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Excitotoxic damage is due to an excessive Ca2+ entry in cells following overactivation 
of Ca2+-permeable ion channels. In neurons, Ca2+-dependent excitotoxicity is 
linked to the prominent activation of N-Methyl-d-Aspartate receptors (NMDARs), 
exhibiting a high permeability to Ca2+. Different neurodegenerative diseases share 
glutamate-and NMDAR-dependent excitotoxicity as a pathogenic mechanism, but 
also different ligand-gated ion channels (LGICs) may be involved in excitotoxic-
related pathologies, such as muscle nicotinic acetylcholine receptor in some 
forms of congenital myasthenic syndrome. We  posit that excitotoxicity due 
to the overactivation of Ca2+-permeable LGICs may be counteracted by using 
molecules able to reduce selectively the Ca2+ entry, without blocking Na+ influx, 
thus reducing the adverse effects induced by channel blockers. In this review, 
we recapitulate: (i) the techniques used to quantify the Ca2+ permeability of LGICs, 
with a particular focus on the fractional Ca2+ current (Pf, i.e., the percentage of 
the total current carried by Ca2+); (ii) the known Pf values of the main LGICs; (iii) 
the modulation of the LGIC Pf values induced by drugs and measured to date. 
These data support the possibility of fighting excitotoxicity-related pathologies 
with a new therapeutic approach.
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Introduction

Ca2+ is the most widespread and versatile intracellular second messenger, used by all cells 
as a signal to control their activities in response to extrinsic and intrinsic stimuli (Berridge 
et  al., 2000; Bootman and Bultynck, 2020). In particular, the intracellular free Ca2+ 
concentration ([Ca2+]i) is fundamental in several processes in neuronal physiology: it regulates 
the release of neurotransmitters from the presynaptic terminals, influencing long-term 
potentiation (LTP; Grover and Teyler, 1990) and long-term depression (Bolshakov and 
Siegelbaum, 1994) through N-Methyl-D-Aspartate receptor (NMDAR)-related influx. In 
neurons, Ca2+ regulates gene expression, membrane excitability, dendrite development, 
synaptogenesis, and many other processes contributing to the neuronal primary functions of 
information processing and memory storage (Kawamoto et al., 2012). Most of [Ca2+]i changes 
result from influx into the cell regulated through the opening of voltage-dependent Ca2+ 
channels (VDCCs), NMDARs, or other types of ligand-gated ion channels (LGICs) located in 
the plasma membrane (Kawamoto et al., 2012). Additionally, [Ca2+]i levels can be increased 
by Ca2+ release from ER intracellular Ca2+ stores via ryanodine receptors (RyRs) and inositol-
1,4,5-triphosphate receptors (IP3Rs), or by Na+-dependent Ca2+ efflux (Na+/Ca2+ exchanger) 
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from mitochondria (Kawamoto et  al., 2012). The return to basal 
[Ca2+]i is achieved by Ca2+ extrusion or organelle uptake, which uses 
proteins like sarcoplasmic–endoplasmic reticulum Ca2+-ATPase and 
mitochondrial uniporter (Kawamoto et al., 2012). Moreover, given its 
importance and potential danger, a high variety of proteins and 
mechanisms are related to [Ca2+]i sensing and buffering. In particular, 
neurons possess specialized homeostatic mechanisms to ensure a tight 
command of cytosolic Ca2+ levels (Arundine and Tymianski, 2003), 
such as specialized Ca2+-permeable ionic channels, Ca2+ pumps, 
intracellular and intracellular Ca2+ buffering systems (Tymianski and 
Tator, 1996). Any alteration in cellular Ca2+ signaling and/or Ca2+ 
homeostasis can lead to serious pathological outcomes and has been 
linked to the activation of death pathways, which in the Central 
Nervous System (CNS) cause neuropathologies and neurodegenerative 
diseases (Sun et al., 2024) sharing excitotoxicity as a fundamental 
cause, such as amyotrophic lateral sclerosis (ALS; Van Den Bosch 
et al., 2006), Alzheimer’s disease (AD; Hynd et al., 2004), Parkinson’s 
disease (PD; Beal, 1998), Huntington’s disease (HD; Sepers and 
Raymond, 2014), epilepsy (Meldrum, 1993) and schizophrenia 
(Plitman et al., 2014).

