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Ischemic stroke is one of the leading causes of death and long-term disability 
worldwide. A significant proportion of stroke survivors experience persistent motor 
impairments, which severely affect their quality of life and cause heavy social 
and economic burdens. Acupuncture has increasingly gained attention due to 
its remarkable efficacy in promoting motor function recovery after stroke, and 
it has been progressively endorsed as a post-stroke treatment option by clinical 
guidelines of numerous countries, despite its underlying mechanism is not yet fully 
understood. This review systematically evaluates existing basic and clinical studies 
to explore the potential mechanisms of acupuncture’s effects on motor function 
recovery after ischemic stroke and the optimal clinical strategies. Emerging evidence 
demonstrates that acupuncture-mediated post-stroke motor recovery is primarily 
attributed to its roles in restoring energy metabolism, inhibiting neuroinflammation, 
preventing neuronal apoptosis, promoting neuronal repair and regeneration, and 
regulating neuronal excitability. Additionally, individualized acupuncture modality 
involving syndrome-based selection of acupoints and stimulating methods is crucial 
for better rehabilitation outcome. Our findings elucidate the multidimensional 
impacts of acupuncture on motor function restoration following ischemic stroke, 
furnishing robust evidence and theoretical foundation for its clinical application.
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1 Introduction

Stroke is a cerebrovascular disease that usually leads to localized damage to the central 
nervous system due to either blocked blood supply to the brain (ischemic stroke) or cerebral 
hemorrhage (hemorrhagic stroke), with ischemic stroke accounting for 76% of all cases (Virani 
et al., 2021). According to the latest global health statistics, stroke remains the second leading 
cause of death worldwide and is a major factor leading to permanent disability (GBD 2019 
Stroke Collaborators, 2021). As the population ages and lifestyle changes, the incidence of 
stroke continues to rise, which has become a major challenge to global public health. More 
than two-thirds of stroke patients continue to experience varying degrees of motor function 
impairment after the acute phase (Handley et al., 2009; Wissel et al., 2013), which undermines 
their ability to live independently, severely impacts their quality of life and subsequently 
increases social and economic burdens (Gong et al., 2022). Although some patients achieve 
partial motor recovery through neural remodeling and compensation, those with severe 
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injuries often evolve into permanent disability (Dimyan and Cohen, 
2011). Consequently, motor function recovery is the primary focus of 
post-stroke rehabilitation.

Due to the complex manifestations of motor impairments after 
ischemic stroke, no clear management strategies have been established. 
Drug therapy is a common treatment, for example, baclofen and 
botulinum toxin for hypertonia, while haloperidol and diazepam are 
employed to control tremor and hemichorea-hemiballism (Creamer 
et al., 2018; Ristic et al., 2002; Gracies et al., 2015). Yet, such efficacy is 
generally confined to transient alleviation of symptoms. Stroke survivors 
often require long-term medication, which may lead to drug dependence 
and resistance, as well as a range of adverse reactions, including potential 
toxicity to liver and kidney (Falcone et al., 2024). Rehabilitation also 
represents a central strategy, such as the combination of task-specific 
training and general aerobic exercise (Dimyan and Cohen, 2011; Nudo 
et al., 1996; Taub et al., 2002). Despite this established approach, its 
overall effectiveness remains limited, as 15%–30% of patients continue 
to experience permanent disability even after intensive training and 
sustained physical activity (Lloyd-Jones et al., 2009). With advances in 
technology, particularly the support of nanotechnology, some new 
therapies have been proposed. Particularly the neural stem cell (NSC) 
therapy and exogenous material-based replacement therapy have shown 
preliminary preclinical success in promoting neural tissue regeneration 
(Lindvall and Kokaia, 2010; Zhong et al., 2010; Waris et al., 2022; Lee 
et al., 2017). In addition, controlling neural prosthetics through brain-
computer interfaces offers a new pathway, which bypasses the damaged 
neural pathways and thereby becomes a training tool to promote the 
remodeling and functional recovery of the nervous system (Daly and 
Wolpaw, 2008). Although these new therapies show great potential, they 
are still in the stage of small-scale research and have not yet been widely 
applied. Furthermore, these therapies are associated with high costs and 
technical challenges, which hinder their widespread adoption in 
clinical treatment.

Acupuncture has been widely employed for the management of 
stroke in China for several millennia, particularly in the restoration of 
limb motor function. The World Health Organization has recommended 
acupuncture as a complementary and alternative therapy for stroke 
sequelae (World Health Organization, 2002). Meanwhile, it has been 
progressively endorsed as a post-stroke treatment option by clinical 
guidelines of numerous countries (Birch and Robinson, 2022). Unlike 
drug therapy, acupuncture both alleviates individual symptoms and 
fundamentally promotes nerve repair and improves motor function 
through multi-target and multi-channel mechanisms, such as repairing 
the damaged neural network, and restoring the function of neural 
circuits (Li et al., 2024; Mu et al., 2023). Hence, acupuncture exhibits 
significant potential for both research exploration and clinical application.

This review focuses on motor function recovery after ischemic 
stroke and provides a comprehensive evaluation of existing basic and 
clinical studies on acupuncture. Basic studies are examined to 
illustrate the mechanism of acupuncture, providing a theoretical basis 
for its clinical application. In parallel, clinical evidence is evaluated to 
assess and compare efficacy of different acupuncture protocols, with 
the aim of providing more precise guidance for clinical practice.

2 Methods

We performed a comprehensive literature search in PubMed, Web 
of Science, and Embase, covering publications from the inception of 

each database up to the present time. The search was limited to studies 
published in English and focused on ischemic stroke. The following 
keywords were used in various combinations: acupuncture, 
electroacupuncture (EA), stroke, cerebral infarction, motor 
dysfunction, motor impairment, movement disorder and 
rehabilitation. Following a thorough assessment, the information 
furnished in the following studies has been elucidated and discussed 
in detail.

3 Overview of motor impairments 
after ischemic stroke

3.1 Neurophysiological modulation of 
motor function

The neural modulation of motor activities is a complex and 
precise process that relies on the cooperation of multiple components 
of the central nervous system. The motor cortex, located in the frontal 
lobe, is the origin of voluntary movement and is responsible for 
issuing motor commands and regulating movement (Ebbesen and 
Brecht, 2017). The motor cortex does not directly innervate muscles, 
instead, it regulates movement through complex neural pathways. 
Layer 5 pyramidal neurons in the primary motor cortex send 
projections via the corticospinal and corticobulbar tracts to the 
interneurons in the spinal cord and brainstem, which then precisely 
regulate movement by activating or inhibiting lower motor neuron 
activity (Lemon, 2008; Grinevich et  al., 2005; O’Donoghue et  al., 
1987). Additionally, the motor cortex connects multiple cortical and 
subcortical structures through neural pathways, including the 
somatosensory cortex, basal ganglia, motor thalamus, brainstem, and 
cerebellum, to finely regulate motion (Kinnischtzke et al., 2014; Osten 
and Margrie, 2013). Meanwhile, the motor cortex receives input from 
the primary somatosensory cortex to optimize motor commands by 
integrating sensory information (Petrof et  al., 2015; Ferezou 
et al., 2007).

The basal ganglia, located deep within the white matter of the 
brain, primarily regulate the timing and intensity of movement to 
ensure coordination and fluidity (Yttri and Dudman, 2016). The 
striatum is the largest input nucleus of the basal ganglia which receives 
signals from the frontal lobe, sensory and motor cortices, and related 
thalamic regions (Mcgeorge and Faull, 1989; Gremel and Costa, 2013; 
Li et al., 2015). It selects the most appropriate behavior after integrating 
internal states, environmental information, and exercise plans (Klaus 
et  al., 2019). The striatum includes direct medium spiny neurons 
(dMSNs) and indirect medium spiny neurons (iMSNs). Sustained 
activation of dMSNs increases motion, whereas sustained activation 
of iMSNs decreases motion (Kravitz et al., 2010). By controlling the 
activities of these two types of neurons, the cortex flexibly regulates 
the initiation, inhibition, frequency, and intensity of movement to 
meet different demands (Gurney et al., 2015; Yttri and Dudman, 2016).

The cerebellum delicately regulates movement primarily through 
feedback circles with other brain regions to maintain the accuracy and 
stability of action (Kim et al., 2024). The cerebellum is crucial for 
motor control, coordination, and learning, with its diverse regions 
affecting movement through specific pathways (Morton and Bastian, 
2004). The medial cerebellar region receives and integrates inputs 
from the spinal cord, brainstem, and vestibular system to regulate key 
motor pathways, such as the vestibulospinal and reticulospinal tracts, 
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in order to maintain postural balance and trunk stability (Ilg et al., 
2008; Matsushita and Okado, 1981). The middle cerebellar region 
receives inputs from the cortex, spinal cord, and reticular nucleus, and 
projects signals to the red nucleus and cortex after integrating motor 
information, thereby coordinating movement (Asanuma et al., 1983b; 
Asanuma et al., 1983a). The lateral cerebellar region receives dense 
projections from cortical regions and sends signals to the red nucleus 
and cortex, primarily controlling the walk to ensure the consistency 
and rhythmicity of movement (Dum and Strick, 2003).

The brainstem integrates motor control signals from brain and 
spinal cord, and directly regulates the spinal cord circuitry, thereby 
controlling the initiation, speed, halt, and direction of movement 
(Leiras et al., 2022). As a central hub for regulating motor initiation 
and gait, the midbrain locomotor region (MLR) receives inputs from 
the cerebral cortex, basal ganglia, and brainstem sensorimotor 
regulatory regions to coordinate autonomous exploratory behavior 
and escape responses by conveying motor signals to the spinal cord 
via the reticulospinal tract (Caggiano et al., 2018; Dautan et al., 2021). 
Thus, the precise modulation of spinal motor circuits is attained via 
the synergistic actions of the excitatory medial tract and the inhibitory 
lateral tract (Brownstone and Chopek, 2018).

