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Background: Imeglimin (Ime), the first in a novel class of antidiabetic agents, has 

potential therapeutic effects on diabetic peripheral neuropathy (DPN). This study 

aimed to evaluate and compare the effects on cellular metabolic function and 

reactive oxygen species (ROS) levels in high glucose-treated mouse Schwann 

cells (SCs), an in vitro DPN model, with those of metformin (Met), a conventional 

antidiabetic agent known for its beneficial effects on DPN. The roles of PPARα 

and fatty acid-binding proteins 5 and 7 (FABP5 and FABP7), both of which have 

been implicated in the pathogenesis of DPN, were also investigated. 

Methods: Schwann cells were treated with high glucose, Ime, Met, a 

selective PPARα agonist pemafibrate (Pema), or a FABP5/FABP7 inhibitor 

(MF6). Cell viability assays, extracellular flux analysis, and ROS production 

assays were performed. 

Results: No significant changes in cell viability were observed with any 

treatment. High glucose exposure increased glycolytic reserve compared to 

normal glucose conditions. Ime increased mitochondrial respiratory functions, 

whereas Met suppressed mitochondrial respiration and enhanced glycolytic 

functions, with these effects being more evident under normal glucose 

conditions. Pema significantly increased basal glycolysis under high glucose 

conditions, while MF6 had no appreciable effect. Both Ime and Met reduced 

ROS production in high glucose-treated SCs, with Ime exhibiting a more 

Frontiers in Cellular Neuroscience 01 frontiersin.org 

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2025.1634262
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2025.1634262&domain=pdf&date_stamp=2025-08-22
mailto:watanabe@sapmed.ac.jp
mailto:sato.tatsuya@sapmed.ac.jp
https://doi.org/10.3389/fncel.2025.1634262
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncel.2025.1634262/full
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-19-1634262 August 19, 2025 Time: 19:23 # 2

Ohguro et al. 10.3389/fncel.2025.1634262 

potent effect. However, the ROS-reducing effects of Ime and Met were 

abolished by Pema or MF6. 

Conclusion: Imeglimin exerted beneficial biological effects by enhancing the 

energetic state and reducing ROS production without inducing metabolic 

quiescence in high glucose-treated SCs. These findings suggest that Ime has 

therapeutic potential for DPN, although its effects may be modulated by 

intracellular lipid metabolism. 
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Schwann cells, metformin, imeglimin, FABP5, FABP7, extracellular flux analyzer, ROS 

Introduction 

Diabetic peripheral neuropathy (DPN), a major complication 
of diabetes mellitus (DM), aects approximately half of patients 
with DM (Sloan et al., 2021). DPN primarily impairs sensory 
nerve function, but also impacts autonomic and motor nerves 
(Selvarajah et al., 2019). Approximately 30% of patients with DPN 
experience painful symptoms; however, only a limited number 
of patients achieve adequate pain relief with current therapeutic 
strategies (Jensen et al., 2021). Metformin (Met), a first-line 
therapy for type 2 DM (T2DM), has been reported to alleviate 
neuropathic pain in various contexts, including chemotherapy 
(Hacimuftuoglu et al., 2020), osteoarthritis (Wang et al., 2019), 
post-surgery (Smith and Tran, 2019), and inflammation (Augusto 
et al., 2022), possibly via activation of AMP-activated protein kinase 
(AMPK). Supporting this mechanism, PPARα agonists have been 
shown to improve DPN through the PPARα-AMPK-PGC1α-eNOS 
axis in db/db mice (Cho et al., 2014; Kołodziejski et al., 2017). 
In addition, it has been reported that inhibition of fatty acid-
binding protein 5 (FABP5), an intracellular fatty-acid binding 
protein that regulates lipid signaling and metabolism, may also 
ameliorate peripheral neuropathy (Warren et al., 2024). Despite 
these therapeutic potentials, current strategies have not resulted in 
satisfactory clinical outcomes in the treatment of DPN. 

