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GLP-1 selectively enhances tonic
GABA, receptor-mediated
currents in mouse dentate gyrus
granule cells of the ventral
hippocampus

Olga Netsyk', Sergiy V. Korol, Bryndis Birnir and Zhe Jin*

Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden

Glucagon-like peptide-1 (GLP-1) is a metabolic hormone secreted by L-cells in the
gut and it stimulates insulin secretion in the pancreatic islets by activating GLP-1
receptors (GLP-1Rs). In the brain, the GLP-1Rs are expressed in many regions
including the hippocampus. We examined whether GLP-1 modulation of GABA-
activated currents in the mouse hippocampus varied along the hippocampal
dorsal-ventral axis. We recorded spontaneous inhibitory postsynaptic (sIPSCs)
and tonic extrasynaptic currents in dorsal and ventral hippocampal dentate gyrus
(DG) granule cells in brain slices from 2-month-old mice. GLP-1 (100 pM) did not
modulate the GABA-activated fast or slow phasic postsynaptic currents in either
the dorsal or the ventral hippocampal slices. In contrast, the tonic extrasynaptic
current was potentiated by GLP-1 but, only consistently in the DG granule cells of
the ventral hippocampus. Thus, GLP-1 modulation of the DG neurons depends on
the dorso-ventral longitudinal hippocampal axis and further, with the subcellular
location (synaptic vs. extrasynaptic) of the GABA, receptors (GABA4R) in the DG
granule cells. The results are consistent with GLP-1 enhancing the tonic inhibitory
extrasynaptic current by a postsynaptic mechanism.
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Introduction

The incretins are secreted in response to ingestion of food, and it is well established that
they regulate insulin secretion in a glucose-dependent manner (Astrup, 2024; Muller et al.,
2019). GLP-1 is one of the incretins hormones that are secreted by cells in the gut. Moreover,
GLP-1 and GLP-1Rs are also found in the brain where they have been ascribed various
functions including neuroprotection, modulating food intake and enhancing memory and
learning in the hippocampus (Astrup, 2024; Gupta et al., 2023; Holscher, 2022; Kanoski and
Grill, 2017). Nucleus of the solitary tract (NTS) is the primary neuronal source of the
endogenous GLP-1 in the brain (Larsen et al., 1997) where the preproglucagon is processed
to GLP-1 (Ugleholdtetal., 2004). However, axons from NTS do not project to the hippocampus.
How GLP-1 reaches the hippocampus is still under investigation, but it has been suggested
that GLP-1 may reach the hippocampus by simple diffusion or through volume transmission
from the ventricular system (Gupta et al., 2023; Buller and Blouet, 2024; Hsu et al., 2015;
Kanoski et al., 2016; Kastin et al, 2002). Both the dorsal and the ventral DG regions of the
mouse hippocampus express GLP-1R (Holst, 2024). In recent years glucagon-like peptide-1
receptor agonists (GLP-1RAs) have been shown in clinical studies to be neuroprotective, to
have metabolic benefits and have emerged as effective treatments for both type 2 diabetes and
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obesity (Astrup, 2024; Dash, 2024), while effects related to decreasing
the rate of cognitive decline are not as clear and are still being explored
(Dash, 2024; Liang et al., 2024).

The hippocampal longitudinal axis ranges from dorsal (septal) to
ventral (temporal) in rodents and corresponds to posterior-to-
anterior hippocampus in humans (Papatheodoropoulos, 2018;
Strange et al., 2014). Information from sensory cortices is received
by the dorsal hippocampus whereas the ventral hippocampus has
more connectivity with the amygdala, prefrontal cortex and
hypothalamus (Strange et al., 2014; Swanson and Cowan, 1977).
Hippocampal activity is modulated, at least in part, by hormones, as
the expression of many hormone receptors has been detected (Lathe,
2001). The role of the hippocampus in formation of spatial memories,
navigation and emotional responses is well established (Strange et al.,
2014) but what is less well known is that the hippocampus participates
in regulating physiological homeostasis in a topographical manner
(Risold and Swanson, 1996). The ventral hippocampal neurons, for
instance, via a synapse in the septum, inhibit hypothalamic neurons
(Risold and Swanson, 1996; Decarie-Spain et al., 2022). It is,
therefore, not surprising that metabolic hormones like insulin and
GLP-1 have been shown to modulate synaptic transmission in
hippocampal neurons (Ferrario and Reagan, 2018; Hammoud et al.,
2021; Korol et al., 2015).