Excitotoxicity

Ca2+-related excitotoxicity is considered one of the key processes 
of neuropathologies and neurodegenerative diseases (Schlaepfer and 
Bunge, 1973). Several Ca2+-permeable LGICs are involved in 
excitotoxicity generation, in particular glutamate receptors (Lau and 
Tymianski, 2010) and ATP P2X receptors (Sáez-Orellana et al., 2016). 
On the other hand, several studies reported that the activation of 
neuronal nAChRs (nicotinic acetylcholine receptors) containing the 
α7 subunit promotes neuronal survival (Dajas-Bailador et al., 2000; 
Laudenbach et  al., 2002). So, despite its fundamental role, an 
imbalance in glutamate homeostasis and the consequent 
overactivation of glutamate receptors can damage and kill neurons 
(Mattson, 2019). Neuronal excitotoxic damage is mostly due to a 
massive influx of Ca2+ through NMDAR (Choi et  al., 1988) and 
VDCCs that cause reactive oxygen species (ROS) release and 
consequent mitochondrial dysfunction (Mattson, 2003, 2019). 
Another example of excitotoxic damage happens in the muscular 
endplate due to rare genetic disorders, such as congenital myasthenic 
syndromes (CMS; Grassi and Fucile, 2020), which involves mutations 
in the genes of proteins related to neuromuscular transmission, mostly 
(about 15%) AChE gene (Beeson et al., 2005; Engel, 2012). Endplate 
overstimulation causes excitotoxic endplate damage (endplate 
myopathy) due to the sustained Ca2+ influx through ε-nAChR-
channels, and the Ca2+ overloading triggers degenerative events of the 
endplate structure (Grassi and Fucile, 2014).

Based on the pathogenic concept of overactivation of the 
excitatory pathways, NMDA receptors have been a longstanding 
therapeutic target for designing drugs that could be used against these 
otherwise heterogeneous and complex pathologies (Villmann and 
Becker, 2007). NMDAR-mediated excitotoxicity seems to start from a 
signaling mechanism regulated by extrasynaptic NMDARs (Sattler 
et  al., 1999a,b). Conditions that specifically attenuated synaptic 
NMDAR function did not affect the toxicity caused by exogenous 
NMDA or glutamate, meaning that extrasynaptic NMDARs must 
be linked to a molecular pathway triggering neuronal damage (Sattler 

et al., 1999a,b). Extrasynaptic NMDARs are enriched with the subunit 
GluN2B, forming GluN2B-containing heterodimers, supporting the 
hypothesis that extrasynaptic NMDARs constitute a distinct 
population, serving a specific function; moreover, GluN2B-containing 
NMDARs have a higher affinity for glutamate, whose concentration is 
lower in the extrasynaptic space (Papouin and Oliet, 2014). The 
prevailing theory suggests that synaptic and extrasynaptic NMDAR 
activation have opposing effects on cell fate: the activity of synaptic 
NMDARs is thought to favor neuronal survival, via the 
phosphorylation of intracellular factors such as CREB or Erk1/2; in 
contrast, cell death is mainly mediated by the activation of 
extrasynaptic NMDARs, which inhibits the above pathways and 
promotes the expression of caspase-3, a pro-apoptotic signal 
(Hardingham et  al., 2002; Papouin and Oliet, 2014). To date, the 
intense research into the mechanisms of excitotoxicity has not 
enlightened the key intracellular steps responsible for neuronal death 
in glutamate-dependent excitotoxic processes, mostly because of the 
heterogeneity of the neurodegeneration that follows glutamate 
application (Lau and Tymianski, 2010). First, neuronal death in 
cellular cultures can happen through both apoptosis and necrosis, 
depending on the severity of NMDA insult: necrotic-like damage 
predominates in response to acute, relatively intense excitotoxicity 
(2 mM NMDA), while apoptotic-like neuronal death may develop 
over many hours after less severe insults, using 300 μM NMDA 
(Bonfoco et al., 1995). The first to recognize the central role of [Ca2+]i 
in glutamate excitotoxicity-mediated neuronal damage and death was 
Choi in 1985, demonstrating that excitotoxicity in neuronal cultures 
was potentiated in a Ca2+-rich extracellular solution, while 
neurodegeneration was markedly reduced in a Ca2+-free extracellular 
solution (Choi, 1985). Furthermore, intracellular Ca2+ chelation by 
cell-permeant molecules such as BAPTA-AM and EGTA-AM protects 
neurons against excitotoxic injury both in vitro and in vivo (Tymianski 
et al., 1994a, 1994b). However, it seems that neuronal mortality is not 
directly connected to [Ca2+]i: higher lethality is associated with lower 
Ca2+ influxes via NMDARs compared to higher Ca2+ influxes via other 
Ca2+-permeant channels, probably due to the spatial link NMDARs 
share with neuronal nitric oxide synthase (nNOS), which can produce 
toxic levels of nitric oxide (NO), through postsynaptic density protein 
of 95 kDa, the PSD-95 (Chariton and Hafner, 1998; Sattler et  al., 
1999a,b). Some evidence also supports the idea of free radical 
generation in mitochondria after the Ca2+ influx via NMDARs; 
radicals, especially superoxide, can interact with other radicals, such 
as nitric oxide, to form powerful oxidants (Lau and Tymianski, 2010). 
In fact, the increasing [Ca2+]i accompanying NMDAR activation is 
partially buffered by the intracellular mitochondria, but this Ca2+ 
accumulation causes several dysfunctions, with resultant effects on 
mitochondrial membrane potential, ATP synthesis and glycolysis (key 
processes in a cell that consumes a lot of energy, like a neuron), 
reactive oxygen species generation (ROS) and ultimately failure of 
cytoplasmic Ca2+ homeostasis (Nicholls and Budd, 1998). Moreover, 
this mitochondrial impairment leads to the release (from the 
mitochondrial membrane) of Cytochrome C, which causes not only a 
defect in mitochondrial electron transport (Luetjens et al., 2000) but 
also caspase-9-dependent caspase-3 activation, which is an 
“executioner” caspase that leads to neuronal death through the 
activation of the apoptotic signaling (Seo et al., 2009). More recently, 
a physical interaction between NMDAR and TRPM4 (a Ca2+-
impermeant Ca2+-activated cationic channel; Rajamanickam et al., 
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2025) has been shown to be required to observe glutamate-induced 
excitotoxicity (Yan et al., 2020), introducing a new chapter in the large 
field of excitotoxicity. All these excitotoxic mechanisms are linked to 
Ca2+ overload, suggesting that avoiding an excessive Ca2+ influx could 
exert neuroprotection.