Schwann cells (SCs), glial cells of the peripheral nervous 
system, play essential roles in supporting the growth, maintenance 
and repair of peripheral nerves (Bosch-Queralt et al., 2023). 
Their biological functions have been shown to deteriorate under 
hyperglycemic conditions, leading to various nerve dysfunctions 
including reduced conduction velocity and axonal atrophy (Dyck 
and Giannini, 1996; Eckersley, 2002). Although the precise 
mechanisms are unclear, metabolic changes in SCs under 
hyperglycemic and/or hyperlipidemic conditions, such as oxidative 
stress via overproduction of reactive oxygen species (ROS) as 
well as activation of the polyol pathway, glycation of lipids 
and proteins, and modulation of protein kinase C activity, are 
likely to be involved in the pathogenesis of DPN (Mizukami 
et al., 2011; Obrosova et al., 2007; Song et al., 2003; Vincent 
et al., 2009; Zhu et al., 2023). Indeed, recent studies suggest that 
dyslipidemia associated with DM contributes to the development 
and progression of DPN (Obrosova et al., 2007; Vincent et al., 
2009). Therefore, amelioration of both metabolic dysregulation 
and ROS overproduction in SCs may be a promising therapeutic 
strategy for DPN. To investigate DPN pathogenesis and explore 

therapeutic strategies, in vitro models using cultured SCs under 
high glucose conditions have been widely utilized (Jiang et al., 2020; 
Zhang et al., 2021). 

Imeglimin (Ime), the first drug in a new tetrahydrotriazine 
class of oral antidiabetic drugs called “glimins”, is expected to 
overcome many of the limitations of current therapies for T2DM 
(Konkwo and Perry, 2021). Recent clinical studies in both Japanese 
and Caucasian patients with T2DM have demonstrated that Ime 
provides significant and durable antihyperglycemic eects with 
favorable safety and tolerability profiles (Dubourg et al., 2021; 
Reilhac et al., 2022). Although the biological eects of Ime on DPN 
have not been fully elucidated, Ime, but not Met, has been reported 
to reduce ROS production, decrease the number of damaged 
mitochondria, and normalize mitophagic activity in islet β-cells of 
db/db mice (Lachaux et al., 2020; Nishiyama et al., 2023). Thus, 
Ime may have therapeutic potentials against DPN via suppression 
of ROS production in SCs. 

In the present study, we aimed to elucidate the eects of Ime 
on DPN by comparing the eects of Ime and Met on cellular 
metabolic functions and ROS generation in mouse SCs under high 
glucose conditions. We also examined whether a PPARα agonist 
pemafibrate (Pema) or a FABP5 inhibitor MF6 modulates these 
actions under the same conditions. 

Materials and methods 

Planar cell culture of mouse SCs 

All experiments were approved by the internal review board 
of Sapporo Medical University. Commercially available mouse 
Schwann cells (SCs, Catalog No. SWN-IMS32C, Cosmo Bio 
CO. Ltd., Tokyo, Japan) were cultured in planar culture dishes 
(diameter: 150 mm) until 90% confluence in a normal-glucose 
(5.5 mM)-DMEM supplemented with 10% FBS, 1% L-glutamine 
and 1% antibiotic-antimycotic and were maintained by daily 
changing the medium under standard normoxia conditions (37◦C, 
5% CO2). 

Cell viability assay 

Cell viability was determined using a commercially available 
kit (Cell Counting Kit-8, Dojindo, Tokyo, Japan), as previously 

Frontiers in Cellular Neuroscience 02 frontiersin.org 

https://doi.org/10.3389/fncel.2025.1634262
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-19-1634262 August 19, 2025 Time: 19:23 # 3

Ohguro et al. 10.3389/fncel.2025.1634262 

described (Pan et al., 2017). Briefly, SCs were incubated with 10 µl 
of a reactive solution for 2 h and then absorbance at 450 nm 
was measured using a microplate reader (multimode plate reader 
EnSpire R , PerkinElmer, MA U.S.A.) to determine cell viability. 