y-Aminobutyric acid (GABA)
neurotransmitter in the central nervous system (Sieghart and Savic,
2018). It activates GABA, and GABA; receptors that are ion
channels and G-protein coupled receptors, respectively. When

is the main inhibitory

GABA is released from presynaptic terminals it activates synaptic
GABA, receptors (GABA,Rs) on postsynaptic neurons generating
phasic spontaneous inhibitory postsynaptic currents (sSIPSCs) (Otis
et al., 1991). These phasic currents comprise both fast and slow
sIPSCs (Figure 1A), which are distinguished not only by their
kinetics but also by their distinct presynaptic GABAergic neurons
that evoke them, and play different roles in neuronal circuits
(Armstrong et al., 2012; Capogna and Pearce, 2011). GABA,Rs
located outside of synapses are termed extrasynaptic receptors and
are activated by ambient GABA concentrations and mediate
extrasynaptic tonic current (Figure 1A) (Semyanov et al.,, 2003).
GABA,Rs containing a4f32/38 mainly mediate tonic inhibition in
mouse DG granule cells (Chandra et al., 2006; Stell et al., 2003).
We have previously shown in rat dorsal hippocampal CA3 neurons
that GLP-1 and its mimetics enhanced both synaptic and
extrasynaptic GABA-activated currents (Korol et al., 2015; Babateen
et al,, 2017; Korol et al., 2015). Here, we examine whether GLP-1
differentially modulates GABAergic inhibition in mouse dorsal and
ventral hippocampal DG granule cells. In line with common
simplification of the endogenous diversification of the hippocampus,
we divided the structure along the dorsoventral axis into dorsal,
intermediate and ventral domains (Strange et al., 2014; Paxinos and
Watson, 1986). Our previous work has shown that GABAergic
inhibition in the mouse hippocampus varies and is dependent on the
dorsoventral axis and cell type (DG granule cells and CA3 pyramidal
neurons) (Netsyk et al., 2020). We then studied the effects of GLP-1
(100 pM) on GABAergic signaling in dorsal and ventral dentate
gyrus (DG) granule cells. The results show that GLP-1 modulates the
GABAergic currents mediated via extrasynaptic GABA, receptors
in DG granule cells only in the ventral part of the
mouse hippocampus.
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Materials and methods
Animals

All experiments were conducted in accordance with the local
ethical guidelines and protocols approved by Uppsala Animal Ethical
Committee, Swedish law and regulations based on the Directive
2010/63/EU and C129/14. C57BL/6 ] male mice (Taconic M&B,
Denmark), aged 8-10 weeks, were used in all experiments. Recordings
were made from DG granule cells in hippocampal dorsal and ventral
brain slices.

Hippocampal slice preparation

Mice were euthanized by cervical dislocation followed by
decapitation. Brain slices were prepared as previously described
(Netsyk et al., 2020; Jin et al., 2011; Ting et al., 2014). Briefly, the
brain was removed and placed into ice-cold N-methyl
D-glucamine (NMDG)-based solution containing (mM): 93
NMDG, 2.5 KCl, 1.2 NaH,PO,, 30 NaHCO;, 20 4-(2-hydroxyethyl)
piperazine-1-ethanesulfonic acid (HEPES), 25 D-glucose, 10
MgSO,, 0.5 CaCl,, 5 Na ascorbate, 2 thiourea, 3 Na pyruvate, pH
7.3-7.4 (adjusted with HCI), saturated with 95% O, and 5% CO,,
osmolarity 300-305 mOsm (adjusted with sucrose). Hippocampal
slices (350 pm thick) were cut using a microtome (Leica VT1200
S, Leica Microsystems AB, Germany). Dorsal and ventral DG were
defined in coronal and horizontal slices, respectively, according to
Paxinos and Watson (1986). The slices were incubated in NMDG-
based solution at 32 °C for 12-15 min, then transferred to a
HEPES-based holding solution (in mM): 92 NaCl, 2.5 KCl, 1.2
NaH,PO,, 30 NaHCO;, 20 HEPES, 25 D-glucose, 2 MgSO,, 2
CaCl,, 5 Na ascorbate, 2 thiourea, 3 Na pyruvate, pH 7.3-7.4
(adjusted with NaOH), saturated with 95% O, and 5% CO,;
osmolarity 300-305 mOsm (adjusted with sucrose). The slices
were kept at room temperature (20-22 °C) for at least 1h
before use.

