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Spinal cord injury (SCI) is a serious disorder that affects sensory, motor, and
autonomic functions. Its pathological process is divided into two stages: primary
and secondary injury. The secondary injury involves a variety of biological cascade
reactions, leading to an imbalance in the spinal cord microenvironment. Non-
coding RNAs (ncRNAs) play a crucial regulatory role in the pathophysiological
process of spinal cord injury, including long non-coding RNAs (IncRNAs), circular
RNAs (circRNAs), and microRNAs (miRNAs), all of which are involved in processes
such as axonal regeneration, oxidative stress, inflammatory response, autophagy,
and apoptosis. Although the pathophysiological process of spinal cord injury has
been partially elucidated, its pathogenesis is not yet fully understood, and effective
treatments are limited. This article reviews the regulatory role and molecular
mechanisms of NncRNAs in the development and progression of spinal cord injury
and proposes strategies for treating spinal cord injury by regulating ncRNAs.
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1 Introduction

Spinal cord injury (SCI) is one of the most complex disorder, with pathological
consequences that affect sensory, motor, and/or autonomic functions (Costichescu et al., 2022;
Lietal, 2020). The primary reason for this is that the spinal cord is the main communication
system between the brain and the body, ensuring the exchange of information and signals for
coordinated activities (Costachescu et al., 2022). Its injury can lead to interruptions in neural
circuits and connections, resulting in neural dysfunction (Yuan et al., 2021). Specifically, spinal
cord injury can lead to damage to blood flow, respiration, body temperature, body pressure,
and sensation, as well as permanent consequences such as paralysis, autonomic dysfunction,
and neuropathic pain (Costachescu et al., 2022).

The pathological process of spinal cord injury is divided into two stages. The primary
injury is the first stage, which includes the death of neurons and glial cells, bleeding, foreign
body invasion, and disruption of the axonal network (Ahuja et al., 2020). The second stage is
secondary injury, which can last for several weeks and involves a series of biological cascade
reactions, such as neuroexcitotoxicity, vascular dysfunction, inflammatory damage, apoptosis,
free radical production, and lipid peroxidation (Ahuja et al., 2020; Anjum et al., 2020). At the
same time, these factors significantly contribute to the imbalance of the spinal cord
microenvironment. However, our understanding of the spinal cord microenvironment after
spinal cord injury remains very limited (Seblani et al., 2023; Ortega et al., 2023; Chio et al.,
20215 Peng et al., 2024). The “microenvironmental imbalance” after spinal cord injury is
defined as the loss of homeostatic balance in tissues, cells, and molecules at different times and
locations, which exacerbates and accelerates the progression of spinal cord injury (Peng et al.,
20245 Fan et al., 2018). Studies have found that this process may involve abnormal gene
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expression, such as ncRNAs playing an important regulatory role in
the pathophysiology of spinal cord injury.

Researchers have discovered that various non-coding RNAs
(ncRNAs), such as long non-coding RNAs (IncRNAs), circular RNAs
(circRNAs), and microRNAs (miRNAs), exhibit differential expression
following central nervous system (CNS) injuries,such as spinal cord
injury (Li et al., 2021). Furthermore, IncRNAs and circRNAs can
function as competing endogenous RNAs (ceRNAs) to sponge and
inhibit the expression of miRNAs, thereby creating complex regulatory
networks (Guo et al., 2025). Existing studies have demonstrated that
ncRNAs, including circRNAs (Xu et al., 2021; Yuan et al,, 2020),
IncRNAs (Zhou and Yu, 2021; Cai et al, 2023), and miRNAs
(Baichurina et al, 2021; Xu et al, 2024), are involved in the
pathophysiological processes of spinal cord injury, such as axonal
regeneration, oxidative stress, inflammatory responses, autophagy,
and apoptosis.

Although basic research has clarified the pathophysiological
processes of spinal cord injury, the underlying pathogenic mechanisms
remain incompletely understood, and effective treatment options are
still limited. Therefore, this article aims to review and categorize the
regulatory roles and molecular mechanisms of ncRNAs in the
development and progression of spinal cord injury and proposes
strategies for treating spinal cord injury by targeting the pathogenic
mechanisms of ncRNAs.