Measurement of real-time cellular 
metabolic functions 

Under various conditions, the rates of oxygen consumption 
(OCR) and extracellular acidification (ECAR) of SCs were 
determined by using a Seahorse XFe96 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA, U.S.A.) as described previously with 
slight modification (Higashide et al., 2024). Briefly, 20 × 103 SCs 
pre-cultured in media containing dierent glucose concentrations 
(5.5 mM and 50 mM) for 24 h were seeded into each well 
of an XFe96 Cell Culture Microplate (#103794-100, Agilent 
Technologies, Santa Clara, CA, USA) and they were further treated 
with (1) dimethyl sulfoxide (DMSO) as a control, (2) 2 mM Met, 
(3) 2 mM Ime, (4) 10 µM pemafibrate (Pema), and (5) 10 µM MF6 
for 24 h. On the assay day, the culture medium was replaced with 
Seahorse XF DMEM assay medium (pH 7.4, containing 5.5 mM 
glucose, 2.0 mM glutamine, and 1.0 mM pyruvate), followed by 
incubation in a CO2-free incubator at 37◦C for 30 min. OCR 
and ECAR were simultaneously measured at baseline and after 
sequential injections of oligomycin (2.0 µM), FCCP (5.0 µM), and 
rotenone/antimycin A mixture (1.0 µM). Values of OCR and ECAR 
measured were normalized by the amount of protein per well. 
Protein concentration measured by the BCA protein assay (TaKaRa 
Bio, Shiga, Japan). 

Various metabolic indices including basal respiration, ATP-
linked respiration, proton leak, maximal respiration, Non-
mitochondrial respiration, basal ECAR, glycolytic reserve, non-
glycolytic acidification and baseline OCR/ECAR ratio were 
determined as described previously (Higashide et al., 2024). 

Measurement of levels ROS 

Levels of reactive oxygen species (ROS) in SCs were measured 
by a Dichlorofluorescin-diacetate (DCFH-DA) method using a 
commercially available ROS assay kit (DOJINDO, Kumamoto, 
Japan) (Okazaki et al., 2019). SCs seeded in a 96-well clear 
bottom black plate (Greiner Bio-One, Austria) were cultured in a 
medium with dierent glucose concentrations (5.5 mM, 25 mM, 
and 50 mM) for 24 h. SCs were further treated with (1) dimethyl 
sulfoxide (DMSO) as a control, (2) 2 mM Met, (3) 2 mM Ime, 
(4) 10 µM pemafibrate (Pema), (5) 10 µM MF6, (6) various 
combinations of 2 mM Met or 2 mM Ime with 10 µM Pema and/or 
10 µM MF6 for 24 h. 

Cells were washed twice with Hanks’ Balanced Salt Solution 
(HBSS), suspended in 100 µl of Highly Sensitive DCFH-DA 
Working Solution and incubated for 30 min at 37◦C, equilibrated 
with 95% air and 5% CO2. For evaluation of levels of ROS, 
fluorescence intensities were measured using a fluorescence plate 
reader (Excitation: 490 nm, Emission: 530 nm) after washing twice 
and suspended with HBSS to assess intracellular ROS levels. 

Gene expression analyses 

After total RNA extraction, reverse transcription and 
quantitative real-time PCR (qRT-PCR) were processed as 
previously reported (Ida et al., 2020; Itoh et al., 2020) using specific 
primers and probes (Supplementary Table 1). 

Statistical analysis 

For statistical estimation, one-way ANOVA followed by Tukey’s 
HSD (Honestly Significant Dierence) post hoc analysis was carried 
out using Graph Pad Prism version 9 (GraphPad Software, San 
Diego, CA) as described in our recent reports (Ida et al., 2020; Itoh 
et al., 2020). The analysis was conducted under the assumption 
of normality, which is commonly applied in similar experimental 
settings. A p value less than 0.05 was statistically significant as 
indicated by asterisks. 

Results 

To study the eects of antidiabetic or lipid metabolism 
modulating including Met and Ime, Pema and MF6 on DPN 
pathogenesis including metabolic derangements and oxidative 
stress, high glucose-stimulated SCs were used as an in vitro model 
mimicking pathogenesis of DPN. In this study, we adopted a 
concentration of 0.5 mM or 2 mM for both Met and Ime, which 
exceeds their clinically observed plasma levels (Chevalier et al., 
2023; Kajbaf et al., 2016). This dosage was selected based on 
previous reports demonstrating dose-dependent eects on AMPK 
activity and mitochondrial function at concentrations ranging 
from 0.25 to 10 mM in various cell types (Hozumi et al., 2023). 
Notably, 0.5–2 mM is commonly used for evaluating mitochondrial 
responses in vitro (Hallakou-Bozec et al., 2021; Hozumi et al., 2023; 
Takahashi et al., 2024). 