Electrophysiology

Whole-cell patch-clamp recordings were performed on DG
granule cells from the dorsal and ventral regions of the hippocampus
(Netsyk et al.,, 2020). All experiments were conducted at room
temperature. The slice was transferred to the recording chamber and
perfused (1.5-2 mL/min) with artificial cerebrospinal fluid (ACSF)
containing (mM): 119 NaCl, 2.5 KCI, 1.3 MgSO,, 1 NaH,PO,, 26.2
NaHCO;, 2.5 CaCl,, 11 D-glucose and 3 kynurenic acid, pH 7.3-7.4,
equilibrated with 95% O, and 5% CO,, osmolarity 300-303 mOsm
(adjusted with sucrose). Borosilicate glass patch pipettes (4-5 MQ
in resistance) were filled with an intracellular solution containing
(mM): 140 CsCl, 8 NaCl, 2 EGTA, 0.2 MgCl,, 10 HEPES, 2 MgATP,
0.3 Na;GTP, 5 QX314Br, pH 7.2 (adjusted with CsOH), osmolarity
285-290 mOsm. The order of DH and VH recordings was
randomized. The experimenter was not blinded to treatment due to
Data
approximately 7-10 min after achieving whole-cell configuration.

the pre—/post-application design. collection began

sIPSCs were recorded for > 5 min after baseline stabilization and >
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FIGURE 1

The effect of GLP-1 on GABA,R-mediated currents in dentate gyrus granule cells of the mouse hippocampus. (A) A schematic illustration of three
forms of GABA,R-mediated currents recorded in dentate gyrus (DG) granule cells: a, fast inhibitory postsynaptic current (IPSC); b, slow IPSC; c,
extrasynaptic tonic current. FS interneuron, fast-spiking interneuron; Ilvy/NGC, Ivy/neurogliaform cell. Created in BioRender. Jin (2025), https://
BioRender.com/g5wydyv. (B) A representative current trace recorded from a DG granule cell in the ventral hippocampus (VH) before and after GLP-1
(100 pM) application. The difference between the dashed lines represents the extrasynaptic tonic current amplitude (c), estimated from Gaussian fits to
all-points histograms derived from sIPSC-free baseline segments (right panel). (C) Fast IPSC (a) and slow IPSC (b) from segments marked with filled
squares are shown on an expanded scale below. ACSF, artificial cerebrospinal fluid; PTX, picrotoxin. (D) A scatter plot illustrating the median 63% decay
time plotted against the median 10-90% rise time of sIPSCs measured in individual DG granule cells (DH, n = 9 from 6 mice; VH, n = 7 from 5 mice).
sIPSCs were classified as fast or slow based on a 5-ms rise-time cutoff.

8 min during GLP-1 application. Picrotoxin (100 uM) was applied =~ —60 mV holding potential, filtered at 2 kHz using a Multipatch 700B
to block GABA R and reveal extrasynaptic tonic currents. Kynurenic ~ amplifier and Axon Digidata board 1550A, controlled by
acid (3mM) was added to block glutamatergic synaptic = pCLAMP 10.5 software (Axon Instruments, Molecular Devices,
transmission. Voltage-clamp current recordings were made at  CA, USA).
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Drugs

GLP-1 (7-36) amide, human was purchased from Anaspec
(AS-22462, Anaspec Europe, Belgium); other chemicals were from
Sigma-Aldrich (Steinheim, Germany).

GLP-1 lyophilized powder was reconstituted in distilled water as
a stock solution, aliquoted, and stored at —20 °C. Each aliquot was
then thawed once and diluted in ACSF immediately before use.