2 NcRNA and spinal cord injury

ncRNAs refer to RNA molecules that do not have the potential to
encode proteins, making up the vast majority of RNAs and accounting
for approximately 98-99% of the RNA produced by the mammalian
genome (Arraiano, 2021; Sun et al., 2022). This category includes
RNAs with specific functions, such as rRNA, tRNA, snRNA, snoRNA,
and miRNA. Additionally, IncRNA and circRNA are new members of
the non-coding RNA family that can act as sponges for miRNAs,
thereby reducing their expression levels (Yao X, et al., 2024). However,
increasing evidence indicates that ncRNAs play a crucial role in spinal
cord injury, suggesting their significant potential in the diagnosis,
evaluation, and treatment of spinal cord injury.

MiRNAs are highly conserved single-stranded ncRNAs typically
composed of 20-22 nucleotides (Yao X, et al., 2024). The typical
function of miRNAs is to negatively regulate gene expression by
binding to target mRNAs, leading to mRNA degradation or inhibition
of translation (Yao X, et al., 2024). Studies have shown that each
miRNA can target hundreds of genes and can regulate more than
one-third of human genes (Sun et al., 2022), playing a role in the
regulation of neurological disorders and disorders associated with
nerve trauma (Arzhanov et al,, 2022; Silvestro and Mazzon, 2022). For
example, miR-7b-3p plays a dual role in supporting cortical plasticity
and neuroprotection after spinal cord injury (Ghibaudi et al., 2021).
The overexpression of miR-423-5p can act as a polarizing regulator of
microglia, inhibiting the polarization of the M1 phenotype by
suppressing the expression of NLRP3 (NOD-like receptor family pyrin
domain-containing 3), and can be used for the treatment of spinal
cord injury (Cheng et al., 2021).

LncRNAs are a class of RNA transcripts longer than 200
nucleotides that, despite lacking the ability to encode proteins,
resemble mRNA (Salvatori et al., 2020). They possess various
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epigenetic regulatory forms, including DNA methylation, histone
modification, and regulation of miRNAs (Yao X, et al., 2024).
Additionally, numerous studies indicate that IncRNAs play significant
roles in development, metabolism, as well as in the function of the
nervous and immune systems (Chen and Kim, 2024). For instance,
IncAirsci is significantly upregulated during the acute inflammatory
phase of spinal cord injury. However, the inhibition of IncAirsci can
alleviate the inflammatory response through NF-kB (Nuclear
factor-xB) signaling pathway, promoting functional recovery (Zhang
T, et al,, 2021).

CircRNAs are generated from precursor mRNA through back-
splicing of exons and are widely expressed in tissue-specific and
developmental stage-specific patterns (Yao X, et al., 2024). Increasing
evidence suggests that circRNAs regulate various cellular processes
by acting as miRNA sponges, anchors for cRBPs (circRNA-binding
proteins), transcriptional regulators, molecular scaffolds, and
sources for the translation of small proteins/peptides (Misir et al.,
2022). Unlike linear RNAs, circRNAs are circular molecules with
covalently closed loop structures and are involved in a wide range of
biological processes. Disruptions in their expression can lead to
cellular dysfunction and disorder (Chen, 2016). A substantial body
of evidence indicates that circRNAs are highly expressed in the
spinal cord and play crucial roles in multiple processes of
neurological disorders. For example, CircHIPK3 mitigates
inflammation and neuronal apoptosis after spinal cord injury by
regulating the miR-382-5p/DUSP1 (Dual-specificity phosphatase 1)
axis (Yin et al., 2022). CircCDRI as regulates scar formation,
inflammation, and neural regeneration after spinal cord injury
through the miR-7a-5p/TGF-f (Transforming growth factor-p) R2
axis (Wang et al., 2024).

3 NcRNA regulation of synaptic
function after spinal cord injury

After spinal cord injury, inadequate axonal regeneration often leads
to poor recovery, which is one of the most pressing challenges in the
treatment of spinal cord injury (Bie et al., 2021). Developing successful
regenerative strategies to reconnect axons within the central nervous
system is crucial for spinal cord injury research (Shi et al., 2024). A
large body of research results indicate that the biological functions of
ncRNA are related to synaptic function (Table 15 Figure 1).

