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Background: Alzheimer’s disease (AD) is a progressive neurodegenerative 
disorder characterized by cognitive decline, memory impairment, and the 
accumulation of pathological markers such as amyloid-beta plaques and 
neurofibrillary tangles. Recent evidence suggests a role for dysregulated 
iron metabolism in the pathogenesis of AD, although the precise molecular 
mechanisms remain largely undefined.

Materials and methods: To address the role of iron metabolism in AD, we 
utilized an integrative bioinformatics approach that combines weighted gene 
co-expression network analysis (WGCNA) with machine learning techniques, 
including LASSO regression and Generalized Linear Models (GLM), to identify hub 
genes associated with AD. We used transcriptomic data derived from postmortem 
prefrontal cortex samples (GSE132903, comprising 97 AD cases and 98 controls). 
To assess changes in the immune microenvironment, single-sample gene set 
enrichment analysis (ssGSEA) was employed. Furthermore, pathway enrichment 
analysis and gene set variation analysis (GSVA) were performed to uncover the 
underlying biological mechanisms driving these alterations. Protein validation 
was carried out in APP/PS1 transgenic mice through Western blotting.

Results: Three genes related to iron metabolism—MAP4, GPT, and HIRIP3—
are identified as strong biomarkers. The GLM classifier showed high diagnostic 
accuracy (AUC=0.879). AD samples had increased immune activity, with more 
M1 macrophages and neutrophils, indicating neuroinflammation. MAP4 and GPT 
were linked to Notch signaling and metabolic issues. In APP/PS1 mice, MAP4 
decreased, while GPT and HIRIP3 increased.

Discussion: This analysis highlights these genes as diagnostic biomarkers and 
therapeutic targets, connecting iron balance, neuroinflammation, and metabolic 
problems in AD. The immune profile suggests potential for immunomodulatory 
treatments, enhancing understanding of AD and aiding precision diagnostics 
and therapies.
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Introduction

AD, a chronic neurodegenerative condition characterized by 
progressive synaptic failure and cognitive decline, represents a 
global public health crisis with profound socioeconomic 
implications (Zheng and Wang, 2025; Khemka et al., 2023). While 
amyloid-β plaques and neurofibrillary tangles remain diagnostic 
hallmarks, contemporary research reveals intricate 
pathophysiological networks involving neuroimmune crosstalk, 
mitochondrial dysfunction, and epigenetic modifications (Liu 
et  al., 2023; Um et  al., 2024; Migliore and Coppedè, 2022). 
Emerging evidence further implicates dysregulated iron 
homeostasis and lipid peroxidation cascades in AD progression, 
suggesting novel therapeutic targets (Lane et al., 2021; Lou et al., 
2021). Despite these advances, critical gaps persist in understanding 
molecular dynamics and developing clinically reasonable 
biomarkers, highlighting the imperative for integrated multi-omics 
approaches to decode AD’s biological complexity.

Current diagnostic methods for AD mainly depend on clinical 
assessments and imaging, which often miss early detection (Khan 
et al., 2020; Graff-Radford et al., 2021). Treatment options are limited, 
creating a need for biomarkers to aid early diagnosis and targeted 
interventions. Advances in bioinformatics and molecular biology 
have identified potential AD biomarkers, but integrating these into 
clinical practice is challenging (Bai et  al., 2021; Bai et  al., 2020). 
Recent research highlights iron metabolism’s role in AD, linking iron 
imbalance to neuronal degeneration and identifying key genes 
involved (Wu et al., 2023; Wang et al., 2023). These findings offer 
potential new therapeutic targets, but further studies are needed to 
confirm their clinical significance.