Data analysis

The currents were analyzed as described previously (Netsyk et al.,
2020; Netsyk et al., 2025). The membrane capacitance of DG granule
cells in the DH was significantly lower than in the VH (DH,
54.1 3.6 pE,n=9; VH, 68.9 + 4.9 pE, n = 7; unpaired Students ¢ test,
p =0.026), consistent with our previous study (Netsyk et al., 2020).
The average access resistance (R,) did not differ in DG granule cells
between DH and VH (DH, 42.33+3 0.84MQ, n=9; VH,
38.94 + 6.45 MQ, n = 7; unpaired Student’s t test, p = 0.64). R, was
monitored throughout each recording, and recordings with >25%
change in R, were excluded from analysis. Briefly, sIPSCs were
analyzed using MiniAnalysis software 6.0 (Synaptosoft, Decatur, GA,
USA). sIPSC events were detected if larger than a threshold value set
as 5xRMS (root-mean-square of the baseline noise) and visually
inspected. RMS baseline noise was similar in DG granule cell
recordings from both DH and VH (DH, 1.85 + 0.14 pA, n=9; VH,
1.99 + 0.076 pA, n = 7, unpaired Student’s ¢ test, p = 0.41). A 3-5 min
segment was used for analysis. sSIPSC parameters (frequency, median
amplitude, 10-90% median rise time, 63% median decay time and
median charge transfer) were automatically analyzed by the
MiniAnalysis software. SIPSC with 10-90% rise times < 5 ms were
fast; > (Figure 1D
Supplementary Figures 1A,B) (Netsyk et al., 2025). Tonic currents

classified as 5ms as slow and
were analyzed using pCLAMP 10.5 software (Axon Instruments,
Molecular Devices, San Jose, CA, USA). To determine baseline current
amplitude, Gaussian fits were performed on all-points histograms
derived from baseline current segments that were free of sIPSC
(Figures 1B, 3D). The extrasynaptic tonic current amplitude was
quantified as the shift of the baseline current after application of

picrotoxin (Jin et al., 2011).

Statistics

Data were analyzed using GraphPad Prism 10 (GraphPad
Software La Jolla, CA, USA). Normality was assessed with the
Shapiro-Wilk test. Paired comparisons used Student’s ¢-test (normal
data) or Wilcoxon signed-rank test (non-normal data). p-value <0.05
was considered statistically significant.

Results

GABA activates GABA,Rs to mediate various forms of inhibitory
currents with specialized functional roles, including phasic currents
(fast and slow sIPSCs), and extrasynaptic tonic currents. In the
hippocampus, fast and slow sIPSCs are mainly evoked by GABA
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release from presynaptic fast-spiking interneurons and neurogliaform/
Ivy cells (via volume transmission), respectively (Figure 1A)
(Armstrong et al., 2012; Capogna and Pearce, 2011; Netsyk et al.,
2025). Slow sIPSCs can also result from distal inputs targeting
granule-cell dendrites (e.g., somatostatin-expressing interneurons,
such as hilar perforant path-associated cells), where electrotonic
filtering and spatial attenuation prolong rise and decay time. Outside
the synapses, ambient GABA can activate high affinity extrasynaptic
GABA Rs, which generates persistent tonic currents (Figure 1A) (Bai
et al., 2001).

Here, we investigated the effects of GLP-1 on the three types of
GABA ,R-mediated currents in mouse DG granule cells from the
ventral and dorsal hippocampus. We used a low, physiologically
relevant concentration of GLP-1 (100 pM), which we had previously
shown to effectively modulate GABA signaling (Korol et al., 2015).
Figures 1B,C illustrate typical GABA-activated currents and the effect
of GLP-1 on DG granule cells from ventral mouse hippocampus. The
characteristic sIPSCs were abolished by picrotoxin (100 uM), a
GABA,R open-channel blocker, and the holding current shifted,
revealing the extrasynaptic, tonic GABA-activated current present in
the DG granule cells. In ventral hippocampal DG granule cells,
analysis of phasic currents (fast and slow sIPSCs) revealed no changes
in the frequency, median amplitude, 10-90% rise time, 63% decay
time, charge transfer or total current following GLP-1 application
(Figures 2A-C; Table 1). However, GLP-1 consistently enhanced the
extrasynaptic tonic current (Figures 1B, 2D) in these cells (Paired
Student’s ¢ test, n = 6, t = 3.885, df = 5, 95% CI 0.01134 to 0.05569,
p =0.0116). In contrast, neither phasic currents (fast and slow sIPSCs)
(Figures 3A-C; Table 1) nor tonic currents (Figures 3D,E) were
affected by GLP-1 in dorsal hippocampal DG granule cells. These
findings demonstrate that GLP-1 can enhance GABA-activated
currents in the hippocampus, but this effect is dependent on the
subcellular location and hippocampal axis location.