Circ_015152 can act as a sponge for miR-711. When its expression
is reduced, the expression of miR-711 increases, inhibiting the
activation of the Akt (Protein kinase B) pathway, thereby promoting
axonal damage in the spinal cord (Liu et al., 2020). High expression of
IncVof16 reduces the expression level of miR-185-5p through the
miR-185-5p/GAP43 (Growth-associated protein 43) axis, thereby
indirectly increasing the expression of GAP43, enhancing self-repair
and promoting axonal growth to improve the prognosis after spinal
cord injury (Hu et al., 2024). Overexpression of miR-132, miR-222,
and miR-431 can significantly enhance axonal regeneration and
functional recovery (Zhang N, et al., 2021).

Overexpression of let-7b-5p maintains the integrity of myelin by
inhibiting its downstream target gene LRIG3 (Immunoglobulin
domain-containing protein 3), and promotes axonal growth,
ultimately restoring the functional ability of spinal cord injury mice
(Liu et al., 2024). Perhaps by regulating the expression of ncRNAs,
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TABLE 1 Regulation of the pathogenesis of spinal cord injury by ncRNAs.

ncRNAs

Expression

RNA regulatory axis expression

NcRNAs regulation of synaptic function after spinal cord injury

SCI pathogenesis

10.3389/fncel.2025.1645639

References

circ_015152 1 Circ_015152]/ miR-7111/ Akt] synaptic function | Liu et al. (2020)
IncVof16 1 IncVof161/miR-185-5p | /GAP431 synaptic function 1 Hu et al. (2024)
miR-132 miR-1327

miR-222 ) miR-2221 synaptic function 1 Zhang N, et al. (2021)
miR-431 miR-4317

let-7 b-5p 1 let-7 b-5p1/LRIG3| synaptic function 1 Liu et al. (2024)

NcRNA regulation of oxi

dative stress after spinal cord injury

circZFHX3 T circZFHX31/ miR-16-5p | /IGF-11 oxidative stress | Tian et al. (2022
circWdfy3 1 circWdfy31/ miR-423-3p|/GPX41 oxidative stress | Shao et al. (2024a)
IncOIP5-AS1 1 IncOIP5-AS11/miR-128-3p|/Nrf21 oxidative stress | Jiang et al. (2024)
IncTCTN2 1 IncTCTN21/miR-329-3p|/IGF1RT oxidative stress | Liu et al. (2022)
miR-340-5p T miR-340-5p1/P38/MAPK| oxidative stress | Qian et al. (2020)

NcRNA regulation of inflammatory response

after spinal cord injury

circZFHX3 1 circZFHX31/ miR-16-5p | /IGF-11 Inflammatory | Tian et al. (2022)
circHIPK3 1 circHIPK31/miR-382-5p|/DUSP11 inflammatory | Yin et al. (2022)
circPedia_4,214 15 circPedia_4,214|/miR-667-5pt/Msrl] inflammatory | Cao et al. (2023)
circWdfy3 1 circWdfy31/ miR-423-3p|/GPX41 inflammatory | Shao et al. (2024a)
circGla 1 circGla|/ miR-4881/MEKK1/] inflammatory | Shao et al. (2024b)
IncAirsci 15 IncAirsci|/ NF-kB| inflammatory | Zhang T, et al. (2021)
IncCCAT1 15 IncCCAT1}/miR-2181/NFAT5] inflammatory | Xia et al. (2020)
IncNEAT 15 IncNEAT |/ miR-211-5p1/MAPK1] inflammatory | An et al. (2021)
IncGAS5 1 IncGAS5]/ miR-931/PTEN] inflammatory | Cao et al. (2021)
IncTCTN2 T IncTCTN21/ miR-329-3p|/IGFIR? inflammatory | Liu et al. (2022)
IncXIST 15 IncXIST}/ miR-219-5p1/NF-xB| inflammatory | Zhong et al. (2021)
IncZFAS1 I3 IncZFAS1|/ miR-19531/ PTEN| inflammatory | Chen et al. (2021)
IncMEG3 T IncMEG31/HuR/A20/NF-xB| inflammatory | Zhou et al. (2022)
IncXIST 1 IncXIST|/ miR-124-3p1/IRF1| inflammatory | Yang et al. (2023b)
IncTUGI1 1 IncTUG1]}/ miR-11921/TLR3| inflammatory | Ju et al. (2023)
IncGm37494 ) IncGm374941/ miR-130b-3p|/PPARy?T inflammatory | Shao et al. (2020)
let-7b-5p 1 let-7b-5p1/ LRIG3| inflammatory | Liu et al. (2024)
miR-340-5p 1 miR-340-5p1/ P38/MAPK| inflammatory | Qian et al. (2020)
miR-124-3p 1 miR-124-3p1/ MYH 9|/PI3K/AKT1/NF-xB| inflammatory | Jiang et al. (2020)

we can improve axonal regeneration function and thus achieve
recovery and improvement of motor function.