First, we examined the types of FABPs expressed in mouse SCs 
and the glucose concentration-dependent ROS levels. As shown in 
Figure 1A, we confirmed positive expression of FABP5 and FABP7 
among FABP3, FABP5 and FABP7, which are known to be related 
to the pathogenesis of DM and neuronal disorders (Boneva et al., 
2011). FABP5 and FABP7 were also detected in SCs at protein 
levels (Supplementary Figure 1). Moreover, we found that ROS 
levels were increased in a glucose concentration-dependent manner 
in SCs (Figure 1B). Therefore, in the subsequent experiments, we 
adopted MF6, a specific inhibitor for FABP5 and FABP7, to inhibit 
the role of FABPs and selected 50 mM glucose as the high-glucose 
condition, considering it suitable for examining the eects of Ime, 
Met, and other agents in a more severe hyperglycemic state that 
mimics the pathogenesis of DPN. We also confirmed negligible 
levels of toxicity in SCs by (1) normal-glucose (5.5 mM) and high 
glucose (50 mM) conditions, (2) 2 mM Met, (3) 2 mM Ime, (4) 
10 µM Pema and (5) 10 µM MF6 (Figure 1C). 

Next, to address eects of antidiabetic agents, Met and Ime, on 
cellular metabolic functions of Schwann cells under a high glucose 
condition, we conducted extracellular flux analysis of SCs that were 
treated with Met and Ime under normal-glucose (5.5 mM) and 
high glucose (50 mM) conditions, respectively (Figures 2A–D). 
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FIGURE 1 

Expression of FABP isoforms and the impact of glucose concentrations and pharmacological metabolic modulators in SCs. (A) To verify the 
presence of mRNA expression of FABP3, FABP5 or FABP7, qPCR analysis was conducted. Experiments were performed in duplicate or triplicate using 
freshly prepared cells (n = 3–6). Expression levels of FABP3, FABP5, and FABP7 were normalized to the expression of internal control 36B4 (Rplp0). 
(B) ROS levels were examined under different glucose concentrations (5.5 mM, 25 mM, and 50 mM) in SCs (n = 4–5). (C) To evaluate the cytotoxicity 
of Met (2 mM), Ime (2 mM), Pema (10 µM) and MF6 (10 µM) on SCs under a normal-glucose condition (5.5 mM) or a high glucose condition (50 mM), 
cell viability was assessed by using a commercially available kit (n = 3). Data are presented as means ± the standard error of the mean (SEM). N.D., 
not detected. *p < 0.05, **p < 0.01. 

SCs treated with high glucose showed no statistically significant 
changes in metabolic parameter except for an increase in glycolytic 
reserve, yet there was a tendency toward enhanced metabolic 
activity with high glucose treatment (Figures 2E–K). Treatment 
with Met increased glycolytic functions and decreased baseline 
OCR/ECAR ratio (Figure 2L), but interestingly, treatment with Ime 
rather enhanced mitochondrial respiratory functions (Figures 2E– 
I). Such metabolic changes were more evident in SCs that were 
treated with normal-glucose condition compared those with high 
glucose condition (Figures 2E–I). Ime also increased proton leak 
regardless of glucose concentrations, whereas Met did not aect 
proton leak (Figure 2G). The findings suggest that Ime, as opposed 
to Met, enhances most of mitochondrial respiratory functions in 
SCs (Figures 2M, N). 