This study introduces a comprehensive bioinformatics framework 
that combines ensemble machine learning techniques with weighted 
gene co-expression network analysis (WGCNA) to explore molecular 
networks associated with AD and uncover critical regulatory 
pathways (Feng et al., 2025; Lian et al., 2023). This computational 
paradigm enables systematic mining of high-dimensional multi-
omics datasets (Wu et al., 2024). The ultimate translational objective 
is to construct a clinically interpretable, individualized risk 
stratification nomogram based on mechanistically relevant 
biomarkers, facilitating precision early diagnosis and mechanism-
guided therapeutic development for AD.

Moreover, the investigation of immune responses in AD has 
gained traction (Chen and Holtzman, 2022), as recent research 
indicates an altered immune landscape in patients, characterized by 
the activation of specific immune cell types (Gao et  al., 2023; 
Koronyo et al., 2023). Understanding these immune interactions is 
vital for developing immunotherapeutic strategies aimed at 
mitigating neurodegeneration.

This research primarily aims to elucidate key genes related to iron 
metabolism and their interactions within the immune 
microenvironment. By leveraging bioinformatics approaches, 
we aspire to provide an in-depth characterization of the molecular 
changes occurring in AD, which will help facilitate the identification 
of novel biomarkers and potential therapeutic targets. The ultimate 
objective of this study is to contribute to the development of more 
precise diagnostic tools and targeted treatment strategies for AD, 
addressing the critical need for improved management of this 
debilitating condition.

Methods

Data acquisition

To investigate molecular alterations underlying neurodegenerative 
pathology, the current study employed a well-characterized cohort of 
post-mortem transcriptomic profiles (97 AD vs. 98 controls) obtained 
from the Gene Expression Omnibus (GEO) repository under 
accession number GSE132903. This publicly archived dataset, hosted 
by the National Center for Biotechnology Information (NCBI).

Weighted gene co-expression network 
analysis

Weighted gene co-expression network analysis (WGCNA) was 
employed to identify gene modules linked to AD using gene expression 
data. The co-expression network for the GSE132903 cohort was 
established following the scale-free topology criterion. We  first 
calculated the Pearson correlation coefficient to generate a similarity 
matrix, which was subsequently transformed into an adjacency matrix 
by applying a soft threshold of 19. This adjacency matrix was further 
transformed into a topological overlap matrix (TOM) to facilitate 
average-linkage hierarchical clustering, enabling the delineation of gene 
modules with a minimum of 10 genes. By merging similar gene 
modules, we  identified a total of nine distinct co-expressed gene 
modules, designating the light cyan module as the core module. 
Additionally, the “VennDiagram” package was utilized to visualize the 
overlap between iron metabolism associated genes and genes within the 
light cyan module.

Construction machine learning algorithm

To identify key genes significantly linked to the development of 
AD, we  implemented a systematic computational framework that 
integrates four distinct machine learning algorithms: generalized 
linear modeling (GLM), support vector machine (SVM), random 
forest (RF), and extreme gradient boosting (XGBoost). Model 
optimization was achieved through rigorous hyperparameter tuning 
and cross-validation, with predictive performance quantified via ROC 
curve analysis and residual distribution profiling. Through comparative 
performance evaluation, three high-confidence biomarker candidates 
(MAP4, GPT, and HIRIP3) emerged as hub genes based on multi-
criteria feature selection incorporating permutation importance and 
SHAP value rankings. The discriminatory capacity of these biomarkers 
was subsequently validated through ROC-AUC quantification.

Establishment of a nomogram model for 
AD diagnosis

Based on the three key genes identified through machine learning, 
we  established a nomogram model using the “rms” R package to 
evaluate the risk of AD. This diagnostic nomogram was designed to 
evaluate AD occurrence and assess risk in patient groups. Each 
predictor in the nomogram contributes a specific score, and the “total 
score” is calculated as the sum of these individual scores. To validate the 
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reliability of our predictions, we applied a calibration curve to measure 
the consistency between predicted values and actual observations. 
Additionally, we generated a ROC curve and computed the AUC value 
using the “pROC” R package to evaluate the model’s predictive accuracy. 
Furthermore, we performed a decision curve analysis (DCA) to assess 
the clinical benefit of model-based decision-making for patients.

Immune microenvironment analysis

To comprehensively explore the differences in the immune 
microenvironment between AD and normal groups, we  utilized 
single-sample gene set enrichment analysis (ssGSEA) through the 
“GSVA” package. This approach quantified the infiltration levels of 28 
immune cell types within the AD samples, providing insights into the 
immune landscape associated with AD pathogenesis. The expression 
distribution of these immune cells was visually depicted through box 
diagram for both AD and control groups. Furthermore, we performed 
Pearson correlation analysis to investigate the relationship between 
the expression levels of three key hub genes (MAP4, GPT, and 
HIRIP3) and immune infiltration levels. To evaluate the influence of 
these hub genes on immune cell infiltration, we  also employed 
boxplots to compare infiltration levels between groups with high and 
low expression of these genes.

Single-gene gene set enrichment analysis 
of key hub genes

Gene set enrichment analysis (GSEA) is a computational approach 
employed to assess the functional annotation of gene sets and 
ascertain their significance within specific biological contexts. 
Following the identification of three key hub genes—MAP4, GPT, and 
HIRIP3—single-gene GSEA was conducted for each gene across both 
groups. This analysis sought to investigate the biological functions, 
signaling pathways, and regulatory roles of the hub genes, thereby 
elucidating their molecular mechanisms and functional significance. 
Pathways with a p-value less than 0.05 were deemed statistically 
significant. The three most notable up-regulated and down-regulated 
pathways were subsequently highlighted.

Gene set variation analysis

To analyze the differential enrichment of KEGG pathways and 
Gene Ontology (GO) terms between the AD and normal groups, 
we applied gene set variation analysis (GSVA) in this study. The GSVA 
R package was utilized in conjunction with curated gene sets, 
specifically GO terms, sourced from the Molecular Signatures Database 
(MSigDB). Annotation files for KEGG pathways and GO terms were 
acquired from the official MSigDB repository. Statistical significance 
for enriched terms was determined using a threshold of p < 0.05.

Animals

Male C57BL/6J (wild-type, 6-month-old) and APP/PS1 double-
transgenic murine models were sourced commercially from SLAC 

Laboratory Animal Center (Shanghai, China). This experimental 
protocol received formal ethical approval from the Institutional 
Animal Care Committee at Guizhou Provincial Second People’s 
Hospital (Ethics Approval Code: 202102). All subjects were housed in 
standardized conditions (21 ± 2°C ambient temperature; 45–55% 
relative humidity; 12/12 h photoperiod) with ad libitum access to 
autoclaved feed and reverse-osmosis water. Post-euthanasia via carbon 
dioxide asphyxiation, whole-brain specimens were rapidly harvested 
through craniotomy. Hippocampal tissues were carefully 
microdissected under RNase-free conditions and then flash-frozen in 
liquid nitrogen at −80°C to preserve them for subsequent analyses.

Western blot

SDS-PAGE was used to separate proteins by loading 20 μg of each 
sample onto a 12% polyacrylamide gel. Following electrophoresis, the 
proteins were transferred onto a 0.2 μm nitrocellulose membrane. 
After blocking with 5% non-fat milk for 2 h at room temperature, the 
membrane was incubated overnight at 4°C with primary antibodies 
against MAP4 (1:2,000; Proteintech), GPT (1:2,000; Proteintech), and 
HIRIP3 (1:1,000; Proteintech). Following TBST washes, the membrane 
was incubated with a secondary antibody for 2 h at room temperature. 
Protein detection was performed using ECL chemiluminescent reagents.