Extensive studies have demonstrated that exosomes serve as
critical intercellular communication tools for transferring ncRNAs
between neurons and bodily fluids (Wang et al., 2022). Additionally,
they possess the advantage of acting as drug delivery vehicles that can
transport therapeutic agents to recipient cells without activating the
immune system (Guo et al, 2025), suggesting that the future
combination of exosomes and ncRNAs may become a key strategy for
improving spinal cord injury treatment. Furthermore, different
ncRNAs exhibit distinct functional roles, and future research might
focus on coordinated multi-target regulation to achieve enhanced
synaptic function repair, thereby optimizing therapeutic outcomes.
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4 NcRNA regulates oxidative stress
after spinal cord injury

Many experimental and clinical studies have found the key role
of ROS (Reactive oxygen species) and lipid peroxidation in the
development of spinal cord injury (Chio et al., 2022; Hou et al,,
2021), the main reason is that the process of spinal cord injury
development is accompanied by excessive production of free
radicals, among which oxidative stress causes the spinal cord to
be susceptible to oxidative damage, thereby triggering oxidative
stress (Zhang H, et al., 2024; Yao H, et al., 2024). At the same time,
a large number of studies have shown that ncRNAs play an
important regulatory role in oxidative stress, and the abnormal
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FIGURE 1
Pathologic modulation of spinal cord injury by ncRNAs.
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expression of ncRNAs causes the occurrence of oxidative stress
(Table 1; Figure 1).

Overexpression of circZFHX3 (Tian et al., 2022), circWdfy3
(Shao et al,, 2024a), IncTCTN2 (Liu et al., 2022), miR-340-5p (Qian
etal., 2020) increases their expression levels by directly or indirectly
acting on downstream targets, thereby enhancing cell viability,
reducing ROS accumulation, reducing oxidative stress, and
promoting the recovery of motor function. In addition,
overexpression of IncOIP5-AS1 improves mitochondrial function
and reduces oxidative stress through the miR-128-3p/Nrf2 axis, and
the specific mechanism is that overexpression of IncOIP5-AS1
indirectly leads to an increase in Nrf2 levels by increasing the spongy
effect on miR-128-3p, thereby improving mitochondrial function,
reducing oxidative stress, and promoting the recovery of spinal cord
injury (Jiang et al., 2024).

Oxidative stress induced by spinal cord injury is caused by
ROS accumulation and lipid peroxidation on the one hand, and
mitochondrial function impairment on the other hand (Cui et al.,
2025). Therefore, activation of antioxidant pathway cannot
completely solve the damage caused by oxidative stress.
Meanwhile, mitochondrial function should be repaired. By
regulating the genes related to mitochondrial dynamics controlled
by exosomes, mitochondrial membrane potential and ATP
synthesis should be improved to alleviate energy metabolism
disorders. Exosomal RNA has regulatory effects in both aspects.
Therefore, the effect of exosomal RNA treatment is better than
antioxidant treatment alone.

Frontiers in Cellular Neuroscience

5 NcRNA regulation of inflammatory
response after spinal cord injury

Inflammation is considered an important pathological process in
the secondary injury phase, which can directly or indirectly determine
the therapeutic effect of spinal cord injury. Inflammatory response can
greatly trigger a series of secondary injuries, leading to neuronal death
and ultimately resulting in neurological dysfunction after injury (Lu
etal,, 2024). Numerous studies have shown that ncRNAs play a crucial
role in regulating the inflammatory response, which may become an
important means of treating and improving spinal cord injury
(Table 1; Figure 1).