As the final executive link in motor control, the spinal cord 
receives and integrates descending signals from the central nervous 
system and peripheral sensory feedback to coordinate and execute 
reflex and voluntary and rhythmic movements (Nielsen, 2016). The 
anterior horn is the convergence of motor neurons, which is 
responsible for transmitting motor commands to the surrounding 
muscles (Negro and Farina, 2011). The cortex regulates motor neurons 
in the anterior horn through descending neural pathways, such as the 
corticospinal tracts and reticulospinal tracts, so as to ensure timely 
and coordinated muscle activity, thereby optimizing movement and 
maintaining postural stability (Teka et al., 2017; Menon and Vucic, 
2021). In addition, a large number of spinal interneurons, distributed 
in the gray matter of the spinal cord, constitute a complex motor 
regulation network (Côté et  al., 2018). Spinal interneurons 
continuously receive peripheral sensory information from the spinal 
cord dorsal horn and integrate it with descending signals from higher 
centers to flexibly balance the excitability and inhibition of the anterior 
horn, further regulating movement.

3.2 Motor impairments after ischemic 
stroke

3.2.1 Neural structural damage
Although the brain accounts for only 2% of body weight, its 

energy demand accounts for 20% of the body’s total energy 
consumption (Sifat et al., 2022). Disruption of energy metabolism is a 
pathological feature of ischemic stroke (Yatsu et  al., 1975). After 
ischemic stroke, brain tissue surrounding the occluded vessels 
becomes ischemic, and the blood flow in the core ischemic region is 
reduced by more than 80% (Back et al., 2004). This causes neurons to 
be damaged due to a sudden drop in energy supply (Lyden et al., 
2019). Research has shown that among hemiplegic patients with hand 
dyskinesia after stroke, the ipsilateral thalamus displays severe 
metabolic inhibition, and thalamic metabolic activity correlates with 
the degree of motor function recovery, revealing the critical role of 
energy metabolism restoration in motor rehabilitation (Binkofski 

et  al., 1996). Adenosine Triphosphate (ATP) exhaustion triggers 
ischemic cascade reactions, including failure of membrane ion pumps, 
cellular edema, and membrane depolarization (Lee et  al., 2000; 
Hofmeijer and Van Putten, 2012). Neurons cannot maintain their 
normal transmembrane ion gradients, which triggers a series of 
pathophysiological processes, including excitotoxicity, mitochondrial 
dysfunction, oxidative and nitrative stress, neuroinflammation, 
protein misfolding, and apoptosis. These pathological mechanisms 
form a vicious cycle, ultimately leading to cell death (He Z. et al., 2020).

Chemokines, reactive oxygen species, and other factors produced 
by the ischemic cascade reaction trigger immune responses in the 
nervous system (Larrea et al., 2023). Persistent inflammation expands 
the extent of brain injury and severely impacts motor function after 
stroke (Larrea et al., 2023; Lukacova et al., 2021). Neuroinflammation 
directly damages local tissues in the early stages. Moreover, it promotes 
glial scar formation and inhibits neuronal regeneration, leading to 
long-term neuronal damage (Nishimura et al., 2007; Beck and Yaari, 
2008). This further impairs motor function and eventually leads to 
chronic and persistent disability (Larrea et al., 2023; Min et al., 2012). 
Research confirms that excessive microglial activation after stroke 
significantly worsens motor function damage, which suggests that 
relieving neuroinflammation is crucial for recovering motor function 
after stroke (Lartey et al., 2014).

Disruption of energy metabolism and subsequent initiation of 
inflammation together lead to cellular dysfunction and apoptosis 
(Zhou et al., 2021; Pascotini et al., 2015). Extensive apoptosis occurs 
in the motor cortex, basal ganglia, and other motor control-related 
regions, causing disruption of the structure and function of motor 
circuits and ultimately leads to motor impairments. One study shows 
that early motor rehabilitation after ischemic stroke can protect 
neurons and promote the recovery of coordinated forelimb motor 
function by inhibiting neuronal apoptosis in middle cerebral artery 
occlusion (MCAO) rats (Zhang et al., 2013).

3.2.2 Motor impairment
A complete neural structure is essential for the proper functioning 

of nerves in regulating motor activities. Given that the neural 
regulation of movement is a complex and precise network, injury to 
any component may impair motor function. After ischemic stroke, 
ischemic injury affects several brain regions involved in movement, 
leading to various motor impairments. The motor cortex exhibits 
distinct temporal characteristics following injury. During the acute 
phase, the main manifestations are muscle weakness, reduced and 
slowed movement. In the chronic phase, spasticity, clonus, and 
hypertonia occur due to the weakened inhibition of the cortex on the 
lower motor centers (Schieber and Poliakov, 1998; Laplane et  al., 
1977). The basal ganglia inhibits lower motor centers through 
glutamatergic and dopaminergic inputs, thereby preventing 
involuntary movements (Grillner et al., 2020), thus its injury primarily 
leads to contralateral hyperkinetic movement disorders, including 
dystonia, chorea, and tremor (Park, 2016). Moreover, the white matter 
tissue near the basal ganglia, the internal capsule, is frequently 
infarcted after ischemic stroke, leading to severe motor and sensory 
dysfunction in the contralateral limb (Horie et al., 2019). In contrast, 
ischemic injury in the cerebellum and brainstem is relatively rare. In 
over 90% of strokes, the cerebellum and brainstem structures involved 
in gait control remain intact (Beyaert et al., 2015). Although the spinal 
cord is not directly damaged after ischemic stroke, it is highly 
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dependent on the regulation from higher centers. After ischemic 
stroke, the descending inhibitory signals to the spinal cord are 
weakened due to higher central nervous system injury, which leads to 
abnormal spinal excitability, increased muscle tone, and spasticity 
(Urbin et al., 2021; Segal, 2018).

After ischemic stroke, the nervous system initiates a spontaneous 
repair process to compensate for impaired motor function through 
limited functional recovery and compensation (Joy and Carmichael, 
2021). Neuroplasticity constitutes the pivotal mechanism driving 
motor recovery after ischemic stroke. Through structural and 
functional remodeling, it reconstructs and regulates the damaged 
motor network to adapt to new motor requirements (Alia et al., 2017; 
Dimyan and Cohen, 2011). Patients often adopt new movement 
strategies and action patterns to replace pre-stroke movement 
behaviors, thereby compensating for motor function deficits 
(Bernhardt et  al., 2017). The new motor mode often results in 
incomplete compensation, reduced precision, and abnormal 
movement patterns, which may limit motor recovery and even worsen 
motor impairment (Wahl et al., 2017; Whishaw, 2000). Therefore, 
timely and effective interventions are crucial. They promote the 
recovery of impaired function and prevents the spontaneous 
compensatory process from forming abnormal movement patterns, 
thereby maximizing overall motor function recovery.

4 Basic studies on acupuncture in 
promoting motor function recovery 
after ischemic stroke

Ischemic stroke causes extensive neuronal damage in the early 
stages, further hindering nerve repair and functional recovery. It 
disrupts the integrity of the neural network and weakens the 
regulatory capacity of the motor control system. Acupuncture may 
exert multidimensional modulation on such pathological changes and 
neuroplastic processes. It can improve energy metabolism, reduce 
inflammation, and inhibit apoptosis, thereby reducing neuronal injury 
and protecting the remaining neurons. Acupuncture also promotes 
neural plasticity, including enhancing axonal regeneration and 
synaptic remodeling, and regulating neuronal excitability to optimize 
the function of the motor circuit. Such roles of acupuncture enable its 
neuroprotection during the acute phase, while facilitating nerve repair 
and functional remodeling during the recovery phase, which offers 
crucial intervention strategies for motor function recovery after 
ischemic stroke (Table 1).

4.1 Acupuncture reduces nerve damage to 
improve motor function

4.1.1 Acupuncture regulates energy metabolism
Oxidative metabolism of glucose is the primary energy source for 

the brain, ensuring the survival and function of neurons (Zheng and 
Wang, 2018b). In cellular energy regulation, AMP activated protein 
kinase (AMPK) functions as a crucial energy sensor, detecting changes 
in cellular energy and regulating abnormal energy states. AMPK can 
be  activated when energy decreases. Subsequently, it increases 
metabolism-related proteins expression and inhibits biosynthetic 
pathways to increase ATP (Hardie et  al., 2012). After 

ischemia–reperfusion (I/R) injury, glucose metabolism in the affected 
hemisphere of rats is significantly lower than in the contralateral 
hemisphere, and EA can regulate this condition. Additionally, EA 
enhances energy production and reduces unnecessary energy 
consumption in brain tissue by activating AMPK, significantly 
improving gait and athletic ability in rats (Wu et al., 2017). In ischemia 
and hypoxia following ischemic stroke, due to inhibition of glucose 
oxidation metabolism, lactate can serve as an alternative energy 
substrate for neurons (Roumes et al., 2021; Bliss and Sapolsky, 2001). 
Monocarboxylate Transporter 1 (MCT1), widely distributed in rat 
brain tissue, promotes the unidirectional transport of 
monocarboxylates across the plasma membrane, including lactate and 
pyruvate (Vijay and Morris, 2014). EA upregulates MCT1 expression 
in astrocytes around the ischemic area and promotes the release of 
lactate produced by intracellular anaerobic fermentation into the 
extracellular space, which increases extracellular lactate concentration 
and provides energy substrates for injured neurons (Lu et al., 2015).