Discussion

The hippocampus is a well-known brain structure required for
learning and memory, with a particularly critical role in spatial
navigation (Strange et al, 2014; Decarie-Spain et al, 2022).
Importantly, the hippocampus is increasingly recognized to participate
in modulation of metabolic regulation and homeostasis (Gupta et al.,
2023; Lathe, 2001; Ferrario and Reagan, 2018; Hammoud et al., 2021;
Netsyk et al., 2025). In DG granule cells from 2-month-old mouse
hippocampus, GLP-1 only consistently enhanced the extrasynaptic
GABA-activated currents in the ventral hippocampus and did not
modulate the GABAergic phasic currents recorded in these cells,
neither in the dorsal nor in the ventral hippocampus. Our results
demonstrate selected effects of GLP-1 on mouse hippocampal GABA-
activated signal transmission.

The hippocampus is a lamellar structure that is organized along
the longitudinal, dorsal-ventral axis into functional domains
2018; 2014;
Papatheodoropoulos, 2015). A variety of hormone receptors are

(Papatheodoropoulos, Strange et  al,
expressed in the hippocampus (Lathe, 2001) but, receptors
associated with feeding are in higher density in the ventral as
compared to the dorsal hippocampus (Kanoski and Grill, 2017),
including the GLP-1 receptors. The precise distribution pattern of
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GLP-1 selectively potentiates GABALR-mediated extrasynaptic tonic currents in dentate gyrus granule cells of the mouse ventral hippocampus. (A) The
segments of representative current traces recorded from a DG granule cell in the ventral hippocampus (VH) before and after GLP-1 (100 pM)
application. Cumulative probability plots for the inter-event interval (IEI) and median amplitude of fast IPSCs are shown below. ACSF, artificial
cerebrospinal fluid. (B,C) Summary statistics for frequency, median amplitude, and total current of fast IPSC (B) and slow IPSC (C) (n = 7 from 5 mice).
(D) The GABA,R-mediated extrasynaptic tonic current density was significantly increased after GLP-1 application (n = 6 from 5 mice). Data are
presented as individual values with paired lines (before and after GLP-1 application), and box and whisker plots (whiskers defined by Tukey's method).
Mean values are denoted by “+.” All datasets passed the Shapiro—Wilk normality test. Statistical analysis used paired Student's t-test, with p < 0.05
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the GLP-1 receptors varies somewhat between different species
(Gupta et al.,, 2023; Cork et al., 2015; Graham et al., 2020; Jensen
etal., 2018; Merchenthaler et al., 1999). GLP-1 releasing neurons
from the nucleus of the solitary tract (NTS) do not directly innervate
the hippocampus, raising the question of GLP-1’s origins in the
hippocampus. But although, the hippocampus lacks GLP-1-
containing axon terminals, GLP-1 has been detected in the
hippocampus both in humans (Gupta et al., 2023) and in rodents
(Hsu etal,, 2015; Kastin et al., 2002). The GLP-1 presumably enters
the hippocampal parenchyma by volume transmission from the

cerebrospinal fluid or from the circulation (Gupta et al., 2023; Buller
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and Blouet, 2024; Hsu et al., 2015; Kastin et al., 2002). GLP-1 has
been shown to enhance release of the neurotransmitters GABA or
glutamate by presynaptic mechanism, but also, potentiate the
GABA-activated currents in dorsal rat hippocampal neurons by a
postsynaptic mechanism (Korol et al., 2015; Korol et al., 20155
Mietlicki-Baase et al., 2014; Rebosio et al., 2018; Shao et al., 2026;
2023). Although the GLP-1 receptor is not detected in
interneurons of mouse DG (Jensen et al., 2018), it is enriched in

Wang et al,,

glutamatergic mossy cells of the ventral DG, which innervate
2022). Activation of the GLP-1 receptor
increases the action potential firing frequency of mossy cells,

interneurons (Steiner et al.,
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FIGURE 3

GLP-1 does not affect GABA,R-mediated currents in dentate gyrus granule cells of the mouse dorsal hippocampus. (A) The segments of representative
current traces recorded from a DG granule cell in the dorsal hippocampus (DH) before and after GLP-1 (100 pM) application. Cumulative probability
plots for the inter-event interval (IEI) and median amplitude of fast IPSCs are shown below. ACSF, artificial cerebrospinal fluid. (B,C) Summary statistics
for frequency, median amplitude, and total current of fast IPSC (B) and slow IPSC (C) (n = 9 from 6 mice). (D) A representative current trace recorded