Results

Identification of co-expression gene 
modules in AD

Firstly, we performed sample clustering to construct a sample tree, 
which is depicted in Figure 1A. This step was crucial for identifying and 
removing outlier samples that could potentially skew the results. 
Following the removal of the outliers, we proceeded to determine the 
optimal soft threshold for constructing a scale-free network. The soft 
threshold is a critical parameter in WGCNA that helps define the 
adjacency matrix and, consequently, the network topology. We tested 
various soft thresholds and found that a scale independence of > 0.85 
indicated that a soft threshold power (β) of 19 was optimal for our 
dataset, as shown in Figure 1B. Through hierarchical clustering and 
dynamic tree cut, we identified 10 distinct gene modules, which are 
illustrated in Figures 1C,D. Among these, the light cyan module (r = 0.48; 
p = 1.47 × 10−12), the dark orange module (r = 0.43; p = 2.19 × 10−10), and 
the pale turquoise module (r = 0.43; p = 4.26 × 10−10) exhibited the 
highest positive associations with AD, as depicted in Figure 1E. These 
modules contain genes that may play crucial biological roles in the 
disease’s signature. Notably, the light cyan module showed the strongest 
correlation with AD, leading us to focus on it for further analysis. The 
scatterplot revealed a high correlation between module membership 
(MM) and gene significance (GS) in the light cyan module (Figure 1F).

Three genes were screened as AD key 
genes

To discover novel biomarkers associated with differential 
expression in AD, we searched the GeneCards database using the term 
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FIGURE 1

Construction of a co-expression network and identification of model-related genes associated with AD using WGCNA. (A) Sample clustering to detect 
outliers. (B) Exploration of network topology in the context of diverse soft thresholds (β). (C) Clustering of module eigengenes. (D) Gene dendrogram 
and module colors. (E) Module–trait relationships: each cell shows the related correlation and p-value. (F) A scatterplot of module membership versus 
gene significance membership in the light cyan module.
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“iron metabolism,” retrieving a total of 740 genes. A Venn diagram 
analysis was then performed to evaluate the overlap between these 
“iron metabolism-related genes” and those in the light cyan module, 
leading to the identification of 26 core genes (Figure 2A). Subsequently, 
we employed machine learning algorithms to develop four diagnostic 
models, including the generalized linear model (GLM), random forest 
(RF), XGBoost (XGB), and support vector machine (SVM), with the 
objective of identifying hub genes possessing diagnostic significance 
for AD. As illustrated in Figures 2B,C, the GLM model demonstrates 
a smaller residual distribution in comparison to the SVM, RF, and 
XGB models. Furthermore, the performance of the four models was 
assessed using receiver operating characteristic (ROC) curves. Among 
these models, the generalized linear model (GLM) demonstrated the 
highest area under the curve (AUC) value of 0.879, indicating superior 
predictive accuracy compared to other machine learning algorithms 
(Figure 2D). Subsequently, the top 10 characteristic genes for each 
model were ranked according to their root mean square error (RMSE) 
(refer to Figure 2E). Ultimately, based on the previously discussed 
results, the GLM was identified as the most effective method for 
distinguishing patients with varying patterns. Consequently, the top 
three critical genes—MAP4, GPT, and HIRIP3—were selected for 
inclusion in the subsequent diagnostic prediction model.

Construction of a nomogram model

To evaluate the risk associated with AD and further validate the 
predictive efficacy of the three hub genes (MAP4, GPT, and HIRIP3), 
we  employed the “rms” package to construct a nomogram 
incorporating these genes (Figure 3A). The calibration curve illustrated 
the model’s strong calibration, indicating a high degree of accuracy in 
forecasting the risk of AD (Figure 3B). Additionally, the DCA revealed 
that within a threshold probability spectrum ranging from 0.2 to 0.8, 
patients who employed this model experienced greater advantages 
compared to those who did not receive any intervention or those who 
underwent complete intervention (Figure 3C). The clinical impact of 
the nomogram was further evaluated through DCA. In the high-risk 
threshold range of 0.4 to 1, the curve representing “high risk number” 
closely paralleled the curve for “high risk with event number” 
(Figure 3D). This substantial alignment implies that the nomogram 
possesses considerable predictive capability. Moreover, we also created 
a receiver operating characteristic (ROC) curve and determined the 
area under the curve (AUC) using the GSE132903 dataset to evaluate 
the model’s predictive performance. An AUC value exceeding 0.7 
indicates that the model possesses strong discriminative ability and 
demonstrates excellent accuracy in predicting AD (Figure 3E).

