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Spinal cord injury (SCI) is a serious disorder that affects sensory, motor, and 
autonomic functions. Its pathological process is divided into two stages: primary 
and secondary injury. The secondary injury involves a variety of biological cascade 
reactions, leading to an imbalance in the spinal cord microenvironment. Non-
coding RNAs (ncRNAs) play a crucial regulatory role in the pathophysiological 
process of spinal cord injury, including long non-coding RNAs (lncRNAs), circular 
RNAs (circRNAs), and microRNAs (miRNAs), all of which are involved in processes 
such as axonal regeneration, oxidative stress, inflammatory response, autophagy, 
and apoptosis. Although the pathophysiological process of spinal cord injury has 
been partially elucidated, its pathogenesis is not yet fully understood, and effective 
treatments are limited. This article reviews the regulatory role and molecular 
mechanisms of ncRNAs in the development and progression of spinal cord injury 
and proposes strategies for treating spinal cord injury by regulating ncRNAs.
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1 Introduction

Spinal cord injury (SCI) is one of the most complex disorder, with pathological 
consequences that affect sensory, motor, and/or autonomic functions (Costăchescu et al., 2022; 
Li et al., 2020). The primary reason for this is that the spinal cord is the main communication 
system between the brain and the body, ensuring the exchange of information and signals for 
coordinated activities (Costăchescu et al., 2022). Its injury can lead to interruptions in neural 
circuits and connections, resulting in neural dysfunction (Yuan et al., 2021). Specifically, spinal 
cord injury can lead to damage to blood flow, respiration, body temperature, body pressure, 
and sensation, as well as permanent consequences such as paralysis, autonomic dysfunction, 
and neuropathic pain (Costăchescu et al., 2022).

The pathological process of spinal cord injury is divided into two stages. The primary 
injury is the first stage, which includes the death of neurons and glial cells, bleeding, foreign 
body invasion, and disruption of the axonal network (Ahuja et al., 2020). The second stage is 
secondary injury, which can last for several weeks and involves a series of biological cascade 
reactions, such as neuroexcitotoxicity, vascular dysfunction, inflammatory damage, apoptosis, 
free radical production, and lipid peroxidation (Ahuja et al., 2020; Anjum et al., 2020). At the 
same time, these factors significantly contribute to the imbalance of the spinal cord 
microenvironment. However, our understanding of the spinal cord microenvironment after 
spinal cord injury remains very limited (Seblani et al., 2023; Ortega et al., 2023; Chio et al., 
2021; Peng et al., 2024). The “microenvironmental imbalance” after spinal cord injury is 
defined as the loss of homeostatic balance in tissues, cells, and molecules at different times and 
locations, which exacerbates and accelerates the progression of spinal cord injury (Peng et al., 
2024; Fan et al., 2018). Studies have found that this process may involve abnormal gene 
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expression, such as ncRNAs playing an important regulatory role in 
the pathophysiology of spinal cord injury.

Researchers have discovered that various non-coding RNAs 
(ncRNAs), such as long non-coding RNAs (lncRNAs), circular RNAs 
(circRNAs), and microRNAs (miRNAs), exhibit differential expression 
following central nervous system (CNS) injuries,such as spinal cord 
injury (Li et  al., 2021). Furthermore, lncRNAs and circRNAs can 
function as competing endogenous RNAs (ceRNAs) to sponge and 
inhibit the expression of miRNAs, thereby creating complex regulatory 
networks (Guo et al., 2025). Existing studies have demonstrated that 
ncRNAs, including circRNAs (Xu et  al., 2021; Yuan et  al., 2020), 
lncRNAs (Zhou and Yu, 2021; Cai et  al., 2023), and miRNAs 
(Baichurina et  al., 2021; Xu et  al., 2024), are involved in the 
pathophysiological processes of spinal cord injury, such as axonal 
regeneration, oxidative stress, inflammatory responses, autophagy, 
and apoptosis.

Although basic research has clarified the pathophysiological 
processes of spinal cord injury, the underlying pathogenic mechanisms 
remain incompletely understood, and effective treatment options are 
still limited. Therefore, this article aims to review and categorize the 
regulatory roles and molecular mechanisms of ncRNAs in the 
development and progression of spinal cord injury and proposes 
strategies for treating spinal cord injury by targeting the pathogenic 
mechanisms of ncRNAs.