Since it has been well-recognized that lipid metabolism 
derangements were also associated with the pathophysiology of 
the development of DPN, we next examined the eects of Pema 
(Figures 3A, B) and MF6 (Figures 4A, B) on metabolic functions 
in SCs that were cultured with normal-glucose and high glucose 
conditions. Pema tended to increase cellular metabolism toward 
energetic in the high-glucose condition, but the eects were more 
evident in glycolytic indices than mitochondrial respiratory indices 
(Figures 3C–J). In contrast, MF6 did not aect glucose dependent 
metabolic alterations albeit SCs expressed both FABP5 and 
FABP7 (Figures 4C–J). These findings suggest that PPARα-related 
signaling, but not FABP5/7-related signaling, may have influence 
high glucose-dependent metabolic alteration. 

To study the eects of Ime, Met, Pema and/or FABPs on 
high glucose-induced oxidative stress of SCs, levels of ROS were 
measured. As shown in Figure 5A, (1) levels of ROS were 
significantly increased under a high glucose condition compared 
to those under a normal-glucose condition and (2) such elevated 
levels of ROS were reduced to varying degrees by 2 mM Met and 
Ime but not by 0.5 mM of those. The eects of 2 mM Ime were 

more potent than those of 2 mM Met. We also evaluated the 
combined eects of 2 mM Met or Ime with Pema and/or MF6 under 
a high glucose condition. As shown in Figures 5B, C, (1) Pema 
significantly increased the generation of ROS regardless of the 
conditions with or without Met or Ime and (2) MF6 substantially 
reduced the suppressive eects of Met and Ime on generation of 
ROS. Therefore, taken together, the results indicated that Ime had 
a more potent inhibitory eect than that of Met on high glucose-
induced generation of ROS in SCs and the beneficial eects were 
greatly influenced by FABPs and PPARα-related signaling. 

Finally, to explore the potential mechanisms by which Ime 
or Met suppresses high glucose-induced ROS production in SCs, 
we assessed the expression of hypoxia-related genes including 
HIF1A and VEGFA, which are closely associated with regulation 
of cellular metabolism and ROS production (Majmundar et al., 
2010). Although the expression levels of these genes were decreased 
in a high glucose condition compared with a normal glucose 
condition in SCs, there were no statistically significant dierence 
between Ime-treated group and Met-treated group under a high 
glucose condition (Supplementary Figure 2). These findings suggest 
that suppression against high glucose-induced ROS production by 
Ime or Met are independent of hypoxia inducible factor-related 
signaling. 

A schematic summary of the present study is shown in Figure 6. 

Discussion 

It has been shown that elevated levels of glucose induce 
oxidative stress in neuronal cells and Schwann cells (Askwith 
et al., 2009; Khan et al., 2023; Obrosova et al., 2005; Schmeichel 
et al., 2003) and that increased levels of ROS harm the 
lipids in myelinated nerves, leading to the loss of axons and 
destruction of the microvasculature in the peripheral nervous 
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FIGURE 2 

Effects of metformin (Met) or imeglimin (Ime) on cellular metabolic functions of SCs under normal-glucose and high glucose conditions. SCs were 
incubated for 24 h under normal-glucose (5.5 mM, Low) or high glucose (50 mM, High) conditions in the absence (Ctrl) or presence of 2 mM Met or 
2 mM Ime. Then each specimen was subjected to a Seahorse extracellular flux analysis. (A) Plots of oxygen consumption rate (OCR) values in SCs 
that were treated under normal-glucose condition. (B) Plots of OCR values in SCs that were treated under high glucose condition. (C) Plots of 
extracellular acidification rate (ECAR) values in SCs that were treated under normal-glucose condition. (D) Plots of OCR values in SCs that were 
treated under high glucose condition. (E–L) Key metabolic indices. (M) Energy map of SCs in each group. The term “Baseline” refers to ECAR and 
OCR values at baseline, and the term “Stressed” refers to ECAR after administration of oligomycin and OCR after administration of FCCP. 
(N) Schematic summary of metabolic alteration induced by glucose concentration, Met or Ime. Data are presented as means ± the standard error of 
the mean (SEM). All experiments were performed using fresh preparations (n = 5–6). *P < 0.05. 