The mechanism of action of low-expression circGla is that circGla,
as a competitive endogenous RNA of miR-488, indirectly reduces the
expression of MEKKI1 by acting as a sponge, thereby reducing the
inflammatory state of astrocytes (Shao et al., 2024b). Overexpression
of circZFHX3 activates microglia, promotes cell viability, and inhibits
inflammatory responses (Tian et al, 2022). Overexpression of
circHIPK3 can increase DUSP1 expression through the miR-382-5p/
DUSP1 axis, thereby reducing the cellular inflammatory response (Yin
etal,, 2022). Low expression circPedia-4214 promote macrophage M2
polarization and participate in the immuno-inflammatory response
(Cao et al, 2023). Overexpression of circWdfy3 reduces the
accumulation of inflammatory factors and improves the prognosis
after spinal cord injury (Shao et al., 2024a).

Low-expression IncZFAS1 indirectly inhibits PTEN expression by
binding to miR-1953, thereby indirectly activating the PI3K/AKT

frontiersin.org


https://doi.org/10.3389/fncel.2025.1645639
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org

Baoetal.

pathway to further inhibit the inflammatory response, thereby
promoting spinal cord function recovery after spinal cord injury
(Chenetal, 2021). In addition, low expression of IncAirsci (Zhang T,
etal, 2021), IncNEAT1 (An et al,, 2021), IncGAS5 (Cao et al., 2021),
IncXIST (Zhong et al,, 2021) can reduce the inflammatory response,
thereby promoting functional recovery after spinal cord injury.
Overexpression of IncCCAT1 (Xia et al., 2020) and IncTCTN2
indirectly increases the expression level of downstream proteins
through spongy action on downstream miRNAs, thereby reducing the
inflammatory response and promoting functional recovery of spinal
cord injury (Liu et al., 2022).

Overexpression of IncMEG3 (Zhou et al,, 2022) and IncGm37494
(Shao etal., 2020) and low expression of IncXIST (Yang et al., 2023b)
and IncTUGI (Ju et al, 2023) inhibit M1-type polarization of
microglia through indirect regulation of downstream targets, promote
M2-type polarization, and secrete anti-inflammatory factors to reduce
inflammatory response. In addition, overexpression of let-7b-5p
attenuated pyroptosis in microglia/macrophages by inhibiting its
downstream target gene LRIG3, thereby reducing the secondary
inflammatory response after spinal cord injury (Liu et al., 2024).

Overexpression of miR-124-3p reduces neuroinflammation
through the MYH9/PI3K/AKT/NF-kB signaling pathway, and the
main mechanism is that overexpression of miR-124-3p can inhibit
MYHY, and inhibition of the MYH?9 signaling pathway can activate
the PI3K/AKT signaling pathway and inhibit the NF-xB signaling
pathway, which in turn inhibits A1 astrocytes, thereby inhibiting the
activation of M1 microglia and microglia-induced neuroinflammatory
response (Jiang et al., 2020). Overexpression of miR-340-5p can
reduce the inflammatory response by enhancing the inhibition of the
downstream target P38-MAPK signaling pathway (Qian et al., 2020).

It can be seen that inflammation is the dominant factor in the
pathological mechanism of spinal cord injury, and ncRNAs play an
important role in the regulation of inflammatory response, which can
achieve indirect regulation of inflammatory response by regulating the
expression of ncRNAs, thereby improving spinal cord injury. However,
for inflammatory response, anti-inflammatory alone cannot
completely solve the progression of the disorder. Studies have shown
that inflammation-oxidative stress is intermodulated (Xiong et al.,
2023), so that the best therapeutic effect can be achieved through a
dual antioxidant-anti-inflammatory targeting strategy.

6 NcRNA regulation of autophagy
after spinal cord injury

Autophagy is a lysosomal degradation pathway for cytoplasmic
components and organelles, which is crucial for maintaining cellular
homeostasis and defending against external stress (Yao H, et al., 2024;
Lietal, 2022). Studies have found that autophagy plays an important
role in improving spinal cord injury, as it alleviates nerve damage by
regulating microtubule dynamics and mediating axonal regeneration,
thereby exerting neuroprotective effects on spinal cord injury (Geng
et al, 2024). Additionally, autophagy can inhibit systemic
inflammatory responses, reduce tissue damage and neuronal cell
death induced by inflammatory cascades, and promote the recovery
of neurological function (Zhang H, et al., 2024). Through continuous
exploration, it has been discovered that ncRNAs play an important
role in the regulation of autophagy, and perhaps by indirectly
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regulating the expression of ncRNAs to achieve the regulation of
autophagy, it can become a new treatment method for spinal cord
injury (Table 2; Figure 1).

