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GLP-1 selectively enhances tonic 
GABAA receptor-mediated 
currents in mouse dentate gyrus 
granule cells of the ventral 
hippocampus
Olga Netsyk †, Sergiy V. Korol , Bryndis Birnir  and Zhe Jin *

Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden

Glucagon-like peptide-1 (GLP-1) is a metabolic hormone secreted by L-cells in the 
gut and it stimulates insulin secretion in the pancreatic islets by activating GLP-1 
receptors (GLP-1Rs). In the brain, the GLP-1Rs are expressed in many regions 
including the hippocampus. We examined whether GLP-1 modulation of GABA-
activated currents in the mouse hippocampus varied along the hippocampal 
dorsal-ventral axis. We recorded spontaneous inhibitory postsynaptic (sIPSCs) 
and tonic extrasynaptic currents in dorsal and ventral hippocampal dentate gyrus 
(DG) granule cells in brain slices from 2-month-old mice. GLP-1 (100 pM) did not 
modulate the GABA-activated fast or slow phasic postsynaptic currents in either 
the dorsal or the ventral hippocampal slices. In contrast, the tonic extrasynaptic 
current was potentiated by GLP-1 but, only consistently in the DG granule cells of 
the ventral hippocampus. Thus, GLP-1 modulation of the DG neurons depends on 
the dorso-ventral longitudinal hippocampal axis and further, with the subcellular 
location (synaptic vs. extrasynaptic) of the GABAA receptors (GABAAR) in the DG 
granule cells. The results are consistent with GLP-1 enhancing the tonic inhibitory 
extrasynaptic current by a postsynaptic mechanism.
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Introduction

The incretins are secreted in response to ingestion of food, and it is well established that 
they regulate insulin secretion in a glucose-dependent manner (Astrup, 2024; Muller et al., 
2019). GLP-1 is one of the incretins hormones that are secreted by cells in the gut. Moreover, 
GLP-1 and GLP-1Rs are also found in the brain where they have been ascribed various 
functions including neuroprotection, modulating food intake and enhancing memory and 
learning in the hippocampus (Astrup, 2024; Gupta et al., 2023; Holscher, 2022; Kanoski and 
Grill, 2017). Nucleus of the solitary tract (NTS) is the primary neuronal source of the 
endogenous GLP-1 in the brain (Larsen et al., 1997) where the preproglucagon is processed 
to GLP-1 (Ugleholdt et al., 2004). However, axons from NTS do not project to the hippocampus. 
How GLP-1 reaches the hippocampus is still under investigation, but it has been suggested 
that GLP-1 may reach the hippocampus by simple diffusion or through volume transmission 
from the ventricular system (Gupta et al., 2023; Buller and Blouet, 2024; Hsu et al., 2015; 
Kanoski et al., 2016; Kastin et al., 2002). Both the dorsal and the ventral DG regions of the 
mouse hippocampus express GLP-1R (Holst, 2024). In recent years glucagon-like peptide-1 
receptor agonists (GLP-1RAs) have been shown in clinical studies to be neuroprotective, to 
have metabolic benefits and have emerged as effective treatments for both type 2 diabetes and 
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obesity (Astrup, 2024; Dash, 2024), while effects related to decreasing 
the rate of cognitive decline are not as clear and are still being explored 
(Dash, 2024; Liang et al., 2024).

The hippocampal longitudinal axis ranges from dorsal (septal) to 
ventral (temporal) in rodents and corresponds to posterior-to-
anterior hippocampus in humans (Papatheodoropoulos, 2018; 
Strange et al., 2014). Information from sensory cortices is received 
by the dorsal hippocampus whereas the ventral hippocampus has 
more connectivity with the amygdala, prefrontal cortex and 
hypothalamus (Strange et  al., 2014; Swanson and Cowan, 1977). 
Hippocampal activity is modulated, at least in part, by hormones, as 
the expression of many hormone receptors has been detected (Lathe, 
2001). The role of the hippocampus in formation of spatial memories, 
navigation and emotional responses is well established (Strange et al., 
2014) but what is less well known is that the hippocampus participates 
in regulating physiological homeostasis in a topographical manner 
(Risold and Swanson, 1996). The ventral hippocampal neurons, for 
instance, via a synapse in the septum, inhibit hypothalamic neurons 
(Risold and Swanson, 1996; Decarie-Spain et  al., 2022). It is, 
therefore, not surprising that metabolic hormones like insulin and 
GLP-1 have been shown to modulate synaptic transmission in 
hippocampal neurons (Ferrario and Reagan, 2018; Hammoud et al., 
2021; Korol et al., 2015).

γ-Aminobutyric acid (GABA) is the main inhibitory 
neurotransmitter in the central nervous system (Sieghart and Savic, 
2018). It activates GABAA and GABAB receptors that are ion 
channels and G-protein coupled receptors, respectively. When 
GABA is released from presynaptic terminals it activates synaptic 
GABAA receptors (GABAARs) on postsynaptic neurons generating 
phasic spontaneous inhibitory postsynaptic currents (sIPSCs) (Otis 
et  al., 1991). These phasic currents comprise both fast and slow 
sIPSCs (Figure  1A), which are distinguished not only by their 
kinetics but also by their distinct presynaptic GABAergic neurons 
that evoke them, and play different roles in neuronal circuits 
(Armstrong et  al., 2012; Capogna and Pearce, 2011). GABAARs 
located outside of synapses are termed extrasynaptic receptors and 
are activated by ambient GABA concentrations and mediate 
extrasynaptic tonic current (Figure 1A) (Semyanov et al., 2003). 
GABAARs containing α4β2/3δ mainly mediate tonic inhibition in 
mouse DG granule cells (Chandra et al., 2006; Stell et al., 2003). 
We have previously shown in rat dorsal hippocampal CA3 neurons 
that GLP-1 and its mimetics enhanced both synaptic and 
extrasynaptic GABA-activated currents (Korol et al., 2015; Babateen 
et al., 2017; Korol et al., 2015). Here, we examine whether GLP-1 
differentially modulates GABAergic inhibition in mouse dorsal and 
ventral hippocampal DG granule cells. In line with common 
simplification of the endogenous diversification of the hippocampus, 
we divided the structure along the dorsoventral axis into dorsal, 
intermediate and ventral domains (Strange et al., 2014; Paxinos and 
Watson, 1986). Our previous work has shown that GABAergic 
inhibition in the mouse hippocampus varies and is dependent on the 
dorsoventral axis and cell type (DG granule cells and CA3 pyramidal 
neurons) (Netsyk et al., 2020). We then studied the effects of GLP-1 
(100 pM) on GABAergic signaling in dorsal and ventral dentate 
gyrus (DG) granule cells. The results show that GLP-1 modulates the 
GABAergic currents mediated via extrasynaptic GABAA receptors 
in DG granule cells only in the ventral part of the 
mouse hippocampus.

Materials and methods

Animals

All experiments were conducted in accordance with the local 
ethical guidelines and protocols approved by Uppsala Animal Ethical 
Committee, Swedish law and regulations based on the Directive 
2010/63/EU and C129/14. C57BL/6 J male mice (Taconic M&B, 
Denmark), aged 8–10 weeks, were used in all experiments. Recordings 
were made from DG granule cells in hippocampal dorsal and ventral 
brain slices.

Hippocampal slice preparation

Mice were euthanized by cervical dislocation followed by 
decapitation. Brain slices were prepared as previously described 
(Netsyk et al., 2020; Jin et al., 2011; Ting et al., 2014). Briefly, the 
brain was removed and placed into ice-cold N-methyl 
D-glucamine (NMDG)-based solution containing (mM): 93 
NMDG, 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 4-(2-hydroxyethyl)
piperazine-1-ethanesulfonic acid (HEPES), 25 D-glucose, 10 
MgSO4, 0.5 CaCl2, 5 Na ascorbate, 2 thiourea, 3 Na pyruvate, pH 
7.3–7.4 (adjusted with HCl), saturated with 95% O2 and 5% CO2, 
osmolarity 300–305 mOsm (adjusted with sucrose). Hippocampal 
slices (350 μm thick) were cut using a microtome (Leica VT1200 
S, Leica Microsystems AB, Germany). Dorsal and ventral DG were 
defined in coronal and horizontal slices, respectively, according to 
Paxinos and Watson (1986). The slices were incubated in NMDG-
based solution at 32 °C for 12–15 min, then transferred to a 
HEPES-based holding solution (in mM): 92 NaCl, 2.5 KCl, 1.2 
NaH2PO4, 30 NaHCO3, 20 HEPES, 25 D-glucose, 2 MgSO4, 2 
CaCl2, 5 Na ascorbate, 2 thiourea, 3 Na pyruvate, pH 7.3–7.4 
(adjusted with NaOH), saturated with 95% O2 and 5% CO2; 
osmolarity 300–305 mOsm (adjusted with sucrose). The slices 
were kept at room temperature (20–22 °C) for at least 1 h 
before use.

Electrophysiology

Whole-cell patch-clamp recordings were performed on DG 
granule cells from the dorsal and ventral regions of the hippocampus 
(Netsyk et  al., 2020). All experiments were conducted at room 
temperature. The slice was transferred to the recording chamber and 
perfused (1.5–2 mL/min) with artificial cerebrospinal fluid (ACSF) 
containing (mM): 119 NaCl, 2.5 KCl, 1.3 MgSO4, 1 NaH2PO4, 26.2 
NaHCO3, 2.5 CaCl2, 11 D-glucose and 3 kynurenic acid, pH 7.3–7.4, 
equilibrated with 95% O2 and 5% CO2, osmolarity 300–303 mOsm 
(adjusted with sucrose). Borosilicate glass patch pipettes (4–5 MΩ 
in resistance) were filled with an intracellular solution containing 
(mM): 140 CsCl, 8 NaCl, 2 EGTA, 0.2 MgCl2, 10 HEPES, 2 MgATP, 
0.3 Na3GTP, 5 QX314Br, pH 7.2 (adjusted with CsOH), osmolarity 
285–290 mOsm. The order of DH and VH recordings was 
randomized. The experimenter was not blinded to treatment due to 
the pre−/post-application design. Data collection began 
approximately 7–10 min after achieving whole-cell configuration. 
sIPSCs were recorded for ≥ 5 min after baseline stabilization and ≥ 
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8 min during GLP-1 application. Picrotoxin (100 μM) was applied 
to block GABAAR and reveal extrasynaptic tonic currents. Kynurenic 
acid (3 mM) was added to block glutamatergic synaptic 
transmission. Voltage-clamp current recordings were made at 

−60 mV holding potential, filtered at 2 kHz using a Multipatch 700B 
amplifier and Axon Digidata board 1550A, controlled by 
pCLAMP  10.5 software (Axon Instruments, Molecular Devices, 
CA, USA).

FIGURE 1

The effect of GLP-1 on GABAAR-mediated currents in dentate gyrus granule cells of the mouse hippocampus. (A) A schematic illustration of three 
forms of GABAAR-mediated currents recorded in dentate gyrus (DG) granule cells: a, fast inhibitory postsynaptic current (IPSC); b, slow IPSC; c, 
extrasynaptic tonic current. FS interneuron, fast-spiking interneuron; Ivy/NGC, Ivy/neurogliaform cell. Created in BioRender. Jin (2025), https://
BioRender.com/g5wydyv. (B) A representative current trace recorded from a DG granule cell in the ventral hippocampus (VH) before and after GLP-1 
(100 pM) application. The difference between the dashed lines represents the extrasynaptic tonic current amplitude (c), estimated from Gaussian fits to 
all-points histograms derived from sIPSC-free baseline segments (right panel). (C) Fast IPSC (a) and slow IPSC (b) from segments marked with filled 
squares are shown on an expanded scale below. ACSF, artificial cerebrospinal fluid; PTX, picrotoxin. (D) A scatter plot illustrating the median 63% decay 
time plotted against the median 10–90% rise time of sIPSCs measured in individual DG granule cells (DH, n = 9 from 6 mice; VH, n = 7 from 5 mice). 
sIPSCs were classified as fast or slow based on a 5-ms rise-time cutoff.
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Drugs

GLP-1 (7-36) amide, human was purchased from Anaspec 
(AS-22462, Anaspec Europe, Belgium); other chemicals were from 
Sigma-Aldrich (Steinheim, Germany).

GLP-1 lyophilized powder was reconstituted in distilled water as 
a stock solution, aliquoted, and stored at −20 °C. Each aliquot was 
then thawed once and diluted in ACSF immediately before use.

Data analysis

The currents were analyzed as described previously (Netsyk et al., 
2020; Netsyk et al., 2025). The membrane capacitance of DG granule 
cells in the DH was significantly lower than in the VH (DH, 
54.1 ± 3.6 pF, n = 9; VH, 68.9 ± 4.9 pF, n = 7; unpaired Student’s t test, 
p = 0.026), consistent with our previous study (Netsyk et al., 2020). 
The average access resistance (Ra) did not differ in DG granule cells 
between DH and VH (DH, 42.33 ± 3 0.84 MΩ, n = 9; VH, 
38.94 ± 6.45 MΩ, n = 7; unpaired Student’s t test, p = 0.64). Ra was 
monitored throughout each recording, and recordings with >25% 
change in Ra were excluded from analysis. Briefly, sIPSCs were 
analyzed using MiniAnalysis software 6.0 (Synaptosoft, Decatur, GA, 
USA). sIPSC events were detected if larger than a threshold value set 
as 5xRMS (root-mean-square of the baseline noise) and visually 
inspected. RMS baseline noise was similar in DG granule cell 
recordings from both DH and VH (DH, 1.85 ± 0.14 pA, n = 9; VH, 
1.99 ± 0.076 pA, n = 7, unpaired Student’s t test, p = 0.41). A 3–5 min 
segment was used for analysis. sIPSC parameters (frequency, median 
amplitude, 10–90% median rise time, 63% median decay time and 
median charge transfer) were automatically analyzed by the 
MiniAnalysis software. sIPSC with 10–90% rise times ≤ 5 ms were 
classified as fast; > 5 ms as slow (Figure  1D and 
Supplementary Figures 1A,B) (Netsyk et al., 2025). Tonic currents 
were analyzed using pCLAMP  10.5 software (Axon Instruments, 
Molecular Devices, San Jose, CA, USA). To determine baseline current 
amplitude, Gaussian fits were performed on all-points histograms 
derived from baseline current segments that were free of sIPSC 
(Figures  1B, 3D). The extrasynaptic tonic current amplitude was 
quantified as the shift of the baseline current after application of 
picrotoxin (Jin et al., 2011).

Statistics

Data were analyzed using GraphPad Prism 10 (GraphPad 
Software La Jolla, CA, USA). Normality was assessed with the 
Shapiro–Wilk test. Paired comparisons used Student’s t-test (normal 
data) or Wilcoxon signed-rank test (non-normal data). p-value <0.05 
was considered statistically significant.

Results

GABA activates GABAARs to mediate various forms of inhibitory 
currents with specialized functional roles, including phasic currents 
(fast and slow sIPSCs), and extrasynaptic tonic currents. In the 
hippocampus, fast and slow sIPSCs are mainly evoked by GABA 

release from presynaptic fast-spiking interneurons and neurogliaform/
Ivy cells (via volume transmission), respectively (Figure  1A) 
(Armstrong et al., 2012; Capogna and Pearce, 2011; Netsyk et al., 
2025). Slow sIPSCs can also result from distal inputs targeting 
granule-cell dendrites (e.g., somatostatin-expressing interneurons, 
such as hilar perforant path-associated cells), where electrotonic 
filtering and spatial attenuation prolong rise and decay time. Outside 
the synapses, ambient GABA can activate high affinity extrasynaptic 
GABAARs, which generates persistent tonic currents (Figure 1A) (Bai 
et al., 2001).

Here, we investigated the effects of GLP-1 on the three types of 
GABAAR-mediated currents in mouse DG granule cells from the 
ventral and dorsal hippocampus. We  used a low, physiologically 
relevant concentration of GLP-1 (100 pM), which we had previously 
shown to effectively modulate GABA signaling (Korol et al., 2015). 
Figures 1B,C illustrate typical GABA-activated currents and the effect 
of GLP-1 on DG granule cells from ventral mouse hippocampus. The 
characteristic sIPSCs were abolished by picrotoxin (100 μM), a 
GABAAR open-channel blocker, and the holding current shifted, 
revealing the extrasynaptic, tonic GABA-activated current present in 
the DG granule cells. In ventral hippocampal DG granule cells, 
analysis of phasic currents (fast and slow sIPSCs) revealed no changes 
in the frequency, median amplitude, 10–90% rise time, 63% decay 
time, charge transfer or total current following GLP-1 application 
(Figures 2A–C; Table 1). However, GLP-1 consistently enhanced the 
extrasynaptic tonic current (Figures 1B, 2D) in these cells (Paired 
Student’s t test, n = 6, t = 3.885, df = 5, 95% CI 0.01134 to 0.05569, 
p = 0.0116). In contrast, neither phasic currents (fast and slow sIPSCs) 
(Figures  3A–C; Table  1) nor tonic currents (Figures  3D,E) were 
affected by GLP-1  in dorsal hippocampal DG granule cells. These 
findings demonstrate that GLP-1 can enhance GABA-activated 
currents in the hippocampus, but this effect is dependent on the 
subcellular location and hippocampal axis location.

Discussion

The hippocampus is a well-known brain structure required for 
learning and memory, with a particularly critical role in spatial 
navigation (Strange et  al., 2014; Decarie-Spain et  al., 2022). 
Importantly, the hippocampus is increasingly recognized to participate 
in modulation of metabolic regulation and homeostasis (Gupta et al., 
2023; Lathe, 2001; Ferrario and Reagan, 2018; Hammoud et al., 2021; 
Netsyk et al., 2025). In DG granule cells from 2-month-old mouse 
hippocampus, GLP-1 only consistently enhanced the extrasynaptic 
GABA-activated currents in the ventral hippocampus and did not 
modulate the GABAergic phasic currents recorded in these cells, 
neither in the dorsal nor in the ventral hippocampus. Our results 
demonstrate selected effects of GLP-1 on mouse hippocampal GABA-
activated signal transmission.

The hippocampus is a lamellar structure that is organized along 
the longitudinal, dorsal-ventral axis into functional domains 
(Papatheodoropoulos, 2018; Strange et  al., 2014; 
Papatheodoropoulos, 2015). A variety of hormone receptors are 
expressed in the hippocampus (Lathe, 2001) but, receptors 
associated with feeding are in higher density in the ventral as 
compared to the dorsal hippocampus (Kanoski and Grill, 2017), 
including the GLP-1 receptors. The precise distribution pattern of 
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the GLP-1 receptors varies somewhat between different species 
(Gupta et al., 2023; Cork et al., 2015; Graham et al., 2020; Jensen 
et al., 2018; Merchenthaler et al., 1999). GLP-1 releasing neurons 
from the nucleus of the solitary tract (NTS) do not directly innervate 
the hippocampus, raising the question of GLP-1’s origins in the 
hippocampus. But although, the hippocampus lacks GLP-1-
containing axon terminals, GLP-1 has been detected in the 
hippocampus both in humans (Gupta et al., 2023) and in rodents 
(Hsu et al., 2015; Kastin et al., 2002). The GLP-1 presumably enters 
the hippocampal parenchyma by volume transmission from the 
cerebrospinal fluid or from the circulation (Gupta et al., 2023; Buller 

and Blouet, 2024; Hsu et al., 2015; Kastin et al., 2002). GLP-1 has 
been shown to enhance release of the neurotransmitters GABA or 
glutamate by presynaptic mechanism, but also, potentiate the 
GABA-activated currents in dorsal rat hippocampal neurons by a 
postsynaptic mechanism (Korol et  al., 2015; Korol et  al., 2015; 
Mietlicki-Baase et al., 2014; Rebosio et al., 2018; Shao et al., 2026; 
Wang et al., 2023). Although the GLP-1 receptor is not detected in 
interneurons of mouse DG (Jensen et al., 2018), it is enriched in 
glutamatergic mossy cells of the ventral DG, which innervate 
interneurons (Steiner et al., 2022). Activation of the GLP-1 receptor 
increases the action potential firing frequency of mossy cells, 

FIGURE 2

GLP-1 selectively potentiates GABAAR-mediated extrasynaptic tonic currents in dentate gyrus granule cells of the mouse ventral hippocampus. (A) The 
segments of representative current traces recorded from a DG granule cell in the ventral hippocampus (VH) before and after GLP-1 (100 pM) 
application. Cumulative probability plots for the inter-event interval (IEI) and median amplitude of fast IPSCs are shown below. ACSF, artificial 
cerebrospinal fluid. (B,C) Summary statistics for frequency, median amplitude, and total current of fast IPSC (B) and slow IPSC (C) (n = 7 from 5 mice). 
(D) The GABAAR-mediated extrasynaptic tonic current density was significantly increased after GLP-1 application (n = 6 from 5 mice). Data are 
presented as individual values with paired lines (before and after GLP-1 application), and box and whisker plots (whiskers defined by Tukey’s method). 
Mean values are denoted by “+.” All datasets passed the Shapiro–Wilk normality test. Statistical analysis used paired Student’s t-test, with p < 0.05 
considered statistically significant.
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FIGURE 3

GLP-1 does not affect GABAAR-mediated currents in dentate gyrus granule cells of the mouse dorsal hippocampus. (A) The segments of representative 
current traces recorded from a DG granule cell in the dorsal hippocampus (DH) before and after GLP-1 (100 pM) application. Cumulative probability 
plots for the inter-event interval (IEI) and median amplitude of fast IPSCs are shown below. ACSF, artificial cerebrospinal fluid. (B,C) Summary statistics 
for frequency, median amplitude, and total current of fast IPSC (B) and slow IPSC (C) (n = 9 from 6 mice). (D) A representative current trace recorded 

(Continued)
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potentially leading to an indirect enhancement of GABA release 
from interneurons (Steiner et al., 2022). However, GLP-1 does not 
alter the frequency and amplitude of phasic inhibitory currents (fast 
and slow sIPSCs), which reflect presynaptic GABA release. This 
suggests that GLP-1 is unlikely to change the ambient GABA levels 
through spillover. Therefore, in the current study, only postsynaptic 
mechanism and only in the ventral DG granule cells were activated 
by GLP-1. This is in accordance with a study on mouse brains where 
the GLP-1 receptor was expressed in mature granule neurons 
(Graham et al., 2020). Enhanced tonic inhibition by GLP-1 in the 
ventral hippocampus decreases the excitability of the DG granule 
cells at this location.