Techniques for the quantitative 
measure of the Ca2+ permeability of 
ion channels

The high relevance of Ca2+ influx in physiological processes and 
its key role in the onset of several neuropathologies and 
neurodegenerative diseases makes it crucial to understand how to 
measure and modulate Ca2+ entry. The Ca2+ permeability of ion 
channels has been calculated for decades by measuring the channel 
reversal potential alterations induced by different [Ca2+]o (Lewis, 
1979), but estimating the Ca2+ entry at non-zero electrochemical 
driving forces, functionally more important, rested on the assumption 
that there is no interaction among ions passing through the channel 
(Zhou and Neher, 1993). Then, a new method to quantify the Ca2+ 
flowing through a cationic ion channel was introduced in 1992, 
involving the simultaneous use of both electrophysiological and Ca2+ 
imaging techniques (Augustine and Neher, 1992): a Ca2+ indicator 
(e.g., Fura-2) is loaded into the cells using a patch micropipette (Zhou 
and Neher, 1993), and the cell response to an agonist is measured both 
as a current and a fluorescence emission variation. This mixed 
approach has been used in the late 90s to measure the Pf (the fractional 
Ca2+ current, which represents the percentage of the total current 
carried by Ca2+ ions, at a given membrane potential) of several Ca2+ 
permeable cationic channels: nAChRs (2.5–11.4%, based on species 
and subunits composition; Zhou and Neher, 1993; Fucile et al., 2003; 
Fucile, 2004), human AMPAR (from 0.5 to 3.9%, based on subunits 
composition; (Burnashev et al., 1995) and human NMDAR (from 8.2 
to 11%, based on subunits composition). The NMDARs Pf is the 
highest among all the glutamate-gated ion channels currently known 
(Burnashev et al., 1995). More recently, our group introduced a new 
way to evaluate the ion influxes through the human NMDARs (and 
other Ca2+-permeable cationic channel) and demonstrate the 
possibility of modulating the ion selectivity of these receptors, 
pharmacologically reducing their fractional Ca2+ current, causing the 
consequent reduction of NMDA-mediated Ca2+ entry in human 
neurons (D’Andrea et al., 2024). This approach allows us to record 
simultaneously the intracellular free Ca2+ and Na+ concentrations 
([Ca2+]i and [Na+]i, respectively D’Andrea et al., 2024). Our innovative 
approach is no longer centered on directly measuring ionic fluxes, but 
on the influx-related changes of [Ca2+]i and [Na+]i, measured 
simultaneously by fluoresce microscopy. This technique, already 
described in different contexts (Miyazaki et al., 2019), was used by us 
for the first time to evaluate the LGICs Ca2+ permeability.

