = 19

Age 70.42 ± 7.94 55:89

Education 16.21 ± 2.75

H and Y stage 2.71 ± 1.05 0:5

UPDRS part III 22.43 ± 8.8 0:43

LEDD (mg) 530.28 ± 431.84 0:2,100

Predicted brain age 70.62 ± 11.45 42.27:89.56

Brain age mean absolute error 6.05 ± 4.48 0.079:16.79

Values indicate mean ± SD unless otherwise indicated. LEDD, levodopa equivalent daily dose;
H and Y, Hoehn and Yahr stage; UDPRS-III, Unified Parkinson’s Disease Rating Scale.

Discussion

This study explored whether CR moderates the interaction
between neurodegeneration and the multiple domains of cognitive
decline in PD, using years of education as a proxy for CR and
BAD as a marker of neurodegeneration. After multiple comparison
corrections, only the moderation model with language as the
dependent variable was found to be significant. These results
support the hypothesis that years of education moderate the
relationship between BAD and language ability decline (Table 2
and Figure 2A). For individuals with fewer years of education,
a higher BAD (Figure 1B, older appearing brain) was associated
with lower language scores (Figure 2B, effect = −0.042). With
increasing years of education, the negative association between
BAD and language scores weakens and becomes non-significant at
higher education years (Figure 2B, effect = 0.000). These findings
provide evidence for a nuanced relationship, in which the impact
of brain aging on language is not uniform but influenced by the
educational background, and emphasize the benefit of achieving
basic years of education. Similarly, Glatt et al. reported that
having less than a high school diploma of education considerably
predicts dementia in PD, although the relationship between years
of education and the dementia rating scale score was small (r =
0.12) (Glatt et al., 1996). Altogether, the education’s buffering effect
against cognitive decline is more effective in achieving basic years
of education.

Furthermore, we identified a single significant moderation
model explaining language ability after multiple comparison
correction. The cognitive tasks measuring language ability (i.e.,
BNT, FAS) focus on verbal fluency. Previous studies investigating
the effect of education on verbal fluency reported that education
has a positive effect on this language ability. Loftus et al.
investigated the relationship between CR and cognitive decline
in a large PD sample (n = 334) and reported that years of
education significantly predicted verbal fluency measured by the
FAS (Loftus et al., 2021). This task requires participants to generate
as many words as possible within a set time, according to
specific rules (Sauzéon et al., 2011). Task performance is, therefore,
dependent on one’s processing speed, executive functions, and
vocabulary level. Accordingly, having higher years of education
and vocabulary offsets the effects of cognitive decline associated
with aging on letter fluency tasks (Sauzéon et al., 2011). In
a study of 1,392 patients with progressive cognitive decline,
Zamarian et al. reported that, although higher education is not
helpful for episodic memory and executive functions at low
cognitive levels, it is beneficial for retrieving words or other

TABLE 2 Characteristics of the model using education as a moderator of brain aging and language ability.

Predictors Unstandardized
coefficients

SE t p 95% CI

Lower Upper

Model (R2 = 0.2001, F(3.51) = 4.2523, p = 0.0093)

BAD −0.1899 0.0701 −2.7092 0.0092 −2.1113 −0.0492

Education 0.0760 0.0328 2.3193 0.0244 0.0102 0.1417

Interaction 0.0106 0.0041 2.5709 0.0131 0.0023 0.0188
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FIGURE 2

Proposed research model presents education as a moderator of brain aging and cognitive decline in Parkinson’s disease (A). (B) Shows that, at the
16th percentile (having 13.96 years of education), the effect of BAD on language ability was 0.042 and statistically significant (p = 0.014).

semantic knowledge (Zamarian et al., 2021). Therefore, the
protective effect of education might be nuanced and could vary
depending on the specific cognitive functions under examination.
These inconsistencies highlight the interplay complexity between
education and cognitive decline in the context of PD and suggest
that BAD could be the key to explaining such inconsistencies
and complexity.

Previous literature identified multiple gray matter regions,
including the bilateral hippocampi, the right inferior temporal
gyrus, and the right lateral orbitofrontal gyrus, as images feature
attributable to advanced brain aging in PD (Eickhoff et al., 2021).
These striato-prefrontal brain areas, driving accelerated brain
aging, were demonstrated to have functional effects on cognition
in the patient group (Chen et al., 2024). On the other hand,
education may induce structural brain changes via neuroplasticity,
making it a promising modifiable factor in PD intervention
strategies (Arenaza-Urquijo et al., 2017a,b). Having a cognitive
lifestyle, including longer education, is linked to neurotrophic
changes in the prefrontal lobe, implying a compensatory process
(Bennett et al., 2014). Longer education not only enhances
the cognitive ability per se, but also compensates for brain
structure that may contribute to preserving language ability,
as evidenced by better verbal language ability showing greater
structural covariance between left and right frontal regions (Qi
et al., 2019). In addition, memory in the brain can be broadly
categorized into two systems: explicit memory, which involves
the conscious recall of people, places, and objects, and implicit
memory, which underlies automatic skills such as driving or
using correct grammar (Kandel, 2018; Squire et al., 1993). Unlike
explicit memory, which depends heavily on higher cognitive
regions—primarily the neocortex and hippocampus, both of
which are commonly implicated in brain age models—implicit
memory relies more on subcortical and sensorimotor-related
structures, such as the amygdala and cerebellum (Teipel et al.,
2024). Therefore, cognitive tasks that engage explicit memory and

language may be more vulnerable to brain aging effects, explaining
why language ability showed a significant moderation effect in
this study.

There are some limitations to this study. First, our dataset
of 58 PD subjects lacks a healthy comparison control group,
longitudinal follow-up, and diversity in the sample (e.g., variability
in education and ethnicity), as well as possible confounding effects
from antiparkinsonian medications, which may inflate the model
estimates and limit the generalizability of the results. Second,
potential confounding factors, such as lifestyle and coexisting
medical conditions, which can influence brain age and cognitive
function, can make it challenging to isolate the specific effects of
education on brain age and cognitive decline in PD research. Third,
the sample shows a gender imbalance with more male participants,
which reflects the known higher prevalence of Parkinson’s disease
in men (Wooten et al., 2004). However, we acknowledge that this
may still limit the generalizability of our findings regarding sex-
specific effects. Finally, proxies of CR that may explain cognition
other than years of education were not evaluated. For example,
Koerts et al. examined the relationship between CR and cognition
using years of education and premorbid IQ as CR proxies and
reported that premorbid IQ predicted executive function in PD, but
not years of education (Koerts et al., 2011).

In conclusion, this study highlights the role of education
in buffering the cognitive decline associated with accelerated
brain aging in PD, particularly when referring to language
abilities. Therefore, interventions promoting basic level educational
achievements may help mitigate cognitive impairment in patients
with PD.
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Appendix

The brainageR model for v2.1 was trained on n = 3,377 healthy
individuals (mean age = 40.6 years, SD = 21.4, age range 18–92
years) from seven publicly available datasets (see list below).

Training datasets:

• Australian Imaging, Biomarker and Lifestyle Flagship Study of
Ageing (AIBL)

• Dallas Lifespan Brain Study (DLBS)
• Brain Genome Superstruct Project (GSP)
• IXI
• Nathan Kline Institute Rocklands Sample Enhanced
• Open Acces Series of Imaging Studies-1 (OASIS-1)
• Southwest University Adult Lifespan Dataset (SALD)
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