Immune microenvironment differences 
between ad and normal groups

To elucidate the differences in the immune microenvironment, 
we utilized single-sample gene set enrichment analysis (ssGSEA) to 
examine immune infiltration in both AD and normal groups. The 
findings indicated that, compared to the normal group, the AD 
group exhibited a higher enrichment of several immune cell types, 
including activated B cells, activated CD8 T cells, CD56dim natural 
killer cells, effector memory CD8 T cells, gamma delta T cells, 

immature dendritic cells, MDSCs, natural killer cells, natural killer 
T cells, type 1 T helper cells, and plasmacytoid dendritic cells 
(Figure 4A). Conversely, the AD group had lower enrichment of 
effector memory CD4 T cell, eosinophil, and mast cell (Figure 4A). 
In AD, effector memory CD4+ T cells contribute to the regulation of 
immune inflammation through the secretion of cytokines, 
facilitation of antibody production by B cells, and interactions with 
neurons and glial cells (Machhi et  al., 2021; Kostic et  al., 2025). 
Eosinophils release toxic proteins and cytokines that damage nerve 
cells and contribute to Aβ deposition (Zhang et al., 2022). Mast cells, 
once activated, release inflammatory mediators, interact with 
microglia and other cells, and regulate the neuroimmune network 
(Skaper et  al., 2017). These results demonstrate that immune 
infiltration in the brain may play a role in promoting the 
development of AD.

In addition, a correlation heatmap illustrated the relationships 
between the three hub genes (MAP4, GPT, and HIRIP3) and immune 
cells (Figure 4B). The correlation analysis showed that CD56dim natural 
killer cell, activated CD8 T cell and plasmacytoid dendritic cell were 
positively associated with MAP4, GPT, and HIRIP3, while, mast cell, 
immature dendritic cell, gamma delta T cell, effector memory CD4 T 
cell and activated B cell were negatively associated.

Furthermore, we  examined the differences in immune cell 
infiltration levels between high-expression and low-expression groups 
of each hub gene to better understand how key gene expression 
influences immune cell infiltration patterns and to uncover relevant 
biological mechanisms. The results revealed significant differences in 
immune cell infiltration between the high and low expression groups 
of the MAP4 gene (Figure  4C), including activated CD8 T cells, 
CD56dim natural killer cells, MDSCs, plasmacytoid dendritic cells, 
activated B cells, effector memory CD4 T cells, gamma delta T cells, 
and immature dendritic cells. Analysis of the GPT gene expression 
groups (Figure 4D) revealed significant differences in immune cell 
infiltration, including activated CD8 T cells, CD56dim natural killer 
cells, effector memory CD4 T cells, eosinophils, gamma delta T cells, 
immature dendritic cells, mast cells, and plasmacytoid dendritic cells. 
Similarly, in the HIRIP3 gene expression groups (Figure  4E), 
significant differences were observed in the infiltration of activated B 
cells, CD56dim natural killer cells, effector memory CD4 T cells, 
eosinophils, natural killer cells, and plasmacytoid dendritic cells.

These results indicate that the expression levels of the MAP4, GPT, 
and HIRIP3 genes are closely related to the degree of immune 
infiltration, suggesting that these genes may play important roles in 
regulating the infiltration of immune cells into specific tissues or 
regions, thus influencing relevant physiological or pathological 
processes of AD.