FIGURE 3 

Effects of pemafibrate (Pema) on cellular metabolic functions of SCs under normal-glucose and high glucose conditions. SCs were incubated for 
24 h under normal-glucose (5.5 mM, Low) or high glucose (50 mM, High) conditions in the presence of 10 µM Pema. Then each specimen was 
subjected to a Seahorse extracellular flux analysis. (A) Plots of oxygen consumption rate (OCR) values. (B) Plots of extracellular acidification rate 
(ECAR) values. (C–J) Key metabolic indices. Data are presented as means ± the standard error of the mean (SEM). All experiments were performed 
using fresh preparations (n = 5). *P < 0.05. 

system (Vinik et al., 2006). As for the possible underlying 

mechanisms causing the hyperglycemia-induced oxidative stress, 
it was suggested that the persistent hyperglycemic state in T2DM 

could modulate mitochondrial DNA (mtDNA) and nuclear DNA 

(nDNA) (Fernyhough et al., 2003), thereby inducing mutations in 

the mitochondrial genome as well as mitochondrial dysfunction to 
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FIGURE 4 

Effects of MF6 on cellular metabolic functions of SCs under normal-glucose and high glucose conditions. SCs were incubated for 24 h under 
normal-glucose (5.5 mM, Low) or high glucose condition (50 mM, High) conditions in the presence of 10 µM MF6. Then each sample was subjected 
to a Seahorse metabolic function analysis. (A) Plots of oxygen consumption rate (OCR) values. (B) Plots of extracellular acidification rate (ECAR) 
values. (C–J) Key metabolic indices. Data are presented as means ± the standard error of the mean (SEM). All experiments were performed using 
fresh preparations (n = 6). *P < 0.05. 

FIGURE 5 

Levels of production of ROS in SCs under various conditions. SCs were incubated for 24 h under normal-glucose (5.5 mM, Low) or high glucose 
(50 mM, High) conditions in the absence or presence of various combinations of 0.5 or 2 mM Ime, 0.5 or 2 mM Met, 10 µM Pema or 10 µM MF6. The 
SCs were then subjected to measurement of levels of ROS, and those values were plotted. (A) Met or Ime under a normal-glucose or high glucose 
condition, (B) Met or Ime in the presence of Pema under a high glucose condition, and (C) Met, Ime and/or Pema in the presence of MF6 under a 
high glucose condition. All experiments were performed in triplicate using fresh preparations (n = 4). Data are presented as means ± standard error 
of the mean (SEM). *p < 0.05, **p < 0.01. 

produce ROS (Hollensworth et al., 2000; Srinivasan et al., 2000). 
In the present study, a high glucose condition caused significant 
increases in the levels of ROS and glycolytic reserve in SCs. In 
addition, the high glucose-induced increase in the levels of ROS 
was substantially reduced by Met and Ime and the eect of Ime was 
much more potent than that of Met. Since previous studies showed 
that Met had beneficial eects on diseases of the peripheral nervous 
system including DPN by inhibition of the harmful eects of ROS 
on cell number, cell viability, and migration (Ma et al., 2015), the 

present study suggested that Ime may have more potent beneficial 
eect than that of Met on DPN. 

Intriguingly, while Met decreased mitochondrial respiratory 
functions, Ime rather increased indices of mitochondrial 
respiratory functions in SCs, especially in a normal glucose 
condition. In addition, Ime increased proton leak irrespective 
of low- or high-glucose exposure (Figure 2G). Given that 
Ime suppressed high glucose-induced ROS production in SCs 
(Figure 4), such increase in proton leak may be associated with 
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FIGURE 6 

Overview of the present study and perspective for possible roles of Ime in preventing DPN. 