Ca2+-permeable LGICs and related 
pathologies

Ca2+ ions enter the cells, following their strong concentration 
gradient, through many kinds of ion channels, exhibiting a large 
spectrum of functional properties, such as open kinetics, conductance, 

and ionic selectivity. This wide range of differently regulated pathways, 
together with the possibility to mobilize Ca2+ from intracellular stores, 
allow cells to strictly regulate the intracellular free Ca2+ concentration 
([Ca2+]i), which in turn drives the function of Ca2+-dependent proteins 
and related mechanisms (Berridge et al., 2000). Many Ca2+ permeable 
channels are driven by changes in membrane potential, transducing 
electrical signals in cellular responses (Zamponi et al., 2015). These 
VDCCs are highly selective for Ca2+ (Tsien et al., 1987), and their 
activation and inactivation kinetics are crucial to allow Ca2+ entry 
avoiding excitotoxic damage (Christel and Lee, 2012). By contrast, 
cationic LGICs exhibit a much lower Ca2+ selectivity, with Na+ being 
the ion conducting most of the inward current (Burnashev, 1998; 
Pankratov and Lalo, 2014). Nevertheless, Ca2+ flowing through LGICs 
has a paramount physiological function, in processes such as 
synaptogenesis (Pagano et al., 2021), synaptic plasticity (Gnegy, 2000), 
and neuromodulation (Kunz et al., 2013), while excessive activation 
of these channels has been causally related to relevant pathologies 
(Sattler and Tymianski, 2001; Spalloni et al., 2013; Guo and Ma, 2021). 
Obviously, the higher the Ca2+ permeability of a channel, the bigger 
the risk that channel overactivation may lead to excitotoxicity. For 
these reasons in the last decades many different cationic LGICs have 
been characterized in terms of their fractional Ca2+ current, which is 
the percentage of the total current carried by Ca2+ at a certain 
membrane potential (Zhou and Neher, 1993; Neher, 1995). These 
experiments explained how different subunits determine the Ca2+ 
permeability of channels of the same subfamily (Fucile, 2004), and the 
crucial role of the number and position of electrically charged 
aminoacidic residues in building the Ca2+ selectivity filter (Watanabe 
et  al., 2002; Fucile, 2017). In Table  1 we  summarize the known 
fractional Ca2+ currents of different kinds of LGICs, as well as the same 
parameter measured in mutated channels, some of them resulting in 
Ca2+-related channelopathies. We included in Table 1 only mutated 
channels with known Pf values, but other mutated LGICs with 
increased Ca2+ permeability have been described in pathologies 
(Lemke et al., 2014; Amin et al., 2018).

Physiological modulation of the Ca2+ 
permeability of LGICs

The Ca2+ permeability of NMDARs can be  modulated by 
physiological processes. Subunits composition of the NMDAR 
greatly alters several physical and pharmacological properties of the 
channel: the expression and insertion of the GluN3B subunit, which 
can co-assemble with endogenous GluN1 and GluN2A and play an 
important role in modulating synaptic plasticity and neuronal 
death, reduces the Ca2+ permeability of the NMDAR (Matsuda et al., 
2003). PKA signaling cascade controls NMDAR Ca2+ permeability 
and NMDAR-mediated [Ca2+]i rise in dendritic spines, and in this 
way PKA directly modulates the induction of NMDAR-dependent 
LTP at hippocampal Schaffer collateral-CA1 synapses (Skeberdis 
et  al., 2006). NMDAR-mediated Ca2+ influx can also be  greatly 
potentiated by the EphB receptor, a member of the Ephrin receptors 
family, a large family of receptor tyrosine kinases (Takasu 
et al., 2002).

Recently, GluA2-containing AMPARs, the most abundant in the 
central nervous system, have been shown to possess a spectrum of 
different Ca2+ permeabilities depending on the subunit composition of 
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TABLE 1 Fractional Ca2+ current of cation-selective LGICs.

Extracellular 
ligand

LGIC 
subtype

Subunit 
composition

Species Functional 
alteration(s)

Mutation-
associated 
pathology

Pf 
(%)

Vm 
(mV)

References

Glutamate NMDA GluN1 GluN2A Rat 11.0 −60 Burnashev et al. (1995)

NMDA GluN1 GluN2A Rat 13.6 −60 Watanabe et al. (2002)

NMDA GluN1 GluN2A Rat 13.5 −60 Jatzke et al. (2002) and 

Jatzke et al. (2003)

NMDA GluN1 GluN2A Rat 14.1 −60 Egan and Khakh (2004)

NMDA GluN1 (D640R) GluN2A Rat Reduced Pf n.d. 10.6 −60 Watanabe et al. (2002)

NMDA GluN1 (D640R) GluN2A Rat Reduced Pf n.d. 7.0 −60 Jatzke et al. (2003)

NMDA GluN1 (R641A) GluN2A Rat Increased Pf n.d. 14.9 −60 Watanabe et al. (2002)

NMDA GluN1 (P642A) GluN2A Rat n.d. 12.8 −60 Watanabe et al. (2002)