Gene set enrichment analysis of hub genes

To comprehensively investigate the biological functions and 
signaling pathways linked to the hub genes MAP4, GPT, and 
HIRIP3  in AD, we  utilized a single-gene set enrichment analysis 
(GSEA) approach for pathway enrichment analysis. MAP4, GPT were 
positively linked with Notch_signaling_pathway. Besides, MAP4, 
GPT, and HIRIP3 were negatively associated with linked with some 
functional pathways, such as cell_cycle, Alzheimers_disease and 
oxidative_phosphorylation (Figures 5A–F).
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FIGURE 2

Establishment and evaluation of RF, SVM, GLM, and XGB machine models. (A) A Venn diagram of light cyan module genes versus “iron metabolism” 
associated genes. (B) Boxplots illustrated the residuals of each machine learning model, with the red dot marking the root mean square error (RMSE). 
(C) Cumulative residual distribution of each machine learning model. (D) The ROC curves predict the accuracy of each learning machine model. 
(E) The important features in SVM, RF, GLM, and XGB machine models.
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FIGURE 3

Construction of a nomogram model for AD diagnosis. (A) The nomogram of diagnostic biomarkers predicts the occurrence of AD based on three 
model-related genes. (B) A calibration curve was applied to assess the predictive accuracy of the nomogram model. (C) The DCA curve assesses the 
clinical utility of the nomogram model. (D) The clinical impact curve illustrates the effect of the predictive model on clinical outcomes. (E) The ROC 
curve demonstrated the predictive accuracy of the nomogram model in the training set.
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FIGURE 4

The immune microenvironment within the AD and normal groups. (A) The violin diagram presents the abundance of immune cells in the AD and 
normal groups. (B) The correlation of three hub genes (MAP4, GPT, and HIRIP3) with immune infiltration was assessed via Pearson correlation analysis. 
(C–E) Boxplots were used to visualize the infiltration of immune cells in groups with high and low expression of the three key hub genes (MAP4, GPT, 
and HIRIP3). Statistical significance was determined as *p < 0.05, **p < 0.01, and ***p < 0.001.

https://doi.org/10.3389/fncel.2025.1610682
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


An et al. 10.3389/fncel.2025.1610682

Frontiers in Cellular Neuroscience 09 frontiersin.org

FIGURE 5

Pathway and function analysis of model-related genes. (A,B) The GSEA analysis identified the three pathways associated with MAP4 up-regulation and 
down-regulation. (C,D) The GSEA analysis identified the three pathways associated with GPT up-regulation and down-regulation. (E,F) The GSEA 
analysis identified the three pathways associated with HIRIP3 up-regulation and down-regulation.
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Validation of the expression levels of the 
three hub genes

In order to validate the protein expression levels of the three 
hub genes, we conducted a western blot assay. Compared to the 
WT group, the protein expression level of MAP4 was 
downregulated, while the protein expression levels of GPT and 
HIRIP3 were upregulated in the APP/PS1 group (Figures 6A,B). 
The results were consistent with our bioinformatics analysis, 
reinforcing the credibility of our previous findings.

Gene set variation analysis between 
control and AD groups

To thoroughly investigate the differential distribution of 
signal pathway enrichment within the differentially expressed 
“HALLMARK” gene set between the control and AD groups, 
we  utilized the GSVA method. Through this analysis, 
we identified the top 10 enriched HALLMARK pathways for both 
up-regulation and down-regulation, which were visualized using 
a heatmap (p < 0.05) (Figure 7A). Specifically, compared to the 
control group, the AD group exhibited up-regulation in pathways 
such as notch signaling, IL6 JAK STAT3 signaling, interferon 
alpha and gamma responses, epithelial mesenchymal transition, 
TNFA signaling via NFKB, inflammatory response, hypoxia, 
apical surface, and P53 pathway. Conversely, down-regulated 
pathways in the AD group included pancreas beta cells, oxidative 
phosphorylation, Myc targets V1, fatty acid metabolism, 
spermatogenesis, peroxisome, hedgehog signaling, bile acid 
metabolism, reactive oxygen species pathway, and Mtorc1 
signaling. For further clarity, a bar chart was also provided to 
illustrate the 20 differentially expressed hallmark gene sets based 
on GSVA score order (Figure  7B). These findings collectively 
underscore the complex biological dysregulations present in AD, 
highlighting the interplay between various pathways 
and processes.