High expression of circAstnl activates autophagy through the
miR-138-5p/Atg7 (Autophagy related 7) pathway to promote spinal
cord repair after injury. Both miR-138-5p and Atg7 are downstream
targets of circAstnl, and high expression of circAstnl enhances its
sponge effect on miR-138-5p, reducing its expression and indirectly
increasing Atg7 expression (Shao et al., 2025). Overexpression of
circHIPK2 promotes autophagy and endoplasmic reticulum (ER)
stress through the miR-124-3p/Smad2 pathway, further enhancing the
activation of A1 astrocytes after spinal cord injury (Yang et al., 2024).

Low expression of IncSNHGI reduces the sponge effect on
miR-362-3p, indirectly inactivating the Jak2/Stat3 pathway and
reducing cell autophagy (Zhou et al, 2021). Overexpression of
IncMALAT1 promotes the SIRT1 (Sirtuin 1) /AMPK (AMP-activated
protein kinase) pathway through the miR-22-3p/SIRT1/AMPK axis,
activating autophagy and thereby exerting neuroprotective effects,
promoting the recovery of neurological function in spinal cord injury
(Liet al,, 2023).

Autophagy reduces inflammation and oxidative stress by clearing
damaged organelles in the early stages of spinal cord injury, but
excessive activation can exacerbate neuronal death (Shen et al., 2023),
so regulation of autophagy may become an important means to
improve spinal cord injury in the future. Exosomes encapsulate
ncRNAs (acting as autophagy inhibitors) and target them to the
injury site, inhibiting neurodegeneration caused by excessive
autophagy, thus achieving motor neural function recovery after spinal
cord injury.

7 NcRNA regulates cell apoptosis after
spinal cord Injury

After spinal cord injury, the adverse microenvironment of the
injury, such as ischemia and hypoxia, free radical release, and acute
inflammation, leads to the death of neuronal cells (Ji et al., 2024),
among which apoptosis is widely considered to be the key to
secondary injury, which is the main reason for the deterioration of
neurological function after spinal cord injury other than the primary
mechanical injury (Yao et al., 2020). In addition, a large number of
studies have found that in central nervous system disorders, inhibiting
neuronal apoptosis will be beneficial to the recovery of motor function
after spinal cord injury (Yin et al., 2022). At the same time, more and
more evidence shows that ncRNAs are closely related to cell
proliferation and apoptosis after spinal cord injury. Perhaps by
regulating the expression of ncRNAs (Table 2; Figure 1), indirect
regulation of cell proliferation and apoptosis can be achieved, which
can become a new method for treating and improving spinal
cord injury.

Overexpression of IncMALAT 1 promotes the SIRT1/AMPK
pathway through the miR-22-3p/SIRT1/AMPK axis, inhibits apoptosis
in nerve cells, and then exerts a neuroprotective role and promotes the
recovery of nerve function after spinal cord injury (Li et al., 2023). In
addition, overexpression of circZFHX3 (Tian et al., 2022), circHIPK3
(Yin et al., 2022), IncCCAT1 (Xia et al., 2020), IncMIAT (He et al.,
2022), IncOIP5-AS1 (Jiang et al., 2024), IncRMRP (Hong et al., 2022;
Wang et al., 2025), IncTSIX (Dong et al,, 2023) and Inc TCTN2 (Liu
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TABLE 2 Regulation of the pathogenesis of spinal cord injury by ncRNAs.

ncRNAs Expression

NcRNA regulation of autophagy after spinal cord injury

RNA regulatory axis expression

10.3389/fncel.2025.1645639

SCI pathogenesis References

circAstnl T circAstn1t/ miR-138-5p|/Atg71 autophagy 1 Shao et al. (2025)
circHIPK2 1 circHIPK21/ miR-124-3p|/Smad2t autophagy 1 Yang et al. (2024)
IncSNHG1 1 IncSNHG1 |/ miR-362-3p1/ Jak2/stat3| autophagy | Zhou et al. (2021)
IncMALAT1 1 IncMALAT11/ miR-22-3p|/SIRT1/AMPK? autophagy 1 Li et al. (2023)