NMDA GluN1 (E643A) GluN2A Rat Reduced Pf n.d. 10.9 −60 Watanabe et al. (2002)

NMDA GluN1 (E644A) GluN2A Rat Reduced Pf n.d. 11.7 −60 Watanabe et al. (2002)

NMDA GluN1 (R645A) GluN2A Rat n.d. 13.8 −60 Watanabe et al. (2002)

NMDA GluN1 (ARPAAR) 

GluN2A

Rat Reduced Pf n.d. 7.1 −60 Watanabe et al. (2002)

NMDA GluN1 GluN2A Human 11.3 −70 Plutino et al. (2019)

NMDA GluN1 GluN2A Human 16.2 −60 Moody et al. (2023)

NMDA GluN1 GluN2A Human 9.4 −70 D’Andrea et al. (2024)

NMDA GluN1 (D552E) GluN2A Human Reduced Q, 

increased Pf

Epilepsy 19.4 −60 Moody et al. (2023)

NMDA GluN1 (M641I) GluN2A Human Increased Q, 

decreased Pf

Epilepsy 12.5 −60 Moody et al. (2023)

NMDA GluN1 GluN2A (A243V) Human Increased Q Epilepsy 16.6 −60 Moody et al. (2023)

NMDA GluN1 GluN2A (N614S) Human Increased Q Epilepsy 15.2 −60 Moody et al. (2023)

NMDA GluN1 GluN2A 

(M705V)

Human Reduced Q Epilepsy 14.0 −60 Moody et al. (2023)

NMDA GluN1 GluN2A (I814T) Human Increased Pf Epilepsy 20.9 −60 Moody et al. (2023)

NMDA GluN1 GluN2B Human 9.1 −70 Plutino et al. (2019)

NMDA GluN1 GluN2C Rat 8.2 −60 Burnashev et al. (1995)

AMPA GluA1 Rat 3.2 −60 Burnashev et al. (1995)

AMPA GluA1(Q) Rat 3.6 −60 Jatzke et al. (2002) and 

Jatzke et al. (2003)

AMPA GluA1(Q) (R624E) Rat Increased Pf n.d. 5.3 −60 Jatzke et al. (2003)

AMPA GluA1 GluA2(R) Rat 0.5 −60 Burnashev et al. (1995)

AMPA GluA2(Q) Rat 3.6 −60 Jatzke et al. (2002)

AMPA GluA2(Q) Rat 4.0 −60 Jatzke et al. (2003)

AMPA GluA2(Q) (R628E) Rat Increased Pf n.d. 6.4 −60 Jatzke et al. (2003)

AMPA GluA2(N) Rat 5.3 −60 Jatzke et al. (2002)

AMPA GluA2(N) Rat 5.0 −60 Jatzke et al. (2003)

AMPA GluA2(N) (E627R) Rat Reduced Pf n.d. 1.6 −60 Jatzke et al. (2003)

AMPA GluA2(N) (R628E) Rat Increased Pf n.d. 8.3 −60 Jatzke et al. (2003)

Kainate GluA6 (V, C, R) Rat <0.2 −60 Burnashev et al. (1995)

Kainate GluA6 (V, C, Q) Rat 1.6 −60 Burnashev et al. (1995)

Kainate GluA6(Q) Rat 2.4 −60 Jatzke et al. (2002)

(Continued)
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Extracellular 
ligand

LGIC 
subtype

Subunit 
composition

Species Functional 
alteration(s)

Mutation-
associated 
pathology

Pf 
(%)

Vm 
(mV)

References

Acetylcholine Muscle nicotinic αβγδ Mouse 2.1 −50 Ragozzino et al. (1998)

Muscle nicotinic αβγδ Human 2.9 −70 Fucile et al. (2006a)

Muscle nicotinic α (V249F)βγδ Human Prolonged topen SCMS 3.3 −70 Fucile et al. (2006a)

Muscle nicotinic α (G153S)βγδ Human Prolonged topen SCMS 2.9 −70 Fucile et al. (2006a)

Muscle nicotinic αβεδ Mouse 4.2 −50 Ragozzino et al. (1998)

Muscle nicotinic αβεδ Human 7.2 −70 Fucile et al. (2006a) and 

Piccari et al. (2011)

Muscle nicotinic αβεδ Human 7.8 −60 Di Castro et al. (2007)

Muscle nicotinic α (V249F)βεδ Human Prolonged topen SCMS 7.6 −70 Fucile et al. (2006a)

Muscle nicotinic α (G153S)βεδ Human Prolonged topen SCMS 7.1 −70 Fucile et al. (2006a)

Muscle 

nicotinic

αβε (I257F)δ Human Prolonged topen 

decreased Pf

SCMS 4.6 −70 Piccari et al. (2011)