Discussion

This study aims to elucidate the molecular alterations associated 
with Alzheimer’s disease, focusing on key genes involved in iron 
metabolism and their potential role as biomarkers for diagnosis and 
therapy. By employing advanced bioinformatics techniques, 
including machine learning algorithms and weighted gene 
co-expression network analysis (WGCNA), we identified three hub 
genes—MAP4, GPT, and HIRIP3—that hold promise as diagnostic 
and prognostic biomarkers for AD. Genes involved in iron 
metabolism regulate immune cells and may influence antioxidant 
stress and lipid metabolism pathways (Ma et al., 2023). Especially, 
MAP4, a member of the microtubule-associated protein family, 
competes with Tau for microtubule binding, potentially influencing 
axonal transport in neuroinflammation (Zhang et al., 2025). These 
findings emphasize the importance of understanding the molecular 
underpinnings of AD.

The immune microenvironment analysis in AD patients showed 
a significant rise in activated immune cells compared to healthy 
controls, indicating that neuroinflammation may be  key in AD’s 
pathogenesis. Furthermore, the analysis of the immune 
microenvironment in AD patients revealed a marked increase in 
activated immune cells compared to healthy controls (Zhang et al., 
2023; Yang F. et al., 2024). This elevation in immune activity suggests 
that neuroinflammatory processes may play a crucial role in the 
pathogenesis of AD (Princiotta Cariddi et  al., 2022; Uddin et  al., 
2022). Understanding the dynamics of immune response in the 
context of AD could lead to innovative therapeutic strategies, 
particularly those aimed at modulating immune activation to restore 
homeostasis in the central nervous system (Leng and Edison, 2021). 
The infiltration and functional activity of activated CD8 T cells and 
natural killer T cells may play a role in the neurodegenerative 
processes observed in AD (Zeng et al., 2024). Conversely, plasmacytoid 
dendritic cells and MDSCs have the potential to modulate the 
inflammatory response and neuronal damage through their influence 
on the local microenvironment (Salminen et al., 2018; Reizis, 2019). 
Furthermore, CD56dim natural killer (NK) cells may contribute to AD 

FIGURE 6

Western blot analysis confirmed the expression levels of hub genes in the APP/PS1 mouse model. (A) Representative immunoblots depicting the 
expression of MAP4, GPT, and HIRIP3 proteins in the WT and the APP/PS1 groups. (B) Quantification of relative protein abundance of MAP4, GPT, and 
HIRIP3 in the WT and APP/PS1 groups.
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FIGURE 7

GSVA enrichment analysis in control and AD groups. (A) Heatmap plot between control and AD groups. (B) Bar chart between control and AD groups.
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pathogenesis via their proinflammatory responses and cytotoxic 
effects (Rodriguez-Mogeda et al., 2024; Ning et al., 2023).

While increased neuroinflammation and immune cell 
infiltration in AD have been documented, this study’s innovation 
lies in a correlation heatmap that reveals relationships between hub 
genes (MAP4, GPT, and HIRIP3) and various immune cell types. 
It shows positive associations with CD56dim natural killer cells, 
activated CD8 T cells, and plasmacytoid dendritic cells, and 
negative associations with mast cells and others. Additionally, 
significant differences in immune cell infiltration levels between 
high and low expression groups of each hub gene suggest their 
critical role in modulating immune responses and related 
biological mechanisms.