ROS suppression via activating of uncoupling proteins (Mailloux 
and Harper, 2011), although there seems no significant increase in 
proton leak by Ime in other types of cells including hepatocytes 
or pancreatic islet β-cells (Hozumi et al., 2023; Li et al., 2022). 
Indeed, previous reports have shown that Ime increases levels 
of nicotinamide adenine dinucleotide (NAD+) (Hallakou-Bozec 
et al., 2021; Takahashi et al., 2024), which is a potentially positive 
regulator of uncoupler proteins through NAD+-Sirt1/AMPK-
PGC-1α pathway (Nishikiori et al., 2025; Xu et al., 2021). 
Furthermore, we evaluated the expression levels of representative 
mitochondrial respiratory chain complexes in SCs in both low-
and high-glucose conditions with and without Ime, but there were 
no remarkable dierences in these protein levels (Supplementary 
Figure 3). Therefore, the changes in cellular metabolism by Ime 
observed in the present study are likely to be due to the activation 
of whole metabolic pathways, or changes in the intermittent 
metabolites, rather than changes in the expression or activities 
of the mitochondrial respiratory chain complexes themselves in 
SCs. Future comprehensive analysis may clarify these unresolved 
molecular mechanisms. Nevertheless, it is noteworthy that Ime 
activated cellular metabolism in SCs without increasing ROS 
production, whereas activation of cellular metabolism is generally 
associated with ROS production. This comprehensive finding 
supports the idea that Ime may ameliorate disease states in which 
increased ROS is the main pathophysiology. Although further 
clinical trials are needed to determine whether Ime significantly 
reduces the incidence of DPN compared to other anti-diabetes 
agents, the present findings support the recent notion that the 
choice of anti-diabetes agent should not focus solely on lowering 
blood glucose levels, but should also consider its protective eects 
on various organs (Qaseem et al., 2024). 

It has been shown that dyslipidemia causes vascular 
insuÿciency, oxidative stress-induced deterioration of 
mitochondrial function, and impaired conduction of electrical 
impulses in neurons, which are involved in the onset and 
progression of DPN (Davis et al., 2008; Wiggin et al., 2009), 

and normalization of lipid metabolism is therefore a suitable 
therapeutic strategy for DPN. A previous study showed that 
oral administration of the PPARα agonist fenofibrate, which is 
widely used to treat hyperlipidemia (Wierzbicki et al., 2003), 
prevented the progression of sciatic neuropathy in diabetic mice 
by activating of the AMPK-related signaling pathway (Cho et al., 
2014). Furthermore, it has been shown that a PPARα agonist 
stimulated corneal nerve regeneration in patients with T2DM (Teo 
et al., 2023) and protected the corneal nerve from degeneration 
in a mouse model of diabetes (Matlock et al., 2020), suggesting 
that the use of the PPARα agonist may be promising strategy for 
treating DPN. In the present study, although the PPARα agonist 
Pema increased both mitochondrial and glycolytic functions 
under a high glucose condition, only Pema induced a significant 
increase in the levels of ROS and the Pema-induced elevation in 
the levels of ROS was synergistically enhanced by Met and Ime. 
Similar to this, a recent study showed that bezafibrate improved 
mitochondrial morphology and functions despite causing a mild 
increase in the production of ROS using fibroblasts obtained 
from patients with dynamin-1-like protein (DNM1L) mutation 
(Douiev et al., 2020). In contrast, other studies showed that 
bezafibrate reduced the levels of ROS significantly in hiPSC-
derived neural stem cells (NSC), early neural progenitors (eNP), 
and neural progenitors (NP) (Augustyniak et al., 2019) and 
that Pema inhibited angiotensin II-induced production of ROS 
in human vascular smooth muscle cells by increased catalase 
activity (Amioka et al., 2022). Furthermore, it was shown that 
fenofibrate could prevent DPN by protecting endothelial cells 
through VEGF-independent activation of the PPARα-AMPK-
PGC-1α-eNOS-NO pathway (Cho et al., 2014). However, reason 
why eects of Pema on levels of ROS were dierent from other 
fibrates such as bezafibrate and fenofibrate remained to be 
elucidated. It was speculated that much higher eÿcacies of PPARα 
agonist activities and dierent o-target biological eects of Pema 
compared to other fibrates may be involved (Yamashita et al., 
2020). Taken together, the results suggested that eects of the 
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PPARα agonist Pema on production of ROS may be dierent 
among various experimental conditions using dierent sources of 
cells. 