Muscle 

nicotinic

αβε (L269F)δ Human Prolonged topen 

increased Pf

SCMS 10.2 −70 Piccari et al. (2011)

Muscle 

nicotinic

αβε (V259F)δ Human Prolonged topen 

increased Pf

SCMS 15.4 −60 Di Castro et al. (2007)

Muscle 

nicotinic

αβε (T264P)δ Human Prolonged topen 

increased Pf

SCMS 11.8 −60 Di Castro et al. (2007)

Neuronal 

nicotinic

α3β4 Chick 4.4 −50 Lax et al. (2002)

Neuronal 

nicotinic

α3β4 Human 2.7 −50 Lax et al. (2002)

Neuronal 

nicotinic

α4β2 Chick 2.9 −50 Lax et al. (2002)

Neuronal 

nicotinic

α4β2 Chick 3.1 −60 Egan and Khakh (2004)

Neuronal 

nicotinic

α4β2 Human 2.6 −50 Lax et al. (2002)

Neuronal 

nicotinic

α4β2 Human 3.1 −60 Egan and Khakh (2004)

Neuronal 

nicotinic

(β2α4)2 α4 Human 4.0 −70 Sciaccaluga et al. (2015)

Neuronal 

nicotinic

(β2α4)2 α5 Mouse 8.8 −70 Sciaccaluga et al. (2015)

Neuronal 

nicotinic

(β2α4)2 α5 Human 8.2 −70 Sciaccaluga et al. (2015)

Neuronal 

nicotinic

(β2α4)2 α5 (D398N) Human Decreased Popen Nicotine 

addiction

8.0 −70 Sciaccaluga et al. (2015)

Neuronal 

nicotinic

α7 Rat 8.8 −70 Fucile et al. (2003)

Neuronal 

nicotinic

α7 Human 11.4 −70 Fucile et al. (2003)

Neuronal 

nicotinic

α7 (L248T) Human Increased Popen, 

no 

desensitization

n.d. 6.3 −70 Fucile et al. (2000)

Neuronal 

nicotinic

α9α10 Rat 22.0 −70 Fucile et al. (2006b)

TABLE 1 (Continued)

(Continued)
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AMPAR tetramers, as well as the spatial orientation of transmembrane 
AMPAR and regulatory proteins and cornichon auxiliary subunits 
(Miguez-Cabello et  al., 2025). The extreme complexity in the 
physiological Ca2+ permeability modulation of Ca2+ permeable LGICs 
demonstrates the importance of those processes and the possibility to 
alter and modulate the influx of Ca2+ through ion channels.

Pharmacological modulation of the 
Ca2+-permeability of LGICs

Given the high number of Ca2+ permeable LGICs, and their 
causative role in Ca2+-related pathologies (calciumopathies; Stutzmann, 
2007), we posit the possibility to reduce the noxious impact of their 
activation by the selective reduction of their Ca2+ permeation. 
We started to investigate this strategy more than a decade ago, analyzing 
the effect on the Pf of the human muscle nicotinic acetylcholine receptor 
(nAChR) exerted by molecules shown to beneficially act in patients 
with the slow channel myasthenic syndrome (SCMS; Sadeh et al., 2011). 
SCMS is a genetic muscle pathology due to mutations of the endplate 
nAChR dramatically increasing the channel open time and causing a 
Ca2+-dependent degeneration of the endplate (Engel et al., 1982; Sine 
et al., 1995; Zhu et al., 2015). The same mutations cause a more severe 
phenotype in human than in rodent animal models, due to the higher 
Ca2+ permeability of the human adult nAChR subtype (containing the 
e subunit; Gomez et al., 2002; Fucile et al., 2006a). Our data explained 
why nifedipine, salbutamol and verapamil were able to reduce SCMS 
symptoms in patients, highlighting their capacity to reduce the 
fractional Ca2+ current through human muscle nAChRs (Piccari et al., 
2011). This approach has a crucial aspect: the reduction of Ca2+ entry 
without blocking the channel. This point is extremely relevant, in 