(Continued)
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FIGURE 3 (Continued)

distributed data. p < 0.05 was considered statistically significant.

from a DG granule cell in the DH before and after GLP-1 (100 pM) application. The difference between the dashed lines represents the extrasynaptic
tonic current amplitude, estimated from Gaussian fits to all-points histograms derived from sIPSC-free baseline segments (right panel). (E) The
GABA,R-mediated extrasynaptic tonic current density was not changed during GLP-1 application (n = 8 from 5 mice). Data are presented as individual
values with paired lines (before and after GLP-1 application), and box and whisker plots (whiskers defined by Tukey's method). Mean values are denoted
by “+.” Only the median amplitude and total current of slow sIPSCs passed the Shapiro—Wilk normality test; all other datasets failed. For statistical
analysis, a paired Student's t-test was applied for normally distributed data, while a Wilcoxon matched-pairs sign rank test was used for non-normally

TABLE 1 GLP-1 effect on GABA-mediated fast and slow IPSC parameters in the dorsal and ventral hippocampal DG granule cells.

Fast sIPSC

Rise time 10-90%
1.56 £ 0.1 1.63 £0.14

(ms)

0.374

1.57+0.2 1.62 +£0.19 0.398

Decay time 63%
12.28 £0.7 12.78 £ 0.84

(ms)

0.317

12.25+0.94 12.81 £ 0.82 0.219

Charge transfer
(fC)

215.8 £11.38 234.1 £15.39

0.088

237 +11.71 257.6 £ 14.45 0.095

Slow sIPSC

Rise time 10-90%
10.25+0.32 10.7 + 0.42

(ms)

0.331

8.12 £ 0.62 8.33 £1.04 0.809

Decay time 63%
40.82 +3.17 38.46 + 1.86

(ms)

0.359

28.44 +2.33 32.01£3.75 0.133

Charge transfer
(f€)

1395 +182.5 1418 + 144

804.5+ 101 911.5 +£99.42 0.388

Data are presented as mean + SEM. All datasets, except for decay time of slow sIPSCs in the DH, passed the Shapiro-Wilk normality test. Data collected before and during GLP-1 application
(100 pM) application were compared using a paired Student’s ¢-test for normally distributed data and a Wilcoxon matched-pairs sign rank test for non-normally distributed data. p-value < 0.05

was considered statistically significant.

potentially leading to an indirect enhancement of GABA release
from interneurons (Steiner et al., 2022). However, GLP-1 does not
alter the frequency and amplitude of phasic inhibitory currents (fast
and slow sIPSCs), which reflect presynaptic GABA release. This
suggests that GLP-1 is unlikely to change the ambient GABA levels
through spillover. Therefore, in the current study, only postsynaptic
mechanism and only in the ventral DG granule cells were activated
by GLP-1. This is in accordance with a study on mouse brains where
the GLP-1 receptor was expressed in mature granule neurons
(Graham et al,, 2020). Enhanced tonic inhibition by GLP-1 in the
ventral hippocampus decreases the excitability of the DG granule
cells at this location.

Metabolic hormones have emerged as significant biological
regulators of hippocampal functions. Hippocampal neuronal outputs
map onto the hypothalamus in a topographical manner via neurons
in the septum and commonly result in inhibition of hypothalamic
activity (Risold and Swanson, 1996; Decarie-Spain et al., 2022;
Arszovszki et al., 2014). Recent studies have identified the importance
of the ventral hippocampus in regulating feeding behavior, food intake
and food-directed memory (Hsu et al., 2015; Decarie-Spain et al,,
2022; Hsu et al,, 2018). The current results add to the mounting
evidence of the functional variation between the dorsal and the ventral
hippocampus. The differential effects of GLP-1 in the dorsal and
ventral DG granule neurons indicates a distinct role of GLP-1 in these
hippocampal regions.

Frontiers in Cellular Neuroscience

This study has several limitations. First, the use of specific
GLP-1R antagonists or conditional, region-specific GLP-1R
knockout mouse models is needed to confirm that the observed
effects on GABAergic transmission are mediated by GLP-1Rs
rather than off-target actions. Second, sample sizes were
relatively small and should be increased in future studies. Third,
only male mice were used; including female mice will
be important to assess potential sex-dependent difference.

performed at
them at
temperature (32-37 °C) would provide a more accurate reflection

Finally, all experiments were room

temperature, whereas repeating physiological

of in vivo conditions.
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