Mitochondria are central to cellular energy metabolism, and their 
dysfunction is considered a hallmark of I/R injury, making them a 
critical target for alleviating post-stroke motor impairments (Gibbs 
et al., 2016). Dysregulation of mitochondrial dynamics and quality 
control can lead to mitochondrial dysfunction, and even trigger 
mitochondrial autophagy (Wu et  al., 2016). Unc-51-like kinase 1 
(ULK1) plays a crucial role in the initial stages of mitochondrial 
autophagy (Ganley et al., 2009; Wirth et al., 2013). FUN14 domain 
containing 1 (FUNDC1) acts as a receptor for mitochondrial 
autophagy under hypoxia and is activated through phosphorylation 
at the Serine17 site mediated by ULK1. Upon activation, it binds to 
microtubule-associated protein light chain 3 (LC3) and links 
mitochondria and autophagosomes, promoting mitochondrial 
autophagy (Liu et al., 2012; Wu et al., 2014). This process is negatively 
regulated by the mammalian target of rapamycin (mTOR), a key 
modulator of cell growth. It prevents ULK1 activation by 
phosphorylating the Serine-757 site of ULK1, consequently inhibiting 
ULK1-mediated mitochondrial autophagy (Huang et al., 2011; Kim 
et  al., 2011). EA pretreatment activates mTOR, downregulates 
p-ULK1, LC3-II/LC3-I, and FUNDC1 levels, which inhibits 
I/R-induced mitochondrial autophagy and restores mitochondrial 
membrane potential (MMP). This significantly reduces mitochondrial 
abnormalities, decreases the number of autolysosomes, which protects 
neurons from I/R damage and ultimately decreases longa neurological 
scores (Tian et al., 2022).

4.1.2 Acupuncture alleviates neuroinflammation
After ischemic stroke, severe mitochondrial damage can trigger 

complex neuroinflammation, which further worsens neuronal injury 
and significantly impedes motor function recovery. The Toll-like 
receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway 
plays a particularly crucial role in acute inflammation. TLR4 is 
primarily responsible for recognizing damage-associated or pathogen-
associated molecular patterns and initiates immune responses through 
binding the adaptor protein myeloid differentiation primary response 
88 (MyD88) (Barton and Medzhitov, 2003; Stierschneider and 
Wiesner, 2023). High mobility group box 1 (HMGB1), a key nuclear 
protein and immune regulatory factor, is released from damaged 
neurons and glial cells into the extracellular space under ischemia and 
hypoxia (Wu et al., 2010). I/R injury promotes the rapid binding of 
HMGB1 to TLR4, which triggers the phosphorylation and degradation 
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TABLE 1  Characteristic of basic studies.

Authors Animal 
model

Acupoint(s) Acupuncture 
method

Course of 
acupuncture

Stroke phase 
of study

Motor function behavioral 
testing indicator(s)

Molecular biology indicator(s)

Wu et al. 

(2017)
MCAO rat (I/R) ST36, LI11

EA, 2/20 Hz, 30 min/

day, once a day
7 days Acute phase

MAS, CatWalk XT Gait Analysis, Rota-

rod test
Glycolysis rate↑, p-AMPKα/t-AMPKα ratio↑

Lu et al. 

(2015)
MCAO, rat PC6, LI11

EA, 2/15 Hz, 1 mA, 

20 min/day, once a day
7 days Acute phase Longa Neurological Score Lactate concentration↑, MCT1↑

Tian et al. 

(2022)
MCAO rat (I/R) GV20, GV26

EA Pretreatment, 

2/50 Hz, 30 min/day, 

once a day

5 days Acute phase Longa Neurological Score MMP↑, LC3-II/LC3-I ratio↓, p-ULK1↓, FUNDC1↓

Nie et al. 

(2024)
MCAO, rat GV20, ST36

EA, 2 Hz, 1 mA, 30 min/

day, once a day
14 days

Early subacute 

phase
Beam-Balance Test HMGB1↓, JNK↓, p-JNK↓

Liu et al. 

(2016b)
MCAO rat (I/R) ST36, LI11

EA, 1/20 Hz, 4 V, 

30 min/day, once a day
3 days Acute phase Longa Neurological Score

NF-κB nuclear translocation↓, NF-κB p65-positive cell 

count↓

Han et al. 

(2015)
MCAO, rat PC6, LI11, SP8

EA, 2/15 Hz, 1 mA, 

30 min/day, once a day
5 days Acute phase Longa Neurological Score

TNF-α↓, IL-1β↓, IL-6↓, TLR4↓, HMGB1↓, TRAF6↓, IKKβ↓, 

NF-κB p65↓

Lan et al. 

(2013)
MCAO rat (I/R) ST36, LI11 EA, 1/20 Hz once Hyper-acute phase Longa Neurological Score

TLR4↓, NF-κB p65↓, p-IκB↓, NF-κB nuclear translocation↓, 

TNF-α↓, IL-1β↓, IL-6↓

Zhang et al. 

(2023a)
MCAO rat, (I/R)

GV14, GV9, 

GV4, GV20, 

BL17, BL18, 

BL23

MA
24 h, 36 h, 48 h, 72 h 

after MCAO(I/R)

Hyper-acute phase, 

acute phase
Longa Neurological Score

TGF-β↑, TNF-α↓, IL-1β↓, BIRC3 mRNA↓, LTBR mRNA↓, 

PLCG2 mRNA↓, TLR4 mRNA↓, TRADD mRNA↓

Liu et al. 

(2016a)
MCAO rat (I/R) ST36, LI11

EA, 1/20 Hz, 6 V, 

0.2 mA, 30 min/day, 

once a day

3 days Acute phase mNSS, CatWalk XT Gait Analysis
TNF-α↓, IL-1β↓, IL-6↓, NF-κB nuclear translocation↓, 

NF-κB p65↓

Ren et al. 

(2024)
MCAO mice (I/R) GV20, GV26

EA, 4/20 Hz, 1 V-3 V, 1 

mA–3 mA, 20 min/day, 

once a day

3 days Acute phase Rotarod Test, neurological deficit score IL-6↓, TNF-α↓, IL-1β↓, CCL-2↓, CD206↓

Yao et al. 

(2023)
MCAO rat (I/R)

LU5, LI4, ST36, 

SP6

EA, 5 Hz, 2 mA, 20 min/

day
3, 7 days Acute phase

Longa Neurological Score, Grip Strength 

Test

STAT6↑, p-STAT6/STAT6 ratio↑, PPARγ↑, p-PPARγ↑, IL-

10↑, TGF-β↑, M2 microglia↑, p-NF-κB p65↓, M1 microglia 

count↓, IL-6↓, TNF-α↓

Wang et al. 

(2023a)
MCAO rat (I/R) GV20

EA, 2/15 Hz, 1 mA, 

20 min/day, once a day
3 days Acute phase Longa Neurological Score

IL-10↑, Treg cells↑, TNF-α↓, IL-1β↓, CXCL1 mRNA↓, 

CXCL2 mRNA↓, IL-17A↓

Zhang et al. 

(2023b)
MCAO, rat MS5, MS6

MA, 30 min/day, once a 

day
14 days

Early subacute 

phase

Longa Neurological Score, Screen-

Grabbing Test, Beam-Walking Test

p-IRE1↓, p-PERK↓, ATF6↓, CHOP↓, p-JNK↓, Caspase-3↓, 

Caspase-9↓

Xing et al. 

(2018a)
MCAO rat (I/R) LI11, ST36

EA, 4/20 Hz, 4 V, 

30 min/day, once a day
3 days Acute phase Longa Neurological Score

Bcl-2↑, p-Akt↑, p-PDK1↑, p-GSK-3β↑, Caspase-3↓, Bim↓, 

p-PTEN↓

(Continued)
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TABLE 1  (Continued)

Authors Animal 
model

Acupoint(s) Acupuncture 
method

Course of 
acupuncture

Stroke phase 
of study

Motor function behavioral 
testing indicator(s)

Molecular biology indicator(s)

Xing et al. 

(2018b)
MCAO rat (I/R) LI11, ST36

EA, 4/20 Hz, 6 V, 1 mA, 

30 min/day, once a day
3 days Acute phase Longa Neurological Score

Bcl-2-positive cells↑, Caspase-3-positive cells↓, Bim-positive 

cells↓, p-ERK1/2↓, p-JNK↓, p-p38↓

Kim et al. 

(2018)
MCAO mice (I/R) GV20, GV14

EA, 2 Hz, 2 V, 20 min/

day, once a day
12 days

Early subacute 

phase
Corner Test, Cylinder Test BDNF↑, NT-4↑, VEGF↑, p-TrkB↑, p-CREB↑

Wang et al. 

(2021a)
MCAO rat (I/R) GV20, ST36

EA,100 Hz, 1 mA, 

30 min/day, once a day
14 days

Early subacute 

phase
Rotarod Test, Beam-Balance Test BDNF↑, NGF↑, VEGF↑, Nogo-A↓, p75NTR↓

Deng et al. 

(2016)
MCAO rat (I/R) GV20

EA, 2/10 Hz, 1 

mA–2 mA, 30 min/day, 

5 sessions/week

7, 14, 21, 28 days
Acute phase, early 

subacute phase
mNSS, Rotarod Test, Grip Strength Test

BDA-positive CST axon count↑, NF-200↑, GAP-43↑, 

RhoA↓, PriB↓

Kim et al. 

(2013)

Photothrombosis 

stroke (PTS) mice
GV20, GV14

EA Pretreatment, 2 Hz, 

1 mA, 20 min/day, once 

a day

3 days
Hyper-acute phase, 

acute phase

Longa Neurological Score, Wire Hanging 

Test, Corner Test, Cylinder Test
SDF-1α↑, BDNF↑

Kim et al. 

(2014)
MCAO rat (I/R) GV20, GV14

EA, 2 Hz, 2 V, 20 min/

day, once a day
30 days

Early subacute 

phase
Rotation Device Test

BDNF↑, VEGF mRNA↑, p-PI3K/BrdU double-positive cell 

count↑

Xie et al. 

(2019)
MCAO rat (I/R) GV20, GV24

EA, 1/20 Hz, 0.2 mA, 

30 min/day, once a day
14 days

Early subacute 

phase
Longa Neurological Score

PSD-95 positive cell count↑, SYN positive cell count↑, 

pyramidal neuron synapse count↑

Ren et al. 

(2008)
MCAO, rat

PC6, TE5, SP6, 

ST36

EA, 10 Hz, 1 mA, 

30 min/day, 6 sessions/

week

7, 14, 28 days
Acute phase, early 

subacute phase
Balance Beam Walking Test Dendritic spine density↑, Ephrin-A5 mRNA↑

Sun et al. 

(2022)
MCAO, rat GB34

MA, 30 min/day, once a 

day
7 days

Early subacute 

phase

Longa Neurological Score, MAS, Gait 

Analysis
GABA↑, KCC2↑, GABAAγ2↑

Mu et al., 2022 MCAO, rat GB34
MA, 30 min/day, once a 

day
6 days

Early subacute 

phase

Longa Neurological Score, MAS, Gait 

Analysis, Foot Balance Test
GABA↑, KCC2↑, GABAAγ2↑

Wang et al. 

(2021c)
MCAO, rat GB34

MA, 30 min/day, once a 

day
7 days

Early subacute 

phase
MAS, Screen Test KCC2↑, GABAAγ2↑

Wang et al. 

(2020)
MCAO, rat GB34

MA, 30 min/day, once a 

day
7 days

Early subacute 

phase
Longa Neurological Score, MAS GABA↑, GABA-T↓

EA, Electroacupuncture; MA, Manual Acupuncture; ST36, Zusanli; LI11, Quchi; PC6, Neiguan; GV20, Baihui; GV26, Shuigou; SP8, Diji; GV14, Dazhui; GV9, Zhiyang; GV4, Mingmen; BL17, Geshu; BL18, Ganshu; BL23, Shenshu; LU5, Chize; LI4, Hegu; SP6, 
Sanyinjiao; MS5, Middle line of Vertex in scalp acupuncture; MS6, Anterior Oblique Line of Vertex-Temporal; GV24, Shenting; TE5, Waiguan; MAS, Modified Ashworth Scale; mNSS, Modified Neurological Severity Score.
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of IκB and leads to the migration of the NF-κB subunits (p65/p50) 
from the cytoplasm to the nucleus. Ultimately, NF-κB activates the 
transcription of genes related to inflammation and immunity in the 
nucleus, thereby triggering and aggravating inflammation (Ridder and 
Schwaninger, 2009; Bhatt and Ghosh, 2014). TNF receptor-associated 
factor 6 (TRAF6), a downstream factor of TLR4, also participates in 
regulating the NF-κB pathway (Song et al., 1997). It can phosphorylate 
IκB by activating IκB Kinase (IKK), thereby promoting the activity of 
the NF-κB pathway (Wang et al., 2001; Deng et al., 2000). Additionally, 
TRAF6 further enhances NF-κB activity by activating the c-Jun 
N-terminal kinase (JNK) signaling pathway, leading to sustained 
neuroinflammation (Darnay et al., 1999).

EA alleviates inflammation in striatal neurons of rats with cerebral 
ischemia by downregulating HMGB1, JNK, and p-JNK levels, thereby 
improving balance and motor coordination (Nie et  al., 2024). 
Additionally, EA inhibits IκB phosphorylation and NF-κB p65 nuclear 
translocation by reducing TLR4 and its downstream factors, such as 
TRAF6, IKKβ, tumor necrosis factor-alpha (TNF-α), interleukin-1β 
(IL-1β), and interleukin-6 (IL-6). This alleviates inflammatory damage 
in MCAO rats and improves neurological function (Liu et al., 2016b; 
Han et al., 2015; Lan et al., 2013). Further research shows that EA 
inhibits the NF-κB pathway by downregulating the key genes 
expression related to NF-κB, significantly reducing IL-1β and TNF-α 
levels and increasing tumor necrosis factor-β (TNF-β) levels. 
Ultimately, EA reduces edema, neuronal damage, and inflammatory 
infiltration in the ischemic core area caused by I/R and reduces longa 
neurological scores (Zhang X. et al., 2023).

Microglia are resident immune cells in the central nervous system, 
playing a key role in regulating immune responses, particularly in 
central nervous system disorders such as stroke, Parkinson’s disease, 
and Alzheimer’s disease (Hu et al., 2014; Keren-Shaul et al., 2017). 
Following activation of the TLR4/NF-κB signaling pathway, microglia 
rapidly undergo activation and functional polarization. They tend to 
shift towards the pro-inflammatory M1 phenotype rather than the 
anti-inflammatory M2 phenotype. Subsequently, a series of 
pro-inflammatory cytokines are released, further worsening 
inflammation and expanding neuronal damage (Holtman et al., 2017; 
Shi et al., 2019). EA significantly inhibits excessive activation and 
proliferation of microglia in the sensory and motor cortex surrounding 
the infarction and prevents their polarization towards the M1 type, 
which reduces the expression of TNF-α, IL-1β, and IL-6 in both the 
cortex and serum. This alleviates I/R-induced neuroinflammation and 
improves motor coordination, balance, and gait in rats (Liu et al., 
2016a; Ren et al., 2024). The Janus Kinase (JAK)/Signal Transducer 
and Activator of Transcription (STAT) pathway is a critical 
intracellular signaling pathway that binds to cytokines, hormones, and 
other molecules through receptors on the cell surface, transmits 
signals to the nucleus, and regulates gene transcription (Xin et al., 
2020; Renauld, 2003). In the later stages of inflammation, anti-
inflammatory factors such as interleukin-4 (IL-4) and interleukin-13 
(IL-13) activate JAK1, which in turn activates STAT6. Together with 
peroxisome proliferator-activated receptor γ (PPARγ), they promote 
microglia polarization towards the M2 type, ultimately fostering an 
anti-inflammatory response and tissue repair (He Y. et al., 2020a). EA 
increases the total expression of STAT6 and PPARγ in microglia and 
promotes their activation, thereby facilitating the polarization of M1 
microglia towards M2 and regulating the levels of corresponding 
pro-inflammatory and anti-inflammatory factors. This reduces longa 

neurological scores and improves muscle strength in the hind limbs 
of rats (Yao et al., 2023).

Th17 cells primarily participate in immune responses by secreting 
pro-inflammatory factors such as interleukin-17 (IL-17), interleukin-21 
(IL-21) and interleukin-22 (IL-22) (Stockinger and Veldhoen, 2007). 
Treg cells primarily prevent excessive immune responses and 
autoimmune diseases by secreting immunosuppressive factors, such as 
transforming growth factor-beta (TGF-β) and interleukin-10 (IL-10). 
Under normal conditions, they inhibit overactive T helper 17 (Th17) 
cells and maintain immune tolerance and an anti-inflammatory 
response (Afzali et al., 2007; Liesz et al., 2009). The balance between 
Th17 cells and Treg cells is crucial in regulating neuroinflammation and 
restoring exercise capacity after stroke (Liu et al., 2015; Dolati et al., 
2018). C-X-C motif chemokine ligand 1 (CXCL1) and C-X-C motif 
chemokine ligand 2 (CXCL2) are important inflammatory chemokines 
that promote Th17 cells differentiation and exacerbate 
neuroinflammation in combination with pro-inflammatory factors 
(Wojkowska et al., 2014). EA promotes the differentiation of Treg cells 
and IL-10 secretion in brain tissue, while downregulating the gene 
expression of CXCL1 and CXCL2, as well as the levels of interleukin-17A 
(IL-17A), TNF-α, and IL-1β. This ultimately reduces neuroinflammation 
and reduces longa neurological scores (Wang et al., 2023a, 2023b).

4.1.3 Acupuncture inhibits cell apoptosis
Caspase-mediated apoptosis plays a critical role in neuronal death 

after ischemic stroke (Love, 2003). Caspases are a class of cysteine 
proteases, including both initiator and executioner types, that play a 
central role in cell apoptosis. Pro-apoptotic factors regulate caspase 
activation along with the anti-apoptotic factor B-cell lymphoma 2 
(Bcl-2), such as Bcl-2 interacting mediator of cell death (Bim), Bcl-2 
antagonist of cell death (Bad), and Bcl-2 associated x protein (Bax). 
Mitochondria damaged by ischemic stroke release cytochrome c, 
which binds to the apoptotic protease activating factor 1 (Apaf-1) and 
procaspase-9, forming apoptotic bodies and initiating a series of 
apoptotic events (Zhang and Armstrong, 2007; Love, 2003). 
Executioner caspases, primarily caspase-3, complete the final stages of 
apoptosis by degrading the genome and breaking down the 
cytoskeleton (Unnisa et al., 2023).

The endoplasmic reticulum (ER) is the primary organelle 
responsible for protein synthesis, transport, and the maintenance of 
intracellular Calcium ion (Ca2+) homeostasis. The imbalance in Ca2+ 
homeostasis caused by cerebral ischemia leads to the unfolded protein 
response (UPR) and accumulation, which in turn induces ER stress and 
initiates apoptosis (Han et al., 2021; Marciniak and Ron, 2006; Walter 
and Ron, 2011). Studies have shown that ER stress induced by cerebral 
ischemia is a key pathological mechanism related to damage to neurons, 
glial cells, and endothelial cells (Rissanen et al., 2006; Zhao et al., 2018; 
Haupt et al., 2020). Targeted inhibition of ER stress and the UPR can 
effectively alleviate experimental I/R injury (Zhao et al., 2018; Liu et al., 
2020). The UPR, activated by ER stress, activates the expression of 
downstream pro-apoptotic factors by core sensors including inositol-
requiring enzyme 1 (IRE1), protein kinase r -like endoplasmic 
reticulum kinase (PERK), and activating transcription factor 6 (ATF6) 
(Walter et  al., 2018). Acupuncture reverses ischemia-induced ER 
swelling by downregulating the expression of p-IRE1, p-PERK, and 
ATF6. This inhibits the activity of pro-apoptotic factors such as JNK 
and C/EBP-homologous protein (CHOP), and downregulates the levels 
of caspase-9 and caspase-3, thereby inhibiting apoptosis of cortical 
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penumbra neurons induced by ER stress and alleviating paralysis or 
spasticity after ischemic stroke (Zhang Y. et al., 2023).

The mitogen-activated protein kinase (MAPK) pathway is a crucial 
regulator of cell differentiation, inflammation, and apoptosis. It consists 
mainly of three functional branches: the extracellular signal-regulated 
kinase (ERK) pathway, JNK pathway, and p38 pathway. The dynamic 
balance between these pathways is crucial for determining cell survival 
or apoptosis (Xia et al., 1995; Peti and Page, 2013). Studies show that 
ERK1/2 is overexpressed in MCAO animals, and inhibiting ERK1/2 
phosphorylation can reduce focal infarct volume and brain damage and 
provide neuroprotection (Zhang et al., 2010; Wang et al., 2003; Namura 
et al., 2001). JNK and p38 are important therapeutic targets in ischemic 
stroke, as they promote inflammatory responses, induce neuronal 
apoptosis, and exacerbate ischemic damage (Gao et al., 2005; Zheng 
et al., 2018a; Jiang et al., 2014; Barone et al., 2001). EA restores the 
balance of the ERK/JNK/p38 pathway by downregulating the activation 
of ERK1/2, JNK, and p38 in cortical infarcted areas. This promotes 
Bcl-2 expression and downregulates the levels of caspase-3 and Bim 
ultimately reducing longa neurological scores (Xing et al., 2018b).

Protein kinase B (Akt) is a key molecule that inhibits neuronal 
apoptosis (Vidal et  al., 2022; Zheng et  al., 2024; Liu et  al., 2025). 
Phosphatidylinositol 3-kinase (PI3K) can induce the phosphorylation 
and activation of Akt. After activation, it recruits Akt and 
3-phosphoinositide-dependent kinase 1 (PDK1) to the membrane by 
promoting the conversion of phosphatidylinositol 4,5-bisphosphate 
(PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3) (Alessi 
et al., 1996; Stokoe et al., 1997). PDK1 phosphorylates the Threonine 
308 site of Akt, enabling it to regulate the activity of various substrates 
such as glycogen synthase kinase 3 beta (GSK3β), Bad, and Bim, thus 
playing an anti-apoptotic role (Vidal et al., 2022; Kaidanovich-Beilin 
and Woodgett, 2011; Datta et  al., 1997; Qi et  al., 2006). The 
phosphatase and tensin homolog (PTEN) located on chromosome 10 
dephosphorylates the Threonine 308 site of Akt by catalyzing the 
conversion of PIP3 to PIP2, thereby inhibiting the anti-apoptotic effect 
of Akt (Maehama and Dixon, 1998; Li et al., 1997; Lee et al., 2004). EA 
upregulates the phosphorylation levels of PDK1, Akt, and GSK-3β in 
the cortex surrounding the infarction, inhibits PTEN expression, 
significantly reduces caspase-3 and Bim, and reverses the decrease in 
Bcl-2 induced by ischemia. This significantly reduces infarct volume 
and decreases the proportion of apoptotic cells, so as to reduce longa 
neurological scores in rats with cerebral ischemia (Xing et al., 2018a).

Taken together, the major mechanisms involved in the efficacy of 
acupuncture in promoting motor function following ischemic stroke 
via improving energy metabolism, reducing neuroinflammation, and 
inhibiting cell apoptosis, are shown in Figure 1.

4.2 Acupuncture restructures neural 
circuits to improve motor function

4.2.1 Acupuncture facilitates nerve repair and 
regeneration

Neurotrophic factors, including brain-derived neurotrophic 
factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT3), 
and neurotrophin 4 (NT4), participate in the development of the 
nervous system and the repair process following nerve injury by 
binding to specific receptors. BDNF and NT4 activate cAMP 
response element-binding protein (CREB) by binding to 

tropomyosin receptor kinase B (TrkB), upregulating genes related to 
nerve repair and growth, and promoting neuronal repair. NGF 
primarily exerts its neurotrophic effect by binding to tropomyosin 
receptor kinase A (TrkA) (Bai et  al., 2019). Vascular endothelial 
growth factor (VEGF) is a key growth factor responsible for the 
generation and expansion of blood vessels. It provides 
neuroprotection and promotes nerve regeneration by inducing 
angiogenesis (Plate et  al., 1999; Böcker-Meffert et  al., 2002). EA 
increases the expression of BDNF, NT4, and VEGF, promotes the 
activation of TrkB and CREB, facilitates NSCs proliferation and 
differentiation, thereby alleviating striatal atrophy in MCAO/R mice 
and restores bilateral paw motor function. Its effect is stronger than 
that of mouse bone mesenchymal stem cells transplantation, 
particularly in terms of motor function related to ipsilateral turning 
(Kim et al., 2018).

After activation of the corresponding signaling pathways by 
neurotrophic factors, cytoskeletal remodeling is initiated, and the 
direction of axonal growth is guided by microtubules and 
microfilaments, thereby promoting the reconstruction of neural 
networks (Markus et al., 2002; Chen et al., 2017). Neurite outgrowth 
inhibitor A (Nogo-A) binds to the Nogo-66 receptor 1 (NgR1) and 
releases Ras homolog gene family member A (RhoA) in combination 
with the p75 neurotrophin receptor (p75NTR) (Schwab and 
Strittmatter, 2014). RhoA further activates Rho kinase (ROCK), in 
turn leading to actin cytoskeleton recombination, resulting in cone 
collapse and inhibition of neurite outgrowth (Fan et al., 2016). EA 
combined with constraint-induced exercise upregulates the levels of 
NGF, VEGF, and BDNF and inhibits the expression of Nogo-A and 
p75NTR, which significantly improves movement balance in 
MCAO/R rats (Wang D. et al., 2021). Growth-associated protein 43 
(GAP-43) and neurofilament 200 (NF-200) promote axonal 
regeneration and synaptic plasticity, while paired immunoglobulin-
like receptor B (PirB) inhibits neuronal burst growth by activating 
RhoA, thereby suppressing motor function recovery after ischemic 
stroke (Deng et al., 2018). EA upregulates the expression of NF-200 
and GAP-43, while inhibiting PirB and RhoA expression to relieve the 
inhibition of axonal regeneration, which effectively repairs the motor 
pathway between the brain and spinal cord, ultimately enhancing 
muscle strength and promoting motor function recovery in rats (Deng 
et al., 2016). Postsynaptic density protein 95 (PSD-95) and synapsin 
(SYN) are critical proteins in synapses, playing a key role in regulating 
synaptic strength and activity-dependent synaptic plasticity (Béïque 
and Andrade, 2003; Tarsa and Goda, 2002). EA improves the 
decreased number and ultrastructure of synapses after I/R injury by 
increasing the number of PSD-95-positive and SYN-positive cells, 
thereby promoting neural plasticity in the brain (Xie et al., 2019). 
Ephrin-A5 participates in synapse formation and maturation by 
binding to EphA receptors (Otal et  al., 2006). EA upregulates 
ephrin-A5 expression, increases the density and length of dendritic 
spines in the infarcted cortical area, thereby promoting functional 
recovery following ischemic stroke (Ren et al., 2008).

NSCs, as the primary source of neuronal regeneration, promote 
neural repair and motor function recovery by proliferating, 
differentiating, and migrating to generate new neurons, astrocytes, 
and oligodendrocytes (Tang et al., 2017). Stromal cell-derived factor 
1 alpha (SDF-1α) promotes neural regeneration and behavioral 
recovery after ischemic stroke by enhancing the recruitment of 
endogenous NSCs (Luo et al., 2014; Deng et al., 2021; Zhao et al., 
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2015). Three days of EA pretreatment increase BDNF levels in the 
brain tissue of photothrombosis stroke mice and upregulates SDF-1α 
in plasma, significantly improving vestibular motor function, sensory 
motor function and forelimb symmetry (Kim et al., 2013). EA also 
increases the number of newly formed NSCs in the hippocampus, 
promotes their differentiation into neurons or astrocytes, and 
upregulates the levels of BDNF and VEGF (Kim et al., 2014).

4.2.2 Acupuncture regulates neuronal excitability
Neuronal excitability refers to the ability of neurons to respond to 

stimuli and generate action potentials, directly affecting the normal 
function and stability of neural circuits (Turrigiano, 2011). After 

ischemic stroke, the connections between different regions of the 
nervous system related to movement are severely disrupted, causing 
an imbalance in neuronal excitability and motor impairments (Li 
et al., 2019; Hubli et al., 2012). Glutamate (Glu), the primary excitatory 
neurotransmitter in the central nervous system, maintains normal 
neuronal excitability by mediating the influx of Ca2+ (Hansen et al., 
2021). Under pathological conditions, abnormal accumulation of 
excitatory amino acids in synaptic gaps can cause sustained neuronal 
overexcitation, leading to synaptic transmission disorders and Ca2+ 
overload. This disrupts neural network homeostasis and damages 
neural circuits related to motor control. Research shows that after 
ischemic stroke, impaired high-level central regulatory function leads 

FIGURE 1

Acupuncture improves energy metabolism, reduces inflammation, and inhibits cell apoptosis following ischemic stroke to promote motor function 
recovery. Acupuncture effectively increases ATP levels and improves energy metabolism through multiple mechanisms. Acupuncture inhibits the NF-
κB pathway in acute inflammation, promotes the polarization of microglia from M1 to M2, and enhances Treg cells to inhibit Th17 cells while reduces 
IL-17A levels. Acupuncture protects mitochondrial function by activating the mTOR signaling pathway and inhibiting ULK1-mediated mitophagy, 
reduces ER stress, modulates the MAPK pathway, and activates the PI3K/Akt pathway to enhances the cellular anti-apoptotic capacity. Ultimately, 
acupuncture improves energy metabolism, alleviates inflammatory and inhibits cell apoptosis to provides neuroprotection, thereby promoting the 
recovery of motor function. (Created with biorender with permission to publish).
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FIGURE 2

Acupuncture facilitates nerve repair and regeneration and regulates neuronal excitability following ischemic stroke to promote motor function 
recovery. Acupuncture upregulates neurotrophic factors and increases VEGF levels to support nerve repair. Besides, it promotes axon regeneration and 
downregulate Nogo-A and p75NTR to inhibit the Rho/ROCK pathway’s suppression of neurite growth. It also increases the expression of SYN and 
PSD-95 to enhance synaptic plasticity. Regarding neuronal excitability, acupuncture enhance GABA’s inhibitory effect on neuronal excitability, helping 
to restore normal neuronal excitability and the motor control functions of the nervous system. (Created with biorender with permission to publish).

motor neurons to frequently send abnormal nerve impulses, causing 
sustained muscle spasms and worsening motor impairments and 
disabilities (Trompetto et  al., 2019). Gamma-aminobutyric acid 
(GABA) is the primary inhibitory neurotransmitter in the central 
nervous system, produced by the decarboxylation of Glu catalyzed by 
glutamate decarboxylase 67 (GAD67) and degraded by GABA-
transaminase (GABA-T) (Lee et al., 2019). GABA inhibits neuronal 
excitability through two distinct pathways. Firstly, it diminished the 
excitatory signals of glutamatergic neurons and inhibits Glu release 
via presynaptic inhibition. Secondly, through postsynaptic inhibition, 
it binds to GABA receptors to promote Chloride ion (Cl−) influx, 
which subsequently leads to neuronal membrane hyperpolarization 
and a reduction in neuronal excitability (Chalifoux and Carter, 2010; 
Kaila, 1994; Li et al., 2002). The Potassium-Chloride co-transporter 2 
(KCC2), located on the neuronal cell membrane, maintains low 
intracellular Cl− levels by expelling Cl−, thereby facilitating GABA-
mediated Cl− influx and effectively inhibiting excessive excitability in 
motor neurons (Rivera et al., 2005; Watanabe et al., 2009). Several 
studies show that acupuncture upregulates GABA levels, enhances the 
expression of KCC2 and GABAA, and inhibits GABA-T activity in the 
nervous system of MCAO rats, thereby restoring normal neuronal 
excitability and promoting functional recovery of spastic limbs after 
ischemic stroke (Sun et al., 2022; Mu et al., 2022; Wang J. X. et al., 
2021; Wang et al., 2020).

The major mechanisms involved in the efficacy of acupuncture in 
improving motor function after ischemic stroke via facilitating nerve 
repair and regeneration and regulating neuronal excitability are shown 
in Figure 2.

5 Clinical studies on acupuncture in 
promoting motor function recovery 
after ischemic stroke

5.1 Outcome measures of acupuncture 
effects

Currently, several methods are used in clinical practice to 
comprehensively evaluate the efficacy of acupuncture in promoting post-
stroke motor function recovery. The Fugl-Meyer Assessment (FMA) is 
the most commonly used scale for evaluating motor function, widely 
employed to objectively quantify motor, sensory, and joint function 
impairment in stroke patients (Fugl-Meyer et al., 1975). Nine studies 
used FMA to assess motor recovery in post-stroke patients (Wang et al., 
2023a; Wayne et al., 2005; Xie et al., 2022; Tian et al., 2016; Gao et al., 
2012; Xiong et al., 2020; Zhan et al., 2023; Bai et al., 2013; Wang et al., 
2025). Motor and sensory impairment after ischemic stroke severely 
affects patients’ ability to perform daily activities. Therefore, the Barthel 
Index (BI) is often used to assess the ability to perform activities of daily 
living. It evaluates patients’ independence in basic daily activities, such 
as eating, dressing, and walking, and is used for rehabilitation assessment 
in stroke, Alzheimer’s disease, and spinal cord injury (Sulter et al., 1999). 
Eight studies utilized BI to evaluate functional independence in post-
stroke patients (Wayne et al., 2005; Xie et al., 2022; Tian et al., 2016; Gao 
et al., 2012; Duc Nguyen et al., 2023; Zhan et al., 2023; Bai et al., 2013; 
Wang et  al., 2025). The combined use of the FMA and BI 
comprehensively and dynamically evaluates the recovery status 
of patients.
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Despite these scales are rich in content and convenient to use, they 
still have certain limitations. Scoring relies on the evaluator’s 
experience, introducing subjective bias, while limited sensitivity may 
reduce their effectiveness in detecting mild motor impairments. 
Combining subjective scales with objective indicators improves the 
accuracy and objectivity of evaluations. It provides a more 
comprehensive and accurate reflection of the effect of acupuncture on 
motor function recovery after ischemic stroke. Electromyography 
(EMG) effectively reveals weakened muscle strength, abnormal 
muscle tone, and motor control disorders caused by central nervous 
system injury in stroke patients by recording muscle 
electrophysiological activity. Two studies use EMG to evaluate muscle 
function after acupuncture (Duc Nguyen et al., 2023; Wang et al., 
2025). Functional magnetic resonance imaging (fMRI) is a key 
technique for revealing the functional reorganization of the central 
nervous system after stroke. Three studies use fMRI to evaluate the 
effects of acupuncture on brain functional networks (Wang et al., 
2023b; Schaechter et al., 2007; Zhan et al., 2023). They revealed the 
strength of brain network functional reorganization and spontaneous 
neural activity by analyzing functional connectivity and low-frequency 
amplitude. These imaging results reflect the activity and recovery of 
motor-related brain areas, highlighting the potential of acupuncture 
in promoting brain functional reorganization and enhancing neural 
plasticity. The use of other evaluation indicators is shown in Table 2.

5.2 Acupuncture intervention modalities

5.2.1 Stimulation sites
It is a feature of acupuncture that appropriate acupoints are 

selected based on individual’s symptoms and syndromes (a series of 
clinical manifestations reflecting the pathogenesis of a disease). The 
choice of stimulation sites is an important factor affecting the efficacy 
of acupuncture. Considering that basic studies primarily focus on 

exploring the mechanisms of acupuncture, to optimize experimental 
controllability and reproducibility, a limited number of acupoints and 
simplified acupuncture techniques are typically used. The two most 
commonly used acupoints are GV20 and ST36. However, clinical 
studies place more emphasis on individualized treatments to achieve 
better effects, therefore, more acupoints are usually applied, such as 
GB34, LI4, GV20, LI15, LI11, SP6, and TE5. The appearance frequency 
of most commonly-used acupoints is shown in Table 3 and Figure 3.

Conventional treatment typically targets the affected limb to 
facilitate motor function restoration. Nonetheless, acupuncture 
applied to the healthy limb also confers significant therapeutic 
benefits. Research shows that activity in the healthy hemisphere is 
increased during the first 10 days after stroke, followed by a gradual 
increase in activity in the impaired hemisphere. This dynamic neural 
activation process is closely linked to the recovery of motor function 
(Marshall et al., 2000; Ward et al., 2003). When the lesion affects most 
of the motor-related areas, the role of the healthy hemisphere in 
functional reorganization and motor recovery is especially critical (Di 
Pino et  al., 2014). One study compares the therapeutic effects of 
acupuncture on the healthy and affected sides. The results show that 
under the same acupoint selection, needling on the healthy limb has 
a more significant effect on improving FMA and BI scores, and 
reducing neurological deficit score (NDS) (Gao et al., 2012). This 
suggests that acupuncture on the healthy limb may promote overall 
motor function recovery by regulating the function of the healthy 
hemisphere. Its underlying mechanism requires further exploration.

5.2.2 Stimulation methods
Existing research and classical theories suggest that different 

acupuncture techniques can significantly influence treatment efficacy 
(Davis et  al., 2012; Wang J. et  al., 2021). Compared to manual 
acupuncture, EA provides stable and continuous stimulation and 
accurately activates specific acupoints by adjusting pulse width, intensity, 
and frequency (Zhang et al., 2022). A study showed that EA is more 

TABLE 2  Characteristic of clinical studies.

Authors Sample 
size

Acupuncture method Course of 
acupuncture

Stroke phase 
of study

Outcome(s)

Wang et al. (2023b) 53 MA, 30 min/day, 5 sessions/week 2 weeks Early subacute phase FMA↑, fMRI

Wayne et al. (2005) 33 EA, 60 min/day, 2 sessions/week 10 weeks Chronic phase MAS↓, ROM↑, FMA↑, BI↑

Xie et al. (2022) 90 MA, 30 min/day, 5 sessions/week 4 weeks Late subacute phase FMA↑, BI↑, MMT↑

Tian et al. (2016) 68
EA, 5/20 Hz, 30 V, 1 mA–2 mA, 

30 min/day, 6 sessions/week
2 weeks Early subacute phase NIHSS↓, FMA↑, BI↑

Gao et al. (2012) 106 MA, 45 min/day, once a day 4 weeks Subacute phase FMA↑, BI↑, NDS↓

Xiong et al. (2020) 72 MA, 3–4 h/day, 6 sessions/week 8 weeks Late subacute phase FMA↑, MMSE↑, LOTCA↑, ADL↓

Zhan et al. (2023) 108 MA. 30 min/day, 5 sessions/week 8 weeks Subacute phase FMA↑, BI↑, mRS↑, fMRI

Bai et al. (2013) 120 MA, 30 min/day, 6 sessions/week 4 weeks Early subacute phase FMA↑, BI↑

Wang et al. (2025) 90
TEAS, 20 Hz, 100 Hz, 30 min/day, 3 

sessions/week
4 weeks

Late subacute phase, 

chronic phase
FMA↑, MAS↓, BI↑, EMG

Duc Nguyen et al. 

(2023)
120

EA, 50 Hz–100 Hz, 30 min/day, 5 

sessions/week
6 weeks Subacute phase BI↑, MSG↑, mRS↓, EMG

Schaechter et al. (2007) 7 EA, 2 sessions/week 10 weeks Chronic phase fMRI

EA, Electroacupuncture; MA, Manual Acupuncture; TEAS, Transcutaneous Electrical Acupuncture Stimulation; ROM, Range of Motion; MMT, Manual Muscle Testing Scale; NIHSS, National 
Institutes of Health Stroke Scale; NDS, Neurological Deficit Score; MMSE, Mini-Mental State Examination; LOTCA, Loewenstein Occupational Therapy Cognitive Assessment; ADL, Activity 
of Daily Living; MSG, Muscle Strength Grading, mRS: Modified Rankin Scale.

https://doi.org/10.3389/fncel.2025.1623535
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


He et al.� 10.3389/fncel.2025.1623535

Frontiers in Cellular Neuroscience 12 frontiersin.org

FIGURE 3

Commonly used acupoints for improving motor function after ischemic stroke. (Created with biorender with permission to publish).

effective than manual acupuncture in reducing National Institutes of 
Health Stroke Scale (NIHSS) scores and improving FMA and BI scores 
(Tian et al., 2016). Additionally, transcutaneous electrical acupuncture 

stimulation (TEAS) stimulates acupoints directly through the skin by 
attaching electrode pads. Combining TEAS, particularly in 100 Hz, with 
routine care significantly improves FMA and BI scores, increases limb 

TABLE 3  Utilization frequency of commonly used acupoints.

Basic experiments Frequency
(times)

Clinical trials Frequency
(times)

GV20-Baihui 10 GB34-Yanglingquan 7

ST36-Zusanli 9 LI4-Hegu 7

LI11-Quchi 8 TE5-Waiguan 4

GB34-Yanglingquan 4 LI15-Jianyu 4

GV26-Shuigou 3 LI11-Quchi 4

GV14-Dazhui 3 SP6-Sanyinjiao 3

PC6-Neiguan 2 GV20-Baihui 3

GB20-Fengchi 3

GB31-Fengshi 3

GB30-Huantiao 3

PC6-Neiguan 3

LI10-Shousanli 3

ST36-Zusanli 3
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co-contraction rates, and reduces MAS score and spastic muscle activity 
levels in patients with post-stroke spastic hemiplegia (Wang et al., 2025). 
Fire needle therapy is a method of rapidly penetrating the acupoint with 
a red burning needle tip to treat diseases. A meta-analysis indicates that 
fire needle performs better in reducing MAS than manual acupuncture 
especially in the upper limbs. In other scales, such as FMA, BI, and NDS, 
fire needle also shows a more significant effect (Qiu et al., 2021). By the 
way, warm needle acupuncture, which combines acupuncture and 
moxibustion, can deeply stimulate acupoints and enhance efficacy by 
transmitting warmth from burning moxa wool through the needle. A 
network meta-analysis compares the efficacy of various acupuncture 
techniques and finds that warm needle acupuncture is more effective in 
relieving spasticity in elderly stroke survivors, while manual acupuncture 
was more beneficial in improving overall motor function (Zhu 
G. C. et  al., 2024). This suggests that the personalized selection of 
acupuncture techniques based on specific conditions is an effective 
strategy for improving clinical efficacy.

5.2.3 Intervention time
The Stroke Recovery and Rehabilitation Roundtable (SRRR) 

classifies acute cerebral ischemia into five phases: hyperacute (within 
24 h), acute (1–7 days), early subacute (7 days to 3 months), late 
subacute (3–6 months), and chronic (over 6 months) (Bernhardt et al., 
2017). Most stroke survivors undergo spontaneous functional 
recovery in the early stages, but the duration varies depending on the 
affected neurological system (Cramer et al., 2007). For example, motor 
function typically improves within weeks to months after stroke, while 
language function recovery may take months to years (Nakayama 
et al., 1994). The first week to the first month after stroke is a critical 
period for neural plasticity, making this stage a key focus for 
rehabilitation therapy and clinical studies (Krakauer et  al., 2012; 
Biernaskie et  al., 2004). Although the optimal time window for 
acupuncture intervention remains undetermined, existing evidence 
indicates that earlier initiation and increased treatment frequency 
improve motor function and alleviate inflammatory responses (Wu 
et al., 2023; Xu et al., 2020). This may be linked to the mechanism of 
acupuncture that alleviates nerve damage during the acute phase of 
stroke by improving energy metabolism, regulating inflammation, and 
inhibiting cell apoptosis. A meta-analysis shows that early acupuncture 
intervention, particularly within 48 h after stroke, significantly 
improves FMA and BI scores, with efficacy lasting up to 15 days after 
onset, significantly better than late intervention (Zhuo et al., 2021). 
Nevertheless, current clinical studies primarily focus on the subacute 
and chronic phases, with relatively limited studies on the acute phase. 
Greater emphasis on early-stage acupuncture in future studies may 
help refine intervention timing and improve the efficacy of motor 
function recovery.

5.2.4 Combined therapies
In clinical rehabilitation after ischemic stroke, a comprehensive 

intervention incorporating multiple treatment methods is commonly 
employed. Acupuncture can significantly enhance the effectiveness of 
motor function recovery when combined with conventional 
rehabilitation training, medication therapy, and other techniques. 
Several meta-analyses show that combining conventional 
rehabilitation, medication therapy, and mirror training with 
acupuncture further enhances motor function and accelerates the 
rehabilitation process (Cai et al., 2017; Lv et al., 2021; Peng et al., 2024; 

Tao et al., 2023; Zhan et al., 2018; Zhang et al., 2024; Zhu T. et al., 
2024). Additionally, compared to using EA alone, a comprehensive 
plan that combines conventional rehabilitation therapy demonstrates 
superior performance in modulating the electromyographic frequency 
and amplitude in post-stroke patients with motor impairments. It also 
effectively enhances motor function and daily living ability (Duc 
Nguyen et al., 2023). These findings suggest that acupuncture, as an 
effective complementary therapy, is more beneficial when combined 
with conventional rehabilitation treatment than when used alone. In 
clinical practice, the cooperative effects of multiple intervention 
methods can optimize motor function recovery and significantly 
improve the quality of life. Current studies directly comparing the 
efficacy of acupuncture and conventional rehabilitation therapy 
remain limited. Future high-quality research evaluating their 
independent effects is needed to clarify the respective advantages of 
each approach and provide stronger evidence to support 
therapeutic strategies.

6 Challenges and recommendations 
for future studies

6.1 Advancements and limitations in basic 
studies

The exploration of the mechanisms by which acupuncture 
promotes motor function recovery following ischemic stroke offers a 
scientific foundation for its clinical application, and is of paramount 
importance for understanding such a traditional therapy and 
facilitating its wider clinical adoption in post-stroke rehabilitation. 
Acupuncture exerts neuroprotective and reparative effects through 
multiple pathways and targets, facilitating motor function recovery. 
During the acute injury phase after ischemia, acupuncture restores 
energy balance in neural tissue by promoting glycolysis and lactate 
metabolism, reducing mitochondrial damage, and regulating 
mitophagy. Neuroinflammation plays a critical role in early nerve 
damage and long-term motor dysfunction. Acupuncture effectively 
inhibits inflammation and promotes neuroprotection by suppressing 
excessive activation of the TLR4/NF-κB signaling pathway, balancing 
microglial polarization, and restoring the Th17/Treg cell balance. It 
also inhibits neuronal apoptosis by regulating ER stress, the MAPK 
pathway, and the PI3K/Akt pathway. During the neural repair phase, 
acupuncture repairs damaged neural network structures by 
upregulating neurotrophic factors, promoting axonal growth and 
synaptic plasticity, and regulating the proliferation and differentiation 
of NSCs. Besides, acupuncture regulates neuronal excitability to 
ensure normal transmission of neural signals, providing the necessary 
foundation for the recovery of neural function. In summary, 
acupuncture provides neuroprotection by reducing ischemia-induced 
nerve damage in the early stages of ischemic stroke and promotes the 
reconstruction of the nervous system and repair of neural circuits in 
later stages, facilitating comprehensive motor function recovery across 
multiple stages.

Currently, basic studies on acupuncture mainly focus on 
regulating specific signaling pathways or repairing ischemic areas. 
However, the overall remodeling of neural networks, especially the 
repair of complex motor neural circuits after ischemic stroke, is 
critical in determining motor function recovery (George and 
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Steinberg, 2015). The mechanism of acupuncture is multi-level and 
multi-dimensional, offering unique advantages in promoting the 
overall recovery of neural network structure and function, although 
many of its underlying mechanisms remain unexplored. Recent 
research has shown that using projection-specific and mononuclear 
RNA sequencing techniques to identify characteristic neurons 
associated with movement and observe their directed regeneration to 
natural target areas is essential for motor function recovery (Squair 
et  al., 2023). Therefore, using modern technologies such as gene 
silencing or knockout, virus tracing, optogenetics, chemical genetics, 
small animal functional magnetic resonance imaging, two-photon 
microscopy, and combining single-cell sequencing and spatial 
transcriptomics, to deeply observe the repair and activity of neural 
circuits and explore how acupuncture promotes the functional 
reconstruction of motor-related brain regions and specific neural 
circuits has become a new research trend.

6.2 Suggestion for optimizing clinical 
studies

In addition to basic studies, clinical studies in this field may 
provide optimized acupuncture approaches for post-stroke motor 
dysfunction. Research indicates that at different stages of motor 
recovery, patients’ rehabilitation needs for neural functions vary. The 
effectiveness of acupuncture largely depends on the selection of 
stimulation sites and techniques (Stinear, 2010). Therefore, targeted 
acupuncture treatment should be  used at the different stages of 
recovery to maximize rehabilitation effectiveness, which warrants 
further investigation. The optimal timing for acupuncture intervention 
remains unclear. However, multiple studies indicate that early 
intervention is critical for functional recovery after ischemic stroke, 
and early acupuncture treatment can significantly enhance motor 
function recovery (Coleman et al., 2017; Lou et al., 2024). Given that 
acupuncture can effectively inhibit nerve damage during the acute 
phase, initiating acupuncture treatment as early as possible may help 
promote motor function recovery. Furthermore, basic studies show 
that EA pretreatment can regulate mitochondrial autophagy, promote 
NSC proliferation and differentiation, thereby exerting neuroprotective 
and reparative effects, and improving motor function (Kim et al., 
2013; Tian et al., 2022). This suggests that acupuncture both alleviates 
injuries after ischemic stroke and enhances the body’s tolerance to 
such injuries, indicating its potential preventive effects. Despite this, 
the clinical research and application of acupuncture pretreatment 
remain limited. Future research should explore the mechanisms and 
clinical effects of acupuncture pretreatment, and develop 
corresponding acupuncture pretreatment protocols for high-risk 
stroke populations.