NcRNA regulates cell apoptosis after spinal cord injury

circZFHX3 T circZFHX31/ miR-16-5p/IGF-11 apoptosis | Tian et al. (2022)
circHIPK3 1 circHIPK31/ miR-382-5p|/DUSP11 apoptosis | Yin et al. (2022)
IncCCAT1 1 IncCCAT11/ miR-218|/NFAT51 apoptosis | Xia et al. (2020)
IncMIAT 1 IncMIAT1/ RBFOX21 apoptosis | He et al. (2022
IncOIP5-AS1 1 IncOIP5-AS11/ miR-128-3p|/Nrf 21 apoptosis | Jiang et al. (2024)
IncRMRP 1 IncRMRP1/ miR-766-5p|/FAM83A 1t apoptosis | Hong et al. (2022)
IncTSIX ) IncTSIX1/ miR-532-3p|/ DDOST? apoptosis | Dong et al. (2023)
IncSNHG1 1 IncSNHG1|/ miR-362-3p1/ Jak2/stat3| apoptosis | Zhou et al. (2021)
IncGAS5 1 IncGAS5]/ miR-931/PTEN| apoptosis | Cao et al. (2021)
IncTCTN2 T IncTCTN21/ miR-329-3p|/IGFIR? apoptosis | Liu et al. (2022)
IncRMRP 1 IncRMRP1/ EIF4A3]/SIRT11 apoptosis | Wang et al. (2025)
IncMALAT1 T IncMALAT11/ miR-22-3p|/SIRT1/AMPK? apoptosis | Li et al. (2023)
IncXIST 1 IncXIST}/ miR-219-5p1/NF-xB| apoptosis | Zhong et al. (2021)
IncZFAS1 l IncZFAS1]/ miR-19531/ PTEN/ PI3K/AKT] apoptosis | Chen et al. (2021)
miR-339 1 miR-339)/ PDXK?1 apoptosis | Xiong et al. (2022)
miR-340-5p 1 miR-340-5p1/ P38/MAPK| apoptosis | Qian et al. (2020)

et al, 2022) indirectly increased the expression of downstream
proteins, thereby reducing apoptosis and promoting the recovery of
motor function. Overexpression of miR-340-5p reduced apoptosis by
inhibiting the P38/MAPK pathway, thereby promoting the recovery
of neurological function after spinal cord injury (Qian et al., 2020).

Low expression of IncSNHG1 (Zhou et al., 2021), IncGAS5 (Cao
etal, 2021), IncXIST (Zhong et al., 2021), and IncZFAS1 (Chen et al,,
2021) inhibits apoptosis by inhibiting downstream proteins, thereby
promoting spinal cord function recovery after spinal cord injury. Low
expression of miR-339 can target PDXK, and PDXK overexpression can
significantly improve motor function, increase neuronal activity, reduce
neuronal apoptosis, and improve spinal cord injury (Xiong et al., 2022).

In recent years, significant progress has been made in the research
on apoptosis caused by exosomal RNA regulation of spinal cord
injury, the core of which lies in the regulation of apoptosis-related
pathways by non-coding RNAs to inhibit secondary damage and
promote nerve repair. At the same time, cell proliferation should also
be promoted through exosomal RNA regulation. It can reduce
apoptosis and promote cell proliferation, and achieve a better and
more effective treatment strategy by inhibiting apoptosis and
promoting proliferation.

8 Prospect

Spinal cord injury is a severe central nervous system disorder with
complex pathogenesis that often leads to significant disability.
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However, despite advances in surgical techniques, there is still no
effective treatment for this debilitating condition (Karsy and
Hawryluk, 2019; Liu et al., 2025). After spinal cord injury, the blood-
spinal cord barrier is disrupted, leading to immune
microenvironmental disturbances and poor regeneration of the
injured spinal cord (Valido et al., 2023; Al Mamun et al., 2021). Due
to the decline in immune cell function, spinal cord injury patients
exhibit a higher incidence of infections. Individuals experience a
transition from the acute to the chronic phase, during which changes
in gene expression are also time-dependent (Mun et al, 2022).
Therefore, further exploration of the molecular mechanisms and
changes in the microenvironment after spinal cord injury is crucial for
developing better treatment strategies.