2 NcRNA and spinal cord injury

ncRNAs refer to RNA molecules that do not have the potential to 
encode proteins, making up the vast majority of RNAs and accounting 
for approximately 98–99% of the RNA produced by the mammalian 
genome (Arraiano, 2021; Sun et al., 2022). This category includes 
RNAs with specific functions, such as rRNA, tRNA, snRNA, snoRNA, 
and miRNA. Additionally, lncRNA and circRNA are new members of 
the non-coding RNA family that can act as sponges for miRNAs, 
thereby reducing their expression levels (Yao X, et al., 2024). However, 
increasing evidence indicates that ncRNAs play a crucial role in spinal 
cord injury, suggesting their significant potential in the diagnosis, 
evaluation, and treatment of spinal cord injury.

MiRNAs are highly conserved single-stranded ncRNAs typically 
composed of 20–22 nucleotides (Yao X, et  al., 2024). The typical 
function of miRNAs is to negatively regulate gene expression by 
binding to target mRNAs, leading to mRNA degradation or inhibition 
of translation (Yao X, et  al., 2024). Studies have shown that each 
miRNA can target hundreds of genes and can regulate more than 
one-third of human genes (Sun et al., 2022), playing a role in the 
regulation of neurological disorders and disorders associated with 
nerve trauma (Arzhanov et al., 2022; Silvestro and Mazzon, 2022). For 
example, miR-7b-3p plays a dual role in supporting cortical plasticity 
and neuroprotection after spinal cord injury (Ghibaudi et al., 2021). 
The overexpression of miR-423-5p can act as a polarizing regulator of 
microglia, inhibiting the polarization of the M1 phenotype by 
suppressing the expression of NLRP3 (NOD-like receptor family pyrin 
domain-containing 3), and can be used for the treatment of spinal 
cord injury (Cheng et al., 2021).

LncRNAs are a class of RNA transcripts longer than 200 
nucleotides that, despite lacking the ability to encode proteins, 
resemble mRNA (Salvatori et  al., 2020). They possess various 

epigenetic regulatory forms, including DNA methylation, histone 
modification, and regulation of miRNAs (Yao X, et  al., 2024). 
Additionally, numerous studies indicate that lncRNAs play significant 
roles in development, metabolism, as well as in the function of the 
nervous and immune systems (Chen and Kim, 2024). For instance, 
lncAirsci is significantly upregulated during the acute inflammatory 
phase of spinal cord injury. However, the inhibition of lncAirsci can 
alleviate the inflammatory response through NF-κB (Nuclear 
factor-κB) signaling pathway, promoting functional recovery (Zhang 
T, et al., 2021).

CircRNAs are generated from precursor mRNA through back-
splicing of exons and are widely expressed in tissue-specific and 
developmental stage-specific patterns (Yao X, et al., 2024). Increasing 
evidence suggests that circRNAs regulate various cellular processes 
by acting as miRNA sponges, anchors for cRBPs (circRNA-binding 
proteins), transcriptional regulators, molecular scaffolds, and 
sources for the translation of small proteins/peptides (Misir et al., 
2022). Unlike linear RNAs, circRNAs are circular molecules with 
covalently closed loop structures and are involved in a wide range of 
biological processes. Disruptions in their expression can lead to 
cellular dysfunction and disorder (Chen, 2016). A substantial body 
of evidence indicates that circRNAs are highly expressed in the 
spinal cord and play crucial roles in multiple processes of 
neurological disorders. For example, CircHIPK3 mitigates 
inflammation and neuronal apoptosis after spinal cord injury by 
regulating the miR-382-5p/DUSP1 (Dual-specificity phosphatase 1) 
axis (Yin et  al., 2022). CircCDR1 as regulates scar formation, 
inflammation, and neural regeneration after spinal cord injury 
through the miR-7a-5p/TGF-β (Transforming growth factor-β) R2 
axis (Wang et al., 2024).

3 NcRNA regulation of synaptic 
function after spinal cord injury

After spinal cord injury, inadequate axonal regeneration often leads 
to poor recovery, which is one of the most pressing challenges in the 
treatment of spinal cord injury (Bie et al., 2021). Developing successful 
regenerative strategies to reconnect axons within the central nervous 
system is crucial for spinal cord injury research (Shi et al., 2024). A 
large body of research results indicate that the biological functions of 
ncRNA are related to synaptic function (Table 1; Figure 1).

Circ_015152 can act as a sponge for miR-711. When its expression 
is reduced, the expression of miR-711 increases, inhibiting the 
activation of the Akt (Protein kinase B) pathway, thereby promoting 
axonal damage in the spinal cord (Liu et al., 2020). High expression of 
lncVof16 reduces the expression level of miR-185-5p through the 
miR-185-5p/GAP43 (Growth-associated protein 43) axis, thereby 
indirectly increasing the expression of GAP43, enhancing self-repair 
and promoting axonal growth to improve the prognosis after spinal 
cord injury (Hu et al., 2024). Overexpression of miR-132, miR-222, 
and miR-431 can significantly enhance axonal regeneration and 
functional recovery (Zhang N, et al., 2021).

Overexpression of let-7b-5p maintains the integrity of myelin by 
inhibiting its downstream target gene LRIG3 (Immunoglobulin 
domain-containing protein 3), and promotes axonal growth, 
ultimately restoring the functional ability of spinal cord injury mice 
(Liu et al., 2024). Perhaps by regulating the expression of ncRNAs, 
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we  can improve axonal regeneration function and thus achieve 
recovery and improvement of motor function.

Extensive studies have demonstrated that exosomes serve as 
critical intercellular communication tools for transferring ncRNAs 
between neurons and bodily fluids (Wang et al., 2022). Additionally, 
they possess the advantage of acting as drug delivery vehicles that can 
transport therapeutic agents to recipient cells without activating the 
immune system (Guo et  al., 2025), suggesting that the future 
combination of exosomes and ncRNAs may become a key strategy for 
improving spinal cord injury treatment. Furthermore, different 
ncRNAs exhibit distinct functional roles, and future research might 
focus on coordinated multi-target regulation to achieve enhanced 
synaptic function repair, thereby optimizing therapeutic outcomes.

4 NcRNA regulates oxidative stress 
after spinal cord injury

Many experimental and clinical studies have found the key role 
of ROS (Reactive oxygen species) and lipid peroxidation in the 
development of spinal cord injury (Chio et al., 2022; Hou et al., 
2021), the main reason is that the process of spinal cord injury 
development is accompanied by excessive production of free 
radicals, among which oxidative stress causes the spinal cord to 
be susceptible to oxidative damage, thereby triggering oxidative 
stress (Zhang H, et al., 2024; Yao H, et al., 2024). At the same time, 
a large number of studies have shown that ncRNAs play an 
important regulatory role in oxidative stress, and the abnormal 

TABLE 1  Regulation of the pathogenesis of spinal cord injury by ncRNAs.

ncRNAs Expression RNA regulatory axis expression SCI pathogenesis References

NcRNAs regulation of synaptic function after spinal cord injury

circ_015152 ↓ Circ_015152↓/ miR-711↑/ Akt↓ synaptic function ↓ Liu et al. (2020)

lncVof16 ↑ lncVof16↑/miR-185-5p↓/GAP43↑ synaptic function ↑ Hu et al. (2024)

miR-132

miR-222

miR-431

↑

miR-132↑

miR-222↑

miR-431↑

synaptic function ↑ Zhang N, et al. (2021)

let-7 b-5p ↑ let-7 b-5p↑/LRIG3↓ synaptic function ↑ Liu et al. (2024)

NcRNA regulation of oxidative stress after spinal cord injury

circZFHX3 ↑ circZFHX3↑/ miR-16-5p↓/IGF-1↑ oxidative stress ↓ Tian et al. (2022)

circWdfy3 ↑ circWdfy3↑/ miR-423-3p↓/GPX4↑ oxidative stress ↓ Shao et al. (2024a)

lncOIP5-AS1 ↑ lncOIP5-AS1↑/miR-128-3p↓/Nrf2↑ oxidative stress ↓ Jiang et al. (2024)

lncTCTN2 ↑ lncTCTN2↑/miR-329-3p↓/IGF1R↑ oxidative stress ↓ Liu et al. (2022)

miR-340-5p ↑ miR-340-5p↑/P38/MAPK↓ oxidative stress ↓ Qian et al. (2020)

NcRNA regulation of inflammatory response after spinal cord injury

circZFHX3 ↑ circZFHX3↑/ miR-16-5p↓/IGF-1↑ Inflammatory ↓ Tian et al. (2022)

circHIPK3 ↑ circHIPK3↑/miR-382-5p↓/DUSP1↑ inflammatory ↓ Yin et al. (2022)

circPedia_4,214 ↓ circPedia_4,214↓/miR-667-5p↑/Msr1↓ inflammatory ↓ Cao et al. (2023)

circWdfy3 ↑ circWdfy3↑/ miR-423-3p↓/GPX4↑ inflammatory ↓ Shao et al. (2024a)

circGla ↓ circGla↓/ miR-488↑/MEKK1↓ inflammatory ↓ Shao et al. (2024b)

lncAirsci ↓ lncAirsci↓/ NF-κB↓ inflammatory ↓ Zhang T, et al. (2021)

lncCCAT1 ↓ lncCCAT1↓/miR-218↑/NFAT5↓ inflammatory ↓ Xia et al. (2020)

lncNEAT ↓ lncNEAT↓/ miR-211-5p↑/MAPK1↓ inflammatory ↓ An et al. (2021)

lncGAS5 ↓ lncGAS5↓/ miR-93↑/PTEN↓ inflammatory ↓ Cao et al. (2021)

lncTCTN2 ↑ lncTCTN2↑/ miR-329-3p↓/IGF1R↑ inflammatory ↓ Liu et al. (2022)

lncXIST ↓ lncXIST↓/ miR-219-5p↑/NF-κB↓ inflammatory ↓ Zhong et al. (2021)

lncZFAS1 ↓ lncZFAS1↓/ miR-1953↑/ PTEN↓ inflammatory ↓ Chen et al. (2021)

lncMEG3 ↑ lncMEG3↑/HuR/A20/NF-κB↓ inflammatory ↓ Zhou et al. (2022)

lncXIST ↓ lncXIST↓/ miR-124-3p↑/IRF1↓ inflammatory ↓ Yang et al. (2023b)

lncTUG1 ↓ lncTUG1↓/ miR-1192↑/TLR3↓ inflammatory ↓ Ju et al. (2023)

lncGm37494 ↑ lncGm37494↑/ miR-130b-3p↓/PPARγ↑ inflammatory ↓ Shao et al. (2020)

let-7b-5p ↑ let-7b-5p↑/ LRIG3↓ inflammatory ↓ Liu et al. (2024)

miR-340-5p ↑ miR-340-5p↑/ P38/MAPK↓ inflammatory ↓ Qian et al. (2020)

miR-124-3p ↑ miR-124-3p↑/ MYH 9↓/PI3K/AKT↑/NF-κB↓ inflammatory ↓ Jiang et al. (2020)
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expression of ncRNAs causes the occurrence of oxidative stress 
(Table 1; Figure 1).

Overexpression of circZFHX3 (Tian et  al., 2022), circWdfy3 
(Shao et al., 2024a), lncTCTN2 (Liu et al., 2022), miR-340-5p (Qian 
et al., 2020) increases their expression levels by directly or indirectly 
acting on downstream targets, thereby enhancing cell viability, 
reducing ROS accumulation, reducing oxidative stress, and 
promoting the recovery of motor function. In addition, 
overexpression of lncOIP5-AS1 improves mitochondrial function 
and reduces oxidative stress through the miR-128-3p/Nrf2 axis, and 
the specific mechanism is that overexpression of lncOIP5-AS1 
indirectly leads to an increase in Nrf2 levels by increasing the spongy 
effect on miR-128-3p, thereby improving mitochondrial function, 
reducing oxidative stress, and promoting the recovery of spinal cord 
injury (Jiang et al., 2024).

Oxidative stress induced by spinal cord injury is caused by 
ROS accumulation and lipid peroxidation on the one hand, and 
mitochondrial function impairment on the other hand (Cui et al., 
2025). Therefore, activation of antioxidant pathway cannot 
completely solve the damage caused by oxidative stress. 
Meanwhile, mitochondrial function should be  repaired. By 
regulating the genes related to mitochondrial dynamics controlled 
by exosomes, mitochondrial membrane potential and ATP 
synthesis should be  improved to alleviate energy metabolism 
disorders. Exosomal RNA has regulatory effects in both aspects. 
Therefore, the effect of exosomal RNA treatment is better than 
antioxidant treatment alone.

5 NcRNA regulation of inflammatory 
response after spinal cord injury

Inflammation is considered an important pathological process in 
the secondary injury phase, which can directly or indirectly determine 
the therapeutic effect of spinal cord injury. Inflammatory response can 
greatly trigger a series of secondary injuries, leading to neuronal death 
and ultimately resulting in neurological dysfunction after injury (Lu 
et al., 2024). Numerous studies have shown that ncRNAs play a crucial 
role in regulating the inflammatory response, which may become an 
important means of treating and improving spinal cord injury 
(Table 1; Figure 1).

The mechanism of action of low-expression circGla is that circGla, 
as a competitive endogenous RNA of miR-488, indirectly reduces the 
expression of MEKK1 by acting as a sponge, thereby reducing the 
inflammatory state of astrocytes (Shao et al., 2024b). Overexpression 
of circZFHX3 activates microglia, promotes cell viability, and inhibits 
inflammatory responses (Tian et  al., 2022). Overexpression of 
circHIPK3 can increase DUSP1 expression through the miR-382-5p/
DUSP1 axis, thereby reducing the cellular inflammatory response (Yin 
et al., 2022). Low expression circPedia-4214 promote macrophage M2 
polarization and participate in the immuno-inflammatory response 
(Cao et  al., 2023). Overexpression of circWdfy3 reduces the 
accumulation of inflammatory factors and improves the prognosis 
after spinal cord injury (Shao et al., 2024a).

Low-expression lncZFAS1 indirectly inhibits PTEN expression by 
binding to miR-1953, thereby indirectly activating the PI3K/AKT 

FIGURE 1

Pathologic modulation of spinal cord injury by ncRNAs.
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pathway to further inhibit the inflammatory response, thereby 
promoting spinal cord function recovery after spinal cord injury 
(Chen et al., 2021). In addition, low expression of lncAirsci (Zhang T, 
et al., 2021), lncNEAT1 (An et al., 2021), lncGAS5 (Cao et al., 2021), 
lncXIST (Zhong et al., 2021) can reduce the inflammatory response, 
thereby promoting functional recovery after spinal cord injury. 
Overexpression of lncCCAT1 (Xia et  al., 2020) and lncTCTN2 
indirectly increases the expression level of downstream proteins 
through spongy action on downstream miRNAs, thereby reducing the 
inflammatory response and promoting functional recovery of spinal 
cord injury (Liu et al., 2022).

Overexpression of lncMEG3 (Zhou et al., 2022) and lncGm37494 
(Shao et al., 2020) and low expression of lncXIST (Yang et al., 2023b) 
and lncTUG1 (Ju et  al., 2023) inhibit M1-type polarization of 
microglia through indirect regulation of downstream targets, promote 
M2-type polarization, and secrete anti-inflammatory factors to reduce 
inflammatory response. In addition, overexpression of let-7b-5p 
attenuated pyroptosis in microglia/macrophages by inhibiting its 
downstream target gene LRIG3, thereby reducing the secondary 
inflammatory response after spinal cord injury (Liu et al., 2024).

Overexpression of miR-124-3p reduces neuroinflammation 
through the MYH9/PI3K/AKT/NF-κB signaling pathway, and the 
main mechanism is that overexpression of miR-124-3p can inhibit 
MYH9, and inhibition of the MYH9 signaling pathway can activate 
the PI3K/AKT signaling pathway and inhibit the NF-κB signaling 
pathway, which in turn inhibits A1 astrocytes, thereby inhibiting the 
activation of M1 microglia and microglia-induced neuroinflammatory 
response (Jiang et  al., 2020). Overexpression of miR-340-5p can 
reduce the inflammatory response by enhancing the inhibition of the 
downstream target P38-MAPK signaling pathway (Qian et al., 2020).

It can be seen that inflammation is the dominant factor in the 
pathological mechanism of spinal cord injury, and ncRNAs play an 
important role in the regulation of inflammatory response, which can 
achieve indirect regulation of inflammatory response by regulating the 
expression of ncRNAs, thereby improving spinal cord injury. However, 
for inflammatory response, anti-inflammatory alone cannot 
completely solve the progression of the disorder. Studies have shown 
that inflammation-oxidative stress is intermodulated (Xiong et al., 
2023), so that the best therapeutic effect can be achieved through a 
dual antioxidant-anti-inflammatory targeting strategy.

6 NcRNA regulation of autophagy 
after spinal cord injury

Autophagy is a lysosomal degradation pathway for cytoplasmic 
components and organelles, which is crucial for maintaining cellular 
homeostasis and defending against external stress (Yao H, et al., 2024; 
Li et al., 2022). Studies have found that autophagy plays an important 
role in improving spinal cord injury, as it alleviates nerve damage by 
regulating microtubule dynamics and mediating axonal regeneration, 
thereby exerting neuroprotective effects on spinal cord injury (Geng 
et  al., 2024). Additionally, autophagy can inhibit systemic 
inflammatory responses, reduce tissue damage and neuronal cell 
death induced by inflammatory cascades, and promote the recovery 
of neurological function (Zhang H, et al., 2024). Through continuous 
exploration, it has been discovered that ncRNAs play an important 
role in the regulation of autophagy, and perhaps by indirectly 

regulating the expression of ncRNAs to achieve the regulation of 
autophagy, it can become a new treatment method for spinal cord 
injury (Table 2; Figure 1).

High expression of circAstn1 activates autophagy through the 
miR-138-5p/Atg7 (Autophagy related 7) pathway to promote spinal 
cord repair after injury. Both miR-138-5p and Atg7 are downstream 
targets of circAstn1, and high expression of circAstn1 enhances its 
sponge effect on miR-138-5p, reducing its expression and indirectly 
increasing Atg7 expression (Shao et  al., 2025). Overexpression of 
circHIPK2 promotes autophagy and endoplasmic reticulum (ER) 
stress through the miR-124-3p/Smad2 pathway, further enhancing the 
activation of A1 astrocytes after spinal cord injury (Yang et al., 2024).

Low expression of lncSNHG1 reduces the sponge effect on 
miR-362-3p, indirectly inactivating the Jak2/Stat3 pathway and 
reducing cell autophagy (Zhou et  al., 2021). Overexpression of 
lncMALAT1 promotes the SIRT1 (Sirtuin 1) /AMPK (AMP-activated 
protein kinase) pathway through the miR-22-3p/SIRT1/AMPK axis, 
activating autophagy and thereby exerting neuroprotective effects, 
promoting the recovery of neurological function in spinal cord injury 
(Li et al., 2023).

Autophagy reduces inflammation and oxidative stress by clearing 
damaged organelles in the early stages of spinal cord injury, but 
excessive activation can exacerbate neuronal death (Shen et al., 2023), 
so regulation of autophagy may become an important means to 
improve spinal cord injury in the future. Exosomes encapsulate 
ncRNAs (acting as autophagy inhibitors) and target them to the 
injury site, inhibiting neurodegeneration caused by excessive 
autophagy, thus achieving motor neural function recovery after spinal 
cord injury.

7 NcRNA regulates cell apoptosis after 
spinal cord injury

After spinal cord injury, the adverse microenvironment of the 
injury, such as ischemia and hypoxia, free radical release, and acute 
inflammation, leads to the death of neuronal cells (Ji et al., 2024), 
among which apoptosis is widely considered to be  the key to 
secondary injury, which is the main reason for the deterioration of 
neurological function after spinal cord injury other than the primary 
mechanical injury (Yao et al., 2020). In addition, a large number of 
studies have found that in central nervous system disorders, inhibiting 
neuronal apoptosis will be beneficial to the recovery of motor function 
after spinal cord injury (Yin et al., 2022). At the same time, more and 
more evidence shows that ncRNAs are closely related to cell 
proliferation and apoptosis after spinal cord injury. Perhaps by 
regulating the expression of ncRNAs (Table  2; Figure  1), indirect 
regulation of cell proliferation and apoptosis can be achieved, which 
can become a new method for treating and improving spinal 
cord injury.

Overexpression of lncMALAT 1 promotes the SIRT1/AMPK 
pathway through the miR-22-3p/SIRT1/AMPK axis, inhibits apoptosis 
in nerve cells, and then exerts a neuroprotective role and promotes the 
recovery of nerve function after spinal cord injury (Li et al., 2023). In 
addition, overexpression of circZFHX3 (Tian et al., 2022), circHIPK3 
(Yin et al., 2022), lncCCAT1 (Xia et al., 2020), lncMIAT (He et al., 
2022), lncOIP5-AS1 (Jiang et al., 2024), lncRMRP (Hong et al., 2022; 
Wang et al., 2025), lncTSIX (Dong et al., 2023) and lnc TCTN2 (Liu 
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et  al., 2022) indirectly increased the expression of downstream 
proteins, thereby reducing apoptosis and promoting the recovery of 
motor function. Overexpression of miR-340-5p reduced apoptosis by 
inhibiting the P38/MAPK pathway, thereby promoting the recovery 
of neurological function after spinal cord injury (Qian et al., 2020).

Low expression of lncSNHG1 (Zhou et al., 2021), lncGAS5 (Cao 
et al., 2021), lncXIST (Zhong et al., 2021), and lncZFAS1 (Chen et al., 
2021) inhibits apoptosis by inhibiting downstream proteins, thereby 
promoting spinal cord function recovery after spinal cord injury. Low 
expression of miR-339 can target PDXK, and PDXK overexpression can 
significantly improve motor function, increase neuronal activity, reduce 
neuronal apoptosis, and improve spinal cord injury (Xiong et al., 2022).

In recent years, significant progress has been made in the research 
on apoptosis caused by exosomal RNA regulation of spinal cord 
injury, the core of which lies in the regulation of apoptosis-related 
pathways by non-coding RNAs to inhibit secondary damage and 
promote nerve repair. At the same time, cell proliferation should also 
be  promoted through exosomal RNA regulation. It can reduce 
apoptosis and promote cell proliferation, and achieve a better and 
more effective treatment strategy by inhibiting apoptosis and 
promoting proliferation.

8 Prospect

Spinal cord injury is a severe central nervous system disorder with 
complex pathogenesis that often leads to significant disability. 

However, despite advances in surgical techniques, there is still no 
effective treatment for this debilitating condition (Karsy and 
Hawryluk, 2019; Liu et al., 2025). After spinal cord injury, the blood-
spinal cord barrier is disrupted, leading to immune 
microenvironmental disturbances and poor regeneration of the 
injured spinal cord (Valido et al., 2023; Al Mamun et al., 2021). Due 
to the decline in immune cell function, spinal cord injury patients 
exhibit a higher incidence of infections. Individuals experience a 
transition from the acute to the chronic phase, during which changes 
in gene expression are also time-dependent (Mun et  al., 2022). 
Therefore, further exploration of the molecular mechanisms and 
changes in the microenvironment after spinal cord injury is crucial for 
developing better treatment strategies.

The blood-spinal cord barrier (BSCB), conceptually equivalent to 
the blood–brain barrier (BBB) in the spinal cord, provides a 
functional microenvironment similar to that of the BBB for spinal 
cord cellular components; therefore, the BSCB is considered a 
morphological extension of the BBB (Bartanusz et al., 2011), spinal 
cord injury also causes direct vascular damage and significant 
disruption of the BSCB (Sun et al., 2022; Whetstone et al., 2003). BBB 
damage has become an important factor in determining the 
progression and prognosis of central nervous system disorders, but 
currently, there are no clinical pharmacological treatments that 
directly address BBB dysfunction (Ihezie et al., 2021). Over the past 
decade, the involvement and regulatory functions of non-coding 
RNAs in BBB dysfunction in CNS disorders have been rapidly and 
extensively studied. A large body of evidence has demonstrated the 

TABLE 2  Regulation of the pathogenesis of spinal cord injury by ncRNAs.

ncRNAs Expression RNA regulatory axis expression SCI pathogenesis References

NcRNA regulation of autophagy after spinal cord injury

circAstn1 ↑ circAstn1↑/ miR-138-5p↓/Atg7↑ autophagy ↑ Shao et al. (2025)

circHIPK2 ↑ circHIPK2↑/ miR-124-3p↓/Smad2↑ autophagy ↑ Yang et al. (2024)

lncSNHG1 ↓ lncSNHG1↓/ miR-362-3p↑/ Jak2/stat3↓ autophagy ↓ Zhou et al. (2021)

lncMALAT1 ↑ lncMALAT1↑/ miR-22-3p↓/SIRT1/AMPK↑ autophagy ↑ Li et al. (2023)

NcRNA regulates cell apoptosis after spinal cord injury

circZFHX3 ↑ circZFHX3↑/ miR-16-5p↓/IGF-1↑ apoptosis ↓ Tian et al. (2022)

circHIPK3 ↑ circHIPK3↑/ miR-382-5p↓/DUSP1↑ apoptosis ↓ Yin et al. (2022)

lncCCAT1 ↑ lncCCAT1↑/ miR-218↓/NFAT5↑ apoptosis ↓ Xia et al. (2020)

lncMIAT ↑ lncMIAT↑/ RBFOX2↑ apoptosis ↓ He et al. (2022)

lncOIP5-AS1 ↑ lncOIP5-AS1↑/ miR-128-3p↓/Nrf 2↑ apoptosis ↓ Jiang et al. (2024)

lncRMRP ↑ lncRMRP↑/ miR-766-5p↓/FAM83A↑ apoptosis ↓ Hong et al. (2022)

lncTSIX ↑ lncTSIX↑/ miR-532-3p↓/ DDOST↑ apoptosis ↓ Dong et al. (2023)

lncSNHG1 ↓ lncSNHG1↓/ miR-362-3p↑/ Jak2/stat3↓ apoptosis ↓ Zhou et al. (2021)

lncGAS5 ↓ lncGAS5↓/ miR-93↑/PTEN↓ apoptosis ↓ Cao et al. (2021)

lncTCTN2 ↑ lncTCTN2↑/ miR-329-3p↓/IGF1R↑ apoptosis ↓ Liu et al. (2022)

lncRMRP ↑ lncRMRP↑/ EIF4A3↓/SIRT1↑ apoptosis ↓ Wang et al. (2025)