particular for pathologies due to channel overactivation, in which it is 
not possible to completely eliminate channel openings. This is true for 
the endplate, whose proper function requires nAChR opening with 
precise kinetics: even fast channel mutations produce myasthenia, 
although without endplate degeneration (Engel et al., 1993). Similar 
consideration may be done for excessive activation of synaptic and 
extrasynaptic glutamate-gated ion channels, functionally linked to Ca2+-
related excitotoxicity and to several forms of neurodegeneration: 
overactivation is harmful, but block is not possible, leading to severe 
adverse effects (Hargreaves et al., 1994; Parsons et al., 1999). For this 
reason, a partial block of NMDAR is one of the few therapeutic options 
for Alzheimer’s disease, in particular using memantine (partial open 
channel blocker; Kornhuber et al., 1994; Rammes et al., 2008; Karimi 
Tari et al., 2024). Despite its neuroprotective potential, memantine is 
not sufficient to significantly ameliorate AD course (Matsunaga et al., 
2015), and other therapeutic approaches must be found. In the last few 
years, we have focused our attention on the possibility to reduce the Pf 
value of the human NMDAR (Plutino et al., 2019; D’Andrea et al., 
2024). We have shown that mild acidosis (pH 6.8–6.5) is not only able 
to reduce the open probability of NMDARs (as already known; 
Traynelis and Cull-Candy, 1990), but also to decrease significantly their 
Ca2+ permeability, with a one-third reduction of the Pf value (Plutino 
et al., 2019), further explain the known neuroprotective role of mild 
acidosis (Tombaugh and Sapolsky, 1990). More recently, we  have 
quantified in terms of Pf the observations of Stephen Traynelis group, 
which investigated the effects of newly developed negative allosteric 
modulators (NAMs) of NMDARs (Katzman et al., 2015; Hansen et al., 
2018). Some of these NAMs were found to reduce the Ca2+ permeability 
of the human NMDAR, measured by the shift of the reversal potential 
and calculated in terms of PCa/PNa (Perszyk et al., 2021). We measured 
the Pf value of human GluN1/GluN2A NMDARs in the presence of one 

Extracellular 
ligand

LGIC 
subtype

Subunit 
composition

Species Functional 
alteration(s)

Mutation-
associated 
pathology

Pf 
(%)

Vm 
(mV)

References

Serotonin 5HT 5HT3A Human 3.5 −70 Martinello et al. (2022)

5HT3A Rat 4.7 −60 Egan and Khakh (2004)

5HT 5HT3A 5HT3B Human 1.1 −70 Martinello et al. (2022)

ATP P2X P2X1 Rat 12.4 −60 Egan and Khakh (2004)

P2X P2X1 Human 10.8 −60 Egan and Khakh (2004)

P2X P2X2 Rat 5.7 −60 Egan and Khakh (2004)

P2X P2X3 Rat 2.7 −60 Egan and Khakh (2004)

P2X P2X4 Rat 11.0 −60 Egan and Khakh (2004)

P2X P2X4 Human 15.0 −60 Egan and Khakh (2004)

P2X P2X5 Rat 4.5 −60 Egan and Khakh (2004)

P2X P2X7 Rat 4.6 −60 Egan and Khakh (2004)

P2X P2X1 P2X5 Rat 3.3 −60 Egan and Khakh (2004)

P2X P2X2 P2X3 Rat 3.5 −60 Egan and Khakh (2004)

P2X P2X2 P2X6 Rat 7.7 −60 Egan and Khakh (2004)

P2X P2X4 P2X6 Rat 11.3 −60 Egan and Khakh (2004)

pH 5.0, capsaicin TRPV1 Rat 9.9 −60 Samways et al. (2008)

TRPV1 Rat 6.6 −60 Samways et al. (2008)

Pf, fractional Ca2+ current; Q, net charge transfer; SCMS, slow channel myasthenic syndrome; Popen, open probability; topen, mean open time; n.d., not described.

TABLE 1 (Continued)
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of these compounds, EU1794-4, showing a significant 40% reduction 
(D’Andrea et al., 2024). We included in Table 2 all the Pf values measured 
to date, to our knowledge, in the presence of modulators able to reduce 
the Ca2+ permeability of LGICs. This list is rather short.

Discussion

Different therapeutic strategies have been investigated to fight 
neurodegeneration (see Table 3 for references), but with little impact 
on clinical applications.

Our data demonstrate that the selective reduction of Ca2+ entry 
through LGICs is possible, in principle. Reducing Ca2+ influx could 

also lead to adverse effects. Reduced NMDAR-mediated Ca2+ signaling 
can alter physiological Ca2+-dependent mechanisms, potentially 
leading to impaired learning and memory. While excessive NMDAR-
mediated Ca2+ influx can trigger pathways leading to neuronal death, 
insufficient Ca2+ signaling due to reduced NMDAR activity can also 
be detrimental: this reduction may contribute to the pathophysiology 
of neurological diseases, as it can hinder the normal signaling required 
for neuronal health and function (Painuli et al., 2023). Understanding 
the processes of NMDAR-mediated Ca2+ signaling and its implications 
for neuronal health will help the design of new drugs, and to maintain 
a good intracellular Ca2+ homeostasis. In this context, different Ca2+-
targeting approaches may be  possible. A chelation-based therapy 
against stroke, head trauma and neurological damage has been 

TABLE 2 Reduction of the fractional Ca2+ current of cationic-selective LGICs.

Extracellular 
ligand

Channel 
subtype

Subunit 
composition

Species Pf 
(%)

Treatment Reduced 
Pf (%)

Vm 
(mV)

Therapeutic 
potential

References

Acetylcholine Muscle 

nicotinic

αβεδ Human 7.2 Nifedipine 10 mM 5.9* −70 Piccari et al. 

(2011)

Muscle 

nicotinic

αβε (L269F)δ Human 10.2 Salbutamol 0.1 mM 5.6* −70 SCMS Piccari et al. 

(2011)

Muscle 

nicotinic

αβε (L269F)δ Human 10.2 Salbutamol 10 mM 6.6* −70 SCMS Piccari et al. 

(2011)

Muscle 

nicotinic

αβε (L269F)δ Human 10.2 Propanolol 

0.1 mM + salbutamol 

0.1 mM

7.3* −70 SCMS Piccari et al. 

(2011)

Muscle 

nicotinic

αβε (L269F)δ Human 10.2 Verapamil 0.5 mM 7.7* −70 SCMS Piccari et al. 

(2011)

Muscle 

nicotinic

αβε (L269F)δ Human 10.2 Verapamil 5 mM 5.4* −70 SCMS Piccari et al. 

(2011)

Glutamate NMDA GluN1 GluN2A Human 11.3 pH 6.8 8.5 −70 Excitotoxicity Plutino et al. 

(2019)

NMDA GluN1 GluN2A Human 11.3 pH 6.5 7.6* −70 Excitotoxicity Plutino et al. 

(2019)

NMDA GluN1 GluN2A Human 9.1 pH 6.8 8.1 −70 Excitotoxicity Plutino et al. 

(2019)

NMDA GluN1 GluN2A Human 9.1 pH 6.5 4.6* −70 Excitotoxicity Plutino et al. 

(2019)

NMDA GluN1 GluN2A Human 9.4 EU1794-4 30 mM 5.7* −70 Excitotoxicity D’Andrea et al. 

(2024)

Pf, fractional Ca2+ current; SCMS, slow channel myasthenic syndrome. *, statistically significant reduction.

TABLE 3 Investigated therapeutic strategies against neurodegeneration.

Therapeutic strategy Clinical use Clinical trial Effectiveness in 
animal models

References

NMDAR block Yes Yes Yes McShane et al. (2019) and Tang et al. (2023)

Antioxidants No Yes Yes Giordano et al. (2014) and Lee et al. (2020)

ROS scavengers No Yes Yes Liu et al. (2023) and Houldsworth (2023)

Glutamate scavengers No No Yes Boyko et al. (2014) and Rogers et al. (2023)

Caspase inhibitors No Yes Limited Dhani et al. (2021) and Kasana et al. (2024)

Ca2+ chelation No Yes Yes Yeung (2004) and Lees et al. (2013)

Ca2+ permeability reduction No No Not tested D’Andrea et al. (2024)
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proposed, by using DP-b99, a Ca2+/Zn2+ chelator derived from BAPTA 
(Yeung, 2004). Despite a good tolerability in healthy young and elderly 
volunteers within the dose range evaluated (Rosenberg et al., 2005), 
DP-b99 showed no evidence of efficacy in treating human ischemic 
stroke (Lees et al., 2013). In our opinion, a neuroprotective strategy 
aiming to reduce Ca2+ entry through LGIC is worth of experimental 
attention, being in principle applicable to a wide range of Ca2+-related 
pathologies, especially to the diseases caused by excessive Ca2+ entry 
through LGICs. Many molecules with described neuroprotective 
effects may indeed be tried for their ability to selectively reduce Ca2+ 
entry, with a particular focus on positively charged compounds already 
known to reduce the channel (sub)conductance levels. For instance, 
EU1794-4 reduced the single-channel conductance of NMDAR 
(Perszyk et al., 2021). With this hypothesis in mind, we measured the 
Pf value of human NMDAR in the presence of memantine, spermine 
(an intracellular polyamine known to block cation fluxes through 
LGICs; Tombaugh and Sapolsky, 1990), IEM 1754 and IEM 1460 
(open channel blockers; Antonov and Johnson, 1996). None of these 
molecules was able to reduce the Pf of GluN1/GluN2A NMDAR 
(Plutino et al., 2019), and to date, besides protons, to our knowledge 
only NAMs developed by the Traynelis groups exhibit this property.

The search for new molecules able to reduce the Pf of excitotoxicity-
related Ca2+-permeable LGICs may produce highly relevant results to 
improve our pharmacological tools for neuroprotection.
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