Acupuncture has become an ideal choice for promoting motor 
function recovery when combined with other therapies, due to its 
non-invasive nature, simplicity, and good patient compliance. 
Combining acupuncture with medication, exercise rehabilitation, and 
other treatment methods can significantly enhance clinical efficacy. 
Currently, innovative technologies such as stem cell transplantation, 
brain-computer interfaces, robotic assistance, and non-invasive brain 
stimulation have been used to promote post-stroke motor function 
recovery but have not yet been integrated with acupuncture research 
(Raffin and Hummel, 2018; Soekadar et al., 2015; Muir et al., 2020; 

McCrary et al., 2020). Future research should investigate the combined 
effects of these innovative therapies and acupuncture, expand the 
application scenarios of acupuncture, and provide new strategies for 
improving motor function after ischemic stroke in clinical practice.

Although current clinical studies have demonstrated the positive 
effects of acupuncture in promoting motor function recovery, several 
methodological issues remain noteworthy. First, due to the inherent 
characteristics of acupuncture interventions, implementing 
conventional blinding methods presents certain challenges, which 
may affect the objectivity of study outcomes. Second, some studies 
included small sample sizes, resulting in insufficient statistical power 
and limited generalizability of the findings. In addition, many clinical 
studies lack standardized acupuncture protocols, with insufficiently 
detailed descriptions of intervention parameters. Future research 
should focus on designing more scientifically rigorous randomized 
controlled trials with appropriately calculated sample sizes. Moreover, 
it is recommended that researchers adhere strictly to the CONSORT 
statement and the STRICTA guidelines to ensure transparent and 
systematic reporting of both intervention details and study outcomes. 
These improvements will contribute to a more robust evidence base 
for the clinical application of acupuncture in motor function recovery 
following ischemic stroke.

6.3 Challenges from basic to clinical 
studies

Although basic studies have identified many potential targets and 
effective pathways in treatment and have reported significant 
therapeutic effects, they still face multiple challenges when translating 
research results to clinical practice due to differences between basic 
and clinical studies.

Firstly, experimental ischemic stroke is primarily modeled by 
creating permanent ischemia or reperfusion through the suture 
method, which simulates blood flow obstruction and reperfusion in a 
simplified manner. As this method cannot fully replicate the complex 
pathological features of non-experimental ischemic stroke, the 
generalizability of experimental findings remains limited.

Secondly, most studies use young and healthy animals, as their 
physiological conditions are more standardized, facilitating 
experimental consistency. Their strong recovery ability allows 
researchers to observe a more complete recovery process within a 
shorter period. In clinic, ischemic stroke predominantly affects 
middle-aged and elderly individuals, who are often accompanied by 
chronic conditions such as hypertension and diabetes. These factors 
significantly influence both the occurrence and functional recovery of 
ischemic stroke (Lou et al., 2024; Luitse et al., 2012). Therefore, using 
young animals for research does not fully reflect the pathological 
characteristics of high-risk stroke populations.

Furthermore, basic studies often use simplified acupuncture 
protocols to ensure standardization, which differs significantly from 
clinical acupuncture protocols. To a certain degree, basic studies 
should gradually align with clinical acupuncture protocols based on 
animal characteristics to enhance their feasibility for clinical 
translation. Moreover, existing basic studies primarily focus on 
cortical ischemic areas, with less emphasis on the more common 
subcortical ischemic injuries, including the internal capsule, seen in 
clinical practice (Corbetta et al., 2015). This may be due to the internal 
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capsule being located deep in the brain, with relatively low white 
matter content in rodent brains, which makes it a significant technical 
challenge to induce precise lesions in this area (Blasi et al., 2015). 
Simultaneously, the neural circuits involved are more complex, and 
research needs to consider the synergistic effects across multiple brain 
regions, requiring more sophisticated techniques and evaluation 
methods. This difference may result in incomplete research on the 
mechanisms of acupuncture, preventing a full research of its 
comprehensive effects on motor-related brain regions.

In conclusion, the discrepancies between basic and clinical studies 
may affect the consistency of findings. Future efforts should focus on 
bridging the two to enhance the clinical translatability of acupuncture 
mechanism studies.

7 Conclusion

In conclusion, this review comprehensively evaluates the 
mechanisms and clinical characteristics of acupuncture in promoting 
motor function recovery after ischemic stroke, based on a large body of 
basic and clinical studies, emphasizing its overall role in functional 
recovery. We  have demonstrated that acupuncture repairs neural 
structures and reshapes motor function through multiple pathways at 
various stages of the disease, including restoring energy metabolism, 
inhibiting neuroinflammation, preventing neuronal apoptosis, 
promoting neuronal repair and regeneration, and regulating neuronal 
excitability. Additionally, we  explored the key role of different 
acupuncture protocols in improving motor function and emphasized the 
necessity of personalized treatment and protocol optimization. Through 
a deep analysis of these studies, this review provides theoretical support 
for the application of acupuncture in post-stroke motor function 
recovery and offers new insights and directions for future research. 
Further exploration of acupuncture’s potential in motor function repair 
through modern technologies will expand its application in stroke 
rehabilitation, providing more practical guidance for clinical treatment.
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Glossary

NSC - Neural stem cell

dMSNs - Direct medium spiny neurons

iMSNs - Indirect medium spiny neurons

ATP - Adenosine Triphosphate

MCAO - Middle cerebral artery occlusion

AMPK - AMP activated protein kinase

I/R - Ischemia–reperfusion

EA - Electroacupuncture

MCT1 - Monocarboxylate Transporter 1

ULK1 - Unc-51-like kinase 1

FUNDC1 - FUN14 domain containing 1

LC3 - light chain 3

mTOR - Mammalian target of rapamycin

MMP - Mitochondrial membrane potential

TLR4 - Toll-like receptor 4

NF-κB - Nuclear factor kappa B

MyD88 - Myeloid differentiation primary response 88

HMGB1 - High mobility group box 1

TRAF6 - TNF receptor-associated factor 6

IKK - IκB Kinase

JNK - c-Jun N-terminal kinase;

TNF-α - tumor necrosis factor-alpha

IL-1β - interleukin-1β

IL-6 - interleukin-6

TNF-β - tumor necrosis factor-β

JAK - Janus Kinase

STAT - Signal Transducer and Activator of Transcription

IL-4 - Interleukin-4

IL-13 - Interleukin-13

PPARγ - Peroxisome proliferator-activated receptor γ

IL-17 - Interleukin-17

IL-21 - Interleukin-21

IL-22 - Interleukin-22

TGF-β - transforming growth factor-beta

IL-10 - Interleukin-10

Th17 - T helper 17

CXCL1 - C-X-C motif chemokine ligand 1

CXCL2 - C-X-C motif chemokine ligand 2

IL-17A - interleukin-17A

Bcl-2 - B-cell lymphoma 2

Bim - Bcl-2 interacting mediator of cell death

Bad - Bcl-2 antagonist of cell death

Bax - Bcl-2 associated x protein

Apaf-1 - Apoptotic protease activating factor 1

ER - Endoplasmic reticulum

Ca2+ - Calcium ion

UPR - Unfolded protein response

IRE1 - Inositol-requiring enzyme 1

PERK - Protein kinase r-like endoplasmic reticulum kinase

ATF6 - Activating transcription factor 6

CHOP - C/EBP-homologous protein

MAPK - Mitogen-activated protein kinase

ERK - Extracellular signal-regulated kinase

Akt - Protein kinase B

PI3K - Phosphatidylinositol 3-kinase

PDK1 - 3-phosphoinositide-dependent kinase 1

PIP2 - Phosphatidylinositol 4,5-bisphosphate
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PIP3 - Phosphatidylinositol 3,4,5-trisphosphate

GSK3β - Glycogen synthase kinase 3 beta

PTEN - Phosphatase and tensin homolog

BDNF - Brain-derived neurotrophic factor

NGF - Nerve growth factor

NT3 - Neurotrophin 3

NT4 - Neurotrophin 4

CREB - cAMP response element-binding protein

TrkB - Tropomyosin receptor kinase B

TrkA - Tropomyosin receptor kinase A

VEGF - Vascular endothelial growth factor

Nogo-A - Neurite outgrowth inhibitor A

NgR1 - Nogo-66 receptor 1

RhoA - Ras homolog gene family member A

p75NTR - p75 neurotrophin receptor

ROCK - Rho kinase

GAP-43 - Growth-associated protein 43

NF-200 - Neurofilament 200

PirB - Paired immunoglobulin-like receptor B

PSD-95 - Postsynaptic density protein 95

SYN - synapsin

SDF-1α - Stromal cell-derived factor 1 alpha

Glu - Glutamate

GABA - Gamma-aminobutyric acid

GAD67 - Glutamate decarboxylase 67

GABA-T - GABA-transaminase

Cl− - Chloride ion

KCC2 - Potassium-Chloride co-transporter 2

FMA - Fugl-Meyer Assessment

BI - Barthel Index

EMG - Electromyography

fMRI - Functional magnetic resonance imaging

NDS - Neurological deficit score

NIHSS - National Institutes of Health Stroke Scale

TEAS - Transcutaneous electrical acupuncture stimulation

SRRR - Stroke Recovery and Rehabilitation Roundtable
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