FABPs, which are known as intracellular lipid chaperones, 
were found to be expressed in cells of the central and peripheral 
nervous systems (De León et al., 1996; Furuhashi and Hotamisligil, 
2008). Functionally, FABPs interact with various fatty acids and 
other endogenous lipids including endocannabinoids, thereby 
playing a pivotal role in the development of the nervous system as 
well as the mature nervous system to modulate neuronal activity 
and network functions (Lu and Mackie, 2021). Previous studies 
have shown that FABP5-deficient mice and mouse models with 
pharmacological inhibition of FABP5 showed an increase in 
brain levels of Anandamide (AEA) (Kaczocha et al., 2014; Yu 
et al., 2014). In contrast to FABP5, the contribution of FABP7 
remains to be elucidated, although the expression of both FABP5 
and FABP7 was observed in various nervous cells (Glaser et al., 
2023; Kawahata and Fukunaga, 2023). However, it was shown 
that elevated levels of AEA were comparable in FABP5/7 KO 
mice and FABP5 KO mice (Kaczocha et al., 2014; Yu et al., 2014), 
suggesting that the FABP that is responsible for the regulation 
of the AEA levels may be FABP5 but not FABP7. In support of 
this, the expression level of FABP7 in the adult mouse brain is low 
(Owada et al., 1996). In the current study, we also detected the 
expression of both FABP5 and FABP7 in SCs and the expression 
level of FABP7 was lower than that of FABP5. In the present 
study, pharmacological inhibition of FABP5 and FABP7 by 
MF6 did not alter high glucose induced metabolic changes in 
SCs, whereas Ime- and/or Pema-induced eects on the levels 
of ROS production under high glucose condition, suggesting 
that FABP5 and FABP7 may stimulate high glucose induced 
oxidative stress in SCs independently of their metabolic states. 
In fact, a recent study showed that FABP5 caused mitochondrial 
dysfunction related to αSyn oligomerization/aggregation in 
mitochondria, thereby inducing oxidative stress in neurons 
(Wang et al., 2021). 

The present study has several limitations. First, the precise 
molecular mechanisms by which Ime reduces oxidative stress in 
high glucose-treated SCs remain unclear. Although Ime alleviated 
oxidative stress under high-glucose conditions, this antioxidant 
eect occurred without concurrent improvement in mitochondrial 
respiration, suggesting the involvement of alternative pathways. 
Specifically, NAD+-related metabolism, including the role of 
nicotinamide phosphoribosyltransferase (NAMPT), is presumed 
to be the central molecular mechanism of action of Ime 
(Hallakou-Bozec et al., 2021). Elucidating these pathways through 
metabolomics, multiomics analyses including transcriptomics, and 
stable isotope tracer approaches across various cell types may 
further clarify the therapeutic potential of Ime. Second, while ROS 
levels were evaluated at both 0.5 mM and 2 mM concentrations 
of Met and Ime, the relevance of these concentrations to 
physiological or therapeutic levels remains uncertain. Further 
investigations are needed to validate whether similar eects occur 
under in vivo conditions. Third, we did not perform osmolarity 
equalization using agents such as sucrose or mannitol, as our aim 
was to mimic the pathophysiological hyperglycemic conditions 
observed in DM, where elevated glucose levels impose both 
metabolic and osmotic stress on cells. Finally, the findings in 
the present study do not directly demonstrate the eÿcacy of 

Ime in ameliorating DPN. In addition, the eects of Ime and 
Met on mitochondrial function have not been characterized in 
detail. Further studies are needed to clarify the additive roles of 
FABP and PPARα in Ime-induced responses by elucidating their 
downstream signaling and additional mitochondrial parameters, 
such as mitochondrial membrane potential in SCs. Moreover, 
in vivo studies using diabetic animal models are required to evaluate 
the eects of Ime on sensory disturbances and nerve conduction 
velocity. 

Conclusion 

In conclusion, the antidiabetic agent Ime had a more potent 
suppressive eect than that of Met on a high glucose-induced 
in vitro model mimicking pathogenesis of DPN using mouse SCs 
and that their eects were exclusively and synergistically modulated 
by FABP or PPARα-related signaling. However, since all findings 
are obtained from in vitro models, the therapeutic potential of Ime 
for DPN should be interpreted with caution and requires further 
validation in in vivo studies. 
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