lncMALAT1 ↑ lncMALAT1↑/ miR-22-3p↓/SIRT1/AMPK↑ apoptosis ↓ Li et al. (2023)

lncXIST ↓ lncXIST↓/ miR-219-5p↑/NF-κB↓ apoptosis ↓ Zhong et al. (2021)

lncZFAS1 ↓ lncZFAS1↓/ miR-1953↑/ PTEN/ PI3K/AKT↓ apoptosis ↓ Chen et al. (2021)

miR-339 ↓ miR-339↓/ PDXK↑ apoptosis ↓ Xiong et al. (2022)

miR-340-5p ↑ miR-340-5p↑/ P38/MAPK↓ apoptosis ↓ Qian et al. (2020)
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effectiveness and capacity of miRNAs, lncRNAs, and circRNAs in 
protecting the BSCB in conditions such as spinal cord injury (Li 
et al., 2021).

Recent studies have shown that cell therapy plays an important 
role in the treatment of spinal cord injury. However, the therapeutic 
effects of cell transplantation in spinal cord injury models are still 
controversial, and their clinical application is limited by several 
factors, including potential tumorigenic risks (Zhang M, et al., 2024) 
and ethical concerns (Margiana et  al., 2022). However, research 
indicates that exosomes derived from stem cells have anti-
inflammatory effects and play an irreplaceable role in the treatment 
of spinal cord injury. As a new type of regenerative medicine 
therapeutic, they have advantages such as small size, low 
immunogenicity, and the ability to cross the blood-spinal cord barrier 
(Zhang et al., 2023).

However, despite the great potential of exosomal ncRNAs, its 
application as a therapeutic agent still faces significant challenges. One 
major obstacle is the effective monitoring and guidance of exosomes 
to reach their target receptor areas. Exosomes are small vesicles 
released by cells, making them difficult to track and control once 
administered (Guo et al., 2025; Wang et al., 2022), and there are also 
issues such as short duration of action. However, biomaterials are of 
great value in treating and repairing damaged tissues, as well as in 
assisting drug delivery and release. Emerging biomaterials not only 
aim to restore the structure and function of damaged tissues but also 
promote their regeneration through active and targeted interactions.

Compared with traditional drug interventions and surgical 
treatments, the use of biomaterial scaffolds can reduce some of the 
complex side effects of drugs and obstacles to functional recovery after 
surgery. However, biomaterials may be recognized as foreign objects 
by the patient’s immune system, triggering inflammatory reactions. 
This reaction may exacerbate the inflammatory microenvironment 
after spinal cord injury, further damaging neural tissue. Therefore, it 
is crucial to develop a treatment method that can target controlled 
drug delivery with minimal side effects.

Exosomes have strong biological activity but suffer from issues 
such as short duration of action, while biomaterials (such as hydrogels 
and scaffolds) can serve as sustained-release carriers for exosomes, 
prolonging their retention time at the injury site and improving the 
therapeutic effect (Yang et al., 2023a). The combination of the two can 
compensate for their respective shortcomings and improve the 
therapeutic effect. Perhaps in the future, through material engineering 
and gene editing techniques, the combination of exosomes and 
biomaterials can be further optimized, such as designing materials 
with specific degradation rates to match the release kinetics of 
exosomes, thereby improving the utilization efficiency of exosomes. 
At the same time, this can also reduce costs and be more conducive to 
clinical translation. On the premise of verifying the safety and 
effectiveness of the combination therapy, personalized biomaterial and 
exosome combination schemes can be designed based on the patient’s 
specific condition, which is expected to achieve more precise 
personalized treatment.

9 Conclusion

In recent years, the understanding of the pathological 
mechanisms of spinal cord injury has deepened, and at the same time, 

it has been discovered that the abnormal expression of ncRNA plays 
an increasingly important role in the regulation of the pathological 
mechanisms of spinal cord injury. ncRNA plays an important role in 
the pathophysiological process after spinal cord injury, including 
synaptic regeneration, oxidative stress, inflammatory response, 
autophagy, and cell proliferation and apoptosis. These processes are 
interwoven and collectively influence the outcome of spinal cord 
injury. Based on the critical role of ncRNA in the pathophysiology of 
spinal cord injury, ncRNA can be regarded as a potential therapeutic 
target. By regulating ncRNA, these processes can be  intervened, 
providing new strategies for the treatment of spinal cord injury. For 
example, by designing specific ncRNA mimics or inhibitors, the 
expression and function of ncRNA can be targeted for regulation, 
thereby achieving targeted treatment of spinal cord injury.
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