The blood-spinal cord barrier (BSCB), conceptually equivalent to
the blood-brain barrier (BBB) in the spinal cord, provides a
functional microenvironment similar to that of the BBB for spinal
cord cellular components; therefore, the BSCB is considered a
morphological extension of the BBB (Bartanusz et al., 2011), spinal
cord injury also causes direct vascular damage and significant
disruption of the BSCB (Sun et al., 2022; Whetstone et al., 2003). BBB
damage has become an important factor in determining the
progression and prognosis of central nervous system disorders, but
currently, there are no clinical pharmacological treatments that
directly address BBB dysfunction (Ihezie et al., 2021). Over the past
decade, the involvement and regulatory functions of non-coding
RNAs in BBB dysfunction in CNS disorders have been rapidly and

extensively studied. A large body of evidence has demonstrated the
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effectiveness and capacity of miRNAs, IncRNAs, and circRNAs in
protecting the BSCB in conditions such as spinal cord injury (Li
et al., 2021).

Recent studies have shown that cell therapy plays an important
role in the treatment of spinal cord injury. However, the therapeutic
effects of cell transplantation in spinal cord injury models are still
controversial, and their clinical application is limited by several
factors, including potential tumorigenic risks (Zhang M, et al., 2024)
and ethical concerns (Margiana et al., 2022). However, research
indicates that exosomes derived from stem cells have anti-
inflammatory effects and play an irreplaceable role in the treatment
of spinal cord injury. As a new type of regenerative medicine
therapeutic, they have advantages such as small size, low
immunogenicity, and the ability to cross the blood-spinal cord barrier
(Zhang et al., 2023).

However, despite the great potential of exosomal ncRNAs, its
application as a therapeutic agent still faces significant challenges. One
major obstacle is the effective monitoring and guidance of exosomes
to reach their target receptor areas. Exosomes are small vesicles
released by cells, making them difficult to track and control once
administered (Guo et al., 2025; Wang et al., 2022), and there are also
issues such as short duration of action. However, biomaterials are of
great value in treating and repairing damaged tissues, as well as in
assisting drug delivery and release. Emerging biomaterials not only
aim to restore the structure and function of damaged tissues but also
promote their regeneration through active and targeted interactions.

Compared with traditional drug interventions and surgical
treatments, the use of biomaterial scaffolds can reduce some of the
complex side effects of drugs and obstacles to functional recovery after
surgery. However, biomaterials may be recognized as foreign objects
by the patient’s immune system, triggering inflammatory reactions.
This reaction may exacerbate the inflammatory microenvironment
after spinal cord injury, further damaging neural tissue. Therefore, it
is crucial to develop a treatment method that can target controlled
drug delivery with minimal side effects.

Exosomes have strong biological activity but suffer from issues
such as short duration of action, while biomaterials (such as hydrogels
and scaffolds) can serve as sustained-release carriers for exosomes,
prolonging their retention time at the injury site and improving the
therapeutic effect (Yang et al., 2023a). The combination of the two can
compensate for their respective shortcomings and improve the
therapeutic effect. Perhaps in the future, through material engineering
and gene editing techniques, the combination of exosomes and
biomaterials can be further optimized, such as designing materials
with specific degradation rates to match the release kinetics of
exosomes, thereby improving the utilization efficiency of exosomes.
At the same time, this can also reduce costs and be more conducive to
clinical translation. On the premise of verifying the safety and
effectiveness of the combination therapy, personalized biomaterial and
exosome combination schemes can be designed based on the patient’s
specific condition, which is expected to achieve more precise
personalized treatment.

9 Conclusion

In recent years, the understanding of the pathological
mechanisms of spinal cord injury has deepened, and at the same time,
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it has been discovered that the abnormal expression of ncRNA plays
an increasingly important role in the regulation of the pathological
mechanisms of spinal cord injury. ncRNA plays an important role in
the pathophysiological process after spinal cord injury, including
synaptic regeneration, oxidative stress, inflammatory response,
autophagy, and cell proliferation and apoptosis. These processes are
interwoven and collectively influence the outcome of spinal cord
injury. Based on the critical role of ncRNA in the pathophysiology of
spinal cord injury, ncRNA can be regarded as a potential therapeutic
target. By regulating ncRNA, these processes can be intervened,
providing new strategies for the treatment of spinal cord injury. For
example, by designing specific ncRNA mimics or inhibitors, the
expression and function of ncRNA can be targeted for regulation,
thereby achieving targeted treatment of spinal cord injury.
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