Additionally, the pathway analysis indicates a positive 
correlation between MAP4 and GPT with the notch signaling 
pathway, while exhibiting a negative correlation with pathways 
associated with oxidative phosphorylation. This suggests that 
these genes may influence AD pathology through the modulation 
of critical signaling pathways. Notch pathway, which is known to 
affect neuronal differentiation and survival (Song et al., 2023; 
Giniger, 2012). Research shows that the notch pathway, activated 
by delta and jagged ligands, is connected to amyloid precursor 
protein metabolism and plaque formation, suggesting its 
regulatory role in Alzheimer’s disease (Yang K.-F. et al., 2024). 
This activation affects transcription factors such as HES and 
HEY, whose abnormal expression is linked to neuroinflammation 
and apoptosis in AD, underscoring the pathway’s complex role in 
the disease’s progression (Boyko et al., 2012; Leal et al., 2012). 
Therefore, it is plausible to hypothesize that MAP4 or GPT may 
play a role in the pathological mechanisms of AD via the notch 
signaling pathway.

The validation of findings through experimental approaches, 
such as western blot analysis in APP/PS1 transgenic mouse models, 
corroborates the potential of MAP4, GPT, and HIRIP3 as viable 
biomarkers and therapeutic targets for AD. MAP4 is crucial for cell 
migration, proliferation, and tissue remodeling by regulating 
microtubule dynamics, impacting both physiological and 
pathological states (Doki et al., 2020), it may also influence AD 
pathogenesis by affecting microtubule assembly and stability, 
thereby impacting neuron integrity and function. GPT variants 
disrupt neurotransmitter release, causing generalized CNS 
dysfunction, significant intellectual disability in patients, and MRI 
findings of abnormal myelin formation in subcortical white matter 
(Celis et al., 2015). Previous research identified HIRIP3 as a gene 
linked to aortic valve stenosis, suggesting its role in cardiac 
development. While its role in heart conditions is known, its link 
to AD is less studied (Ignatyeva et al., 2024). This study is the first 
to associate HIRIP3 with AD, highlighting it as a potential target 
for developing therapies for AD. The observed differential 
expression of these genes supports their involvement in the disease 
process and reinforces the necessity for clinical validation of these 
biomarkers in human cohorts. Future studies should focus on 
longitudinal assessments of these biomarkers across different 
stages of AD to establish their prognostic value and 
therapeutic implications.

This study underscores the significance of iron metabolism-
related gene alterations and immune responses in AD (Peng et al., 

2021; Lu et al., 2021). The integration of bioinformatics, machine 
learning, and experimental validation has provided a multifaceted 
understanding of the molecular landscape of AD, paving the way for 
future research aimed at developing effective diagnostic and 
therapeutic strategies (Zhou et al., 2025). Continued exploration of the 
interplay between genetic, immune, and metabolic factors will 
be crucial in addressing the complexities of AD and improving patient 
outcomes (Bettcher et al., 2021).

The limitations of this study primarily include the lack of 
mechanistic investigations regarding the key iron metabolism 
genes identified in AD and the absence of clinical validation 
analyses. While our bioinformatics approach successfully 
highlighted potential biomarkers and therapeutic targets, further 
experimental studies are essential to elucidate the precise roles of 
these genes in the pathogenesis of AD. Additionally, the reliance 
on computational models may not fully capture the complexity of 
biological systems, warranting caution in the interpretation of our 
findings. Future research should aim to incorporate in  vivo 
experiments and clinical data to substantiate the relevance of the 
identified molecular changes and their implications for 
AD treatment.

In summary, this research sheds light on the molecular 
alterations linked to iron metabolism and immune responses in AD, 
contributing to a deeper understanding of the disease pathology. By 
identifying key genes and their potential influence on AD 
progression, our findings lay a foundation for future therapeutic 
interventions that target iron metabolic and inflammatory pathways. 
Continued exploration of these biomarkers in clinical contexts will 
be crucial for translating our findings into effective treatments for 
Alzheimer’s disease.
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