Metabolic hormones have emerged as significant biological 
regulators of hippocampal functions. Hippocampal neuronal outputs 
map onto the hypothalamus in a topographical manner via neurons 
in the septum and commonly result in inhibition of hypothalamic 
activity (Risold and Swanson, 1996; Decarie-Spain et  al., 2022; 
Arszovszki et al., 2014). Recent studies have identified the importance 
of the ventral hippocampus in regulating feeding behavior, food intake 
and food-directed memory (Hsu et al., 2015; Decarie-Spain et al., 
2022; Hsu et  al., 2018). The current results add to the mounting 
evidence of the functional variation between the dorsal and the ventral 
hippocampus. The differential effects of GLP-1  in the dorsal and 
ventral DG granule neurons indicates a distinct role of GLP-1 in these 
hippocampal regions.

This study has several limitations. First, the use of specific 
GLP-1R antagonists or conditional, region-specific GLP-1R 
knockout mouse models is needed to confirm that the observed 
effects on GABAergic transmission are mediated by GLP-1Rs 
rather than off-target actions. Second, sample sizes were  
relatively small and should be increased in future studies. Third, 
only male mice were used; including female mice will 
be  important to assess potential sex-dependent difference. 
Finally, all experiments were performed at room  
temperature, whereas repeating them at physiological 
temperature (32–37 °C) would provide a more accurate reflection 
of in vivo conditions.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The animal study was approved by Uppsala Animal Ethical 
Committee. The study was conducted in accordance with the local 
legislation and institutional requirements.

from a DG granule cell in the DH before and after GLP-1 (100 pM) application. The difference between the dashed lines represents the extrasynaptic 
tonic current amplitude, estimated from Gaussian fits to all-points histograms derived from sIPSC-free baseline segments (right panel). (E) The 
GABAAR-mediated extrasynaptic tonic current density was not changed during GLP-1 application (n = 8 from 5 mice). Data are presented as individual 
values with paired lines (before and after GLP-1 application), and box and whisker plots (whiskers defined by Tukey’s method). Mean values are denoted 
by “+.” Only the median amplitude and total current of slow sIPSCs passed the Shapiro–Wilk normality test; all other datasets failed. For statistical 
analysis, a paired Student’s t-test was applied for normally distributed data, while a Wilcoxon matched-pairs sign rank test was used for non-normally 
distributed data. p < 0.05 was considered statistically significant.

FIGURE 3 (Continued)

TABLE 1  GLP-1 effect on GABA-mediated fast and slow IPSC parameters in the dorsal and ventral hippocampal DG granule cells.

sIPSC
DH (n = 9) VH (n = 7)

ACSF +GLP-1 p value ACSF +GLP-1 p value

Fast sIPSC

Rise time 10–90% 

(ms)
1.56 ± 0.1 1.63 ± 0.14 0.374 1.57 ± 0.2 1.62 ± 0.19 0.398

Decay time 63% 

(ms)
12.28 ± 0.7 12.78 ± 0.84 0.317 12.25 ± 0.94 12.81 ± 0.82 0.219

Charge transfer 

(fC)
215.8 ± 11.38 234.1 ± 15.39 0.088 237 ± 11.71 257.6 ± 14.45 0.095

Slow sIPSC

Rise time 10–90% 

(ms)
10.25 ± 0.32 10.7 ± 0.42 0.331 8.12 ± 0.62 8.33 ± 1.04 0.809

Decay time 63% 

(ms)
40.82 ± 3.17 38.46 ± 1.86 0.359 28.44 ± 2.33 32.01 ± 3.75 0.133

Charge transfer 

(fC)
1395 ± 182.5 1418 ± 144 0.87 804.5 ± 101 911.5 ± 99.42 0.388

Data are presented as mean ± SEM. All datasets, except for decay time of slow sIPSCs in the DH, passed the Shapiro–Wilk normality test. Data collected before and during GLP-1 application 
(100 pM) application were compared using a paired Student’s t-test for normally distributed data and a Wilcoxon matched-pairs sign rank test for non-normally distributed data. p-value < 0.05 
was considered statistically significant.
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