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Direct and indirect role of
non-coding RNAs in company
with amyloid and tau protein in
promoting neuroinflammation in
post-ischemic brain
neurodegeneration

Ryszard Pluta*

Department of Pathophysiology, Medical University of Lublin, Lublin, Poland

Post-ischemic brain neurodegeneration with subsequent neuroinflammation is a
major cause of mortality, permanent disability, and the development of Alzheimer's
disease type dementia in the absence of appropriate treatment. The inflammatory
response begins immediately after ischemia and can persist for many years. Post-
ischemic neuroinflammation plays a dual role: initially, it is essential for brain
repair and maintenance of homeostasis, but when it becomes uncontrolled, it
causes secondary damage and worsens neurological outcome. Neuroinflammation
is a complex phenomenon involving interactions between infiltrating immune
cells from the peripheral circulation and resident immune cells in ischemic brain
areas. This review focuses on the complex relationship between non-coding
RNAs, amyloid accumulation, tau protein modifications, and the development of
neuroinflammation in the post-ischemic brain. In particular, it clarifies whether
the cooperation of non-coding RNAs with amyloid and tau protein enhances
neuroinflammation and whether the vicious cycle of neuroinflammatory responses
affects the production, behavior, and aggregation of these molecules. Ultimately,
elucidating these interactions is critical, as they may contribute to resolving the
phenomenon of post-ischemic brain neurodegenerative mechanisms. Furthermore,
this review highlights the role of neuroinflammation as a functionally complex
immune response regulated/mediated by transcription factors and cytokines.
Additionally, it examines how the presence of non-coding RNAs, amyloid aggregation,
and modified tau protein may shape the inflammatory landscape. This review
aims to advance our understanding of post-ischemic neuroinflammation and its
implications for long-term brain health.

KEYWORDS
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1 Introduction

Human cerebral ischemia remains the leading cause of mortality and long-term disability
worldwide (Pacheco-Barrios et al,, 2022; Hou et al., 2024). The disease affects millions of
people worldwide, placing a significant burden on those affected and on society (Ding Q. et al.,
2022). In this regard, the United Nations has identified cerebral ischemia as a global priority
to reduce the social burden (Ding Q. et al., 2022). The ultimate effect of cerebral ischemia is
its neurodegeneration, a progressive phenomenon, classified as a neurodegenerative disease,
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meaning that it develops over time. Therefore, it is only several years
after cerebral ischemia that patients notice symptoms such as memory
loss and deterioration of cognitive functions. Survivors of ischemia
often develop multiple cognitive impairments, ranging from mild
cognitive impairment to advanced dementia (Dammavalam et al.,
2024; Ngamdu and Kalra, 2024). It is worth emphasizing that the risk
of dementia in people who have survived cerebral ischemia is twice as
high as in people who have not had a history of ischemic injury
(Ngamdu and Kalra, 2024). In addition, evidence suggests that post-
ischemic brain damage accelerates the onset of dementia by about
10 years (De Ronchi et al., 2007; Pendlebury and Rothwell, 2009).

These symptoms occur because neurons in the hippocampus,
responsible for thinking, learning and memory, die (Pluta et al., 2009;
Pluta and Czuczwar, 2024a). As the disease progresses, there is a
gradual loss of neuronal cells in other brain structures, ultimately
leading to brain atrophy (Pluta et al., 2009). Amyloid plaques,
neurofibrillary tangles, and cerebral amyloid angiopathy are
characteristic features of progressive, post-ischemic brain
neurodegeneration (Kato et al., 1988; Pluta et al., 1994a; Van Groen
et al., 2005; Qi et al., 2007; Pluta et al., 2009; Hatsuta et al., 2019).
Cerebral amyloid angiopathy is associated with cerebral vascular
dysfunction, increased blood-brain barrier permeability, and chronic
neuroinflammation, which further contributes to the progression of
neurodegeneration with dementia of Alzheimer’s disease phenotype
(Kiryk et al, 2011; Pluta et al, 202la, 2023a; Pluta and
Czuczwar, 2024b).

In recent years, a strong association has been demonstrated
between the cumulative effects of cerebral ischemia and Alzheimer’s
disease (Lecordier et al, 2022; Pluta, 2024). Cerebral vascular
dysfunction leading to ischemic episodes is now widely recognized as
an etiological factor of Alzheimer’s disease, causing the pathogenesis
characteristic of Alzheimer’s disease (Elman-Shina and Efrati, 2022;
Lecordier et al., 2022; Das et al., 2023; Pluta, 2024; Pluta, 2025).
Neurofibrillary tangles together with amyloid plaques damage the
functioning of neurons and their connections, which leads to the
interruption of signal transmission in the neuronal network (Bloom,
2014). In addition, amyloid oligomers and plaques and neurofibrillary
tangles activate neighboring microglial cells and astrocytes, which
additionally leads to the multidirectional initiation of a
neuroinflammatory reaction (Sobue et al., 2023; Pluta, 2025). The
neuroinflammatory response, through the release of inflammatory
factors, induces extensive, progressive acute and then chronic
neuroinflammatory changes that additionally damage neighboring
ischemic neurons, leading to their late death and severe damage to the
neuronal network (Martinez-Cué and Rueda, 2020). Over time, the
accumulation of these toxic substances and phenomena contributes
to the progressive degeneration of neurons, which ultimately leads to
a deterioration of cognitive functions and the onset of Alzheimer’s
disease type dementia.

Post-ischemic neuroinflaimmation, which lasts from several
minutes to several years, causes secondary irreversible damage to
brain tissue (Sekeljic et al., 2012; Radenovic et al., 2020; Arruri and
Vemuganti, 2022; Morris-Blanco et al., 2022; Pluta et al., 2021a; Pluta,
2025). For this reason, neuroinflammation is considered a key target
for therapeutic intervention to improve post-ischemia outcomes
(Lambertsen et al., 2019; Vemuganti and Arumugam, 2021). Post-
ischemic neuroinflammation, which is associated with innate and
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adaptive immune responses, activates various cell types, matrix
components, extra- and intracellular receptors, and related signaling
events in the brain during acute, subacute, and chronic stages (Simats
and Liesz, 2022). The inflammatory response of blood vessels exposes
the adhesion molecule P-selectin on the surface of endothelial cells
and platelets, which attracts circulating leukocytes to the endothelium,
and P-selectin on platelets binds to leukocytes, forming intravascular
emboli that secondarily impede blood flow and exacerbate
cerebrovascular damage (Pluta et al., 1994b; Anrather and ladecola,
2016). Activated endothelial cells also release E-selectin, vascular cell
adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule
1 (ICAM-1), which further support leukocyte binding and migration
after cerebral ischemia (Andjelkovic et al., 2019).

On the other hand, the immune response in brain tissue is
initiated by the release of damage-associated molecular patterns
(DAMPs) such as high-mobility group box 1 (HMGBL1), adenosine
triphosphate (ATP), heat shock proteins (HSP), DNA, and RNA from
dying cells, which are then detected by immune effectors, including
brain-resident microglia, via pattern recognition receptors (Giilke
etal,, 2018). This recognition causes microglia to release inflammatory
factors, including tumor necrosis factor alpha (TNF-a), interleukins
(IL) IL-6, and IL-1PB, inducible nitric oxide synthase (iNOS),
complement proteins, and matrix metalloproteases (MMPs), leading
to disruption of the integrity of the blood-brain barrier (Pluta et al.,
2023a; Pluta, 2025). This allows peripheral immune cells, such as
macrophages, neutrophils, T cells, and lymphocytes, to migrate to the
ischemic-damaged area of the brain (Simats and Liesz, 2022). DAMPs
associated with ischemic injury also induce reactive astrogliosis,
which leads to the further release of inflammatory factors such as
TNF-a, IL-1a, and interferon-y, which enhance neuroinflammation
and cause delayed neuronal death (Li L. et al., 2022). Although the
acute neuroinflammatory response following cerebral ischemia aims
to restore brain homeostasis, but uncontrolled chronic inflammation
results in rapid neuronal cell death, leading to adverse neurological
sequelae. The above phenomena indicate a dual role of
neuroinflammation in ischemic injury (Jin et al., 2017; Pluta, 2025).

It should be emphasized that the transcription of pro- and anti-
inflammatory genes in the ischemic brain is also tightly regulated by
transcription factors and non-coding RNAs (ncRNAs) (Morris-Blanco
et al, 2022; Pluta, 2025). For example, the transcription factor
CCAAT/enhancer binding protein (C/EBP) g, considered one of the
master regulators of the immune system, is activated in a subset of
neurons within hours after cerebral ischemia (Pluta, 2025). This leads
to the release of pro-inflammatory cytokines such as IL-1f and TNF-«
(Wu et al, 2023). Another example is the induction of the
proinflammatory transcription factor early growth response-1 (Egrl)
after focal ischemia, which is known to induce inflammatory gene
expression and secondary brain injury (Tureyen et al., 2008). Once
inflammatory transcripts and cytokines are formed, their fate is
controlled by interaction with ncRNAs and epitranscriptomic
modifications, indicating the involvement of multiple levels of
inflammatory gene regulation in the post-ischemic brain (Chokkalla
etal., 2022).

Transcription factors not only control the induction of
inflammatory factors, but also participate in the inflammatory cascade
by regulating ncRNA expression. Among others, various transcription
factors, including c-Myc, p53, NF-kB, and HIF-1a, are responsible for
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miRNA biogenesis and subsequent changes (Mehta et al., 2024a,b;
Pluta, 2025). For example, the transcription factor p53 regulates
miRNA-34a and miRNA-145 and thus influences the behavior of
microglial cells (Mehta et al., 2024a,b). Similarly, NF-«xB activation
modulates the expression of many pro-inflammatory genes and
miRNAs, such as miRNA-9, miRNA-21, miRNA-146a, and miRNA-
155, which are known to influence inflammatory mRNAs (Adly Sadik
etal, 2021; Zhan et al., 2023). In addition, transcription factor E2F1
can directly modulate miRNA-122 transcription in the ischemic brain.
Moreover, changes in IncRNAs and circRNAs after cerebral ischemia
are regulated by a set of transcription factors (Cao et al., 2020; Mehta
et al., 2023a). Thus, NF-kB has recently been shown to exacerbate
brain tissue damage following ischemia by promoting the expression
of the pro-inflammatory IncRNA FosDT (Mehta et al.,, 2023a).

As research on the mechanisms of post-ischemia neurodegeneration
progresses, increasing attention has been paid to the important role that
previously overlooked ncRNAs may play. NcRNAs were initially thought
to be “junk RNAs” However, findings from the Human Genome Project
and the ENCODE initiative have revealed that a significant portion of
the human genome is transcribed into various ncRNAs (Watson, 1990;
Djebalietal., 2012; ENCODE Project Consortium, 2012). These studies
have shown that various ncRNAs play important roles in controlling
gene expression and cellular mechanisms under both normal and
pathological conditions. NcRNAs are a group of functional RNAs that
do not encode proteins but regulate gene expression. The DNA sequence
from which ncRNA is transcribed is often called an RNA gene. NcRNAs
vary in size, shape, and location and are classified into three main types
such as micro RNAs (miRNAs), long non-coding RNAs (IncRNAs), and
circular RNAs (circRNAs) (Asim et al., 2021).

In the post-ischemic brain, ncRNAs have been shown to be involved
in key processes related to ischemic pathology, including amyloid
production, tau protein hyperphosphorylation, and neuroinflammation
(Mehta et al,, 2024a,b; Pluta, 2025). These unbalanced pathological
processes cause secondary damage to the brain parenchyma after
ischemia (ladecola et al., 2020). An increasing number of studies indicate
that ncRNAs influence the severity of pathological reactions by
preventing the repair of brain parenchyma and at the same time causing
progressive irreversible damage. Therefore, ncRNAs are currently
considered as potential targets for future treatments of post-ischemic
neurodegeneration (Vemuganti, 2013).

Moreover, the expression and distribution of ncRNAs in blood
and brain are altered after ischemia, indicating the possibility of
finding new biomarkers and potential prognostic factors after cerebral
ischemia (Takuma et al., 2017). They interact with DNA, mRNA and
proteins, which allows them to modulate many biological processes.
New research has revealed a significant role of ncRNAs in the
development of post-ischemic brain neurodegeneration, leading to
irreversible neurological deficits.

This article reviews the role of ncRNAs in ischemia and
reperfusion-induced brain injury, focusing on how ncRNAs influence
key molecular and cellular pathways involved in the brain response to
ischemia, with a primary focus on the development of
neuroinflammation. The aim of this review is to synthesize the current
research and provide a comprehensive understanding of the
multifaceted role of ncRNAs after cerebral ischemia, which may
provide a basis for future studies and new therapeutic strategies
targeting ncRNAs. Although dysregulation of ncRNAs has been
detected in the brain after ischemia, the mechanisms of how different
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types of ncRNAs regulate specific ischemia-related processes are still
not fully understood.

It should be emphasized that this research gap limits our ability to
fully understand the neuropathogenesis of neurodegeneration
following cerebral ischemia. Therefore, the analysis of current studies
on the relationship between ncRNAs and ischemia will determine the
current state of knowledge and systematize the available knowledge
on the mechanisms of progressive brain neurodegeneration after
ischemia in connection with the development of neuroinflammation.
Understanding the regulatory mechanisms of ncRNAs may not only
shed light on the neurodegenerative processes following cerebral
ischemia but also provide innovative biomarkers or therapeutic targets
for the development of new diagnostic approaches and therapeutic
strategies. These findings are expected to significantly accelerate the
development of diagnostics and treatments for ischemia-induced
brain neurodegeneration, improving patient outcomes and quality
of life.

An additional aim of this review is to investigate the relationship
between post-ischemic brain neurodegeneration and different types
of ncRNAs in the context of amyloid accumulation and tau protein
modification, with particular emphasis on the development of
neuroinflammation, as well as to discover their functions and
mechanisms in the negative interaction. Combining these phenomena
may provide valuable information that will support future research in
this area. The role of ncRNAs in the pathogenesis and search for
targets for the prevention and treatment of post-ischemic brain
neurodegeneration from the perspective of their properties has
recently become a hot topic. To my knowledge, this is the first review
paper linking three types of ncRNAs (circRNA, IncRNA, miRNA) in
association with amyloid and tau protein in the development of
neuroinflammation in post-ischemic brain neurodegeneration.

2 Non-coding RNAs post-ischemia

Numerous studies have revealed differential expression of
miRNAs, IncRNAs, and circRNAs following cerebral ischemia and
have revealed the processes by which specific ncRNAs modulate post-
ischemia neurodegeneration (Dharap et al., 2012; Tiedt and Dichgans
2018; Zhang et al., 2019; Lu et al., 2020; Mehta et al., 2023b,c; Sun
et al., 2026). Moreover, increasing evidence indicates an important
role of ncRNAs in regulating the development of neuroinflammation
after brain ischemia (Lu et al.,, 2020; Mehta et al., 2024a,b). The
of ncRNAs related to the
neuroinflammation in the occurrence and progression of

involvement development of
neurodegenerative processes following cerebral ischemia is
increasingly being suggested. In recent years, with the development of
knowledge about the role of ncRNAs after cerebral ischemia, they
have begun to be treated as active rather than passive factors
of neurodegeneration.

2.1 MiRNAs and post-ischemic
neuroinflammation

It was revealed that some miRNAs, which are highly expressed in
the ischemic brain, can be detected in blood. After regional cerebral
ischemia, 114 miRNAs were identified. Only 10 miRNAs were
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differentially expressed in blood and brain tissue post-ischemia.
MiRNAs expression pattern was shown to change upon reperfusion,
indicating temporal manifestation during ischemic injury (Jeyaseelan
et al., 2008). Growing evidence links miRNAs to secondary brain
injury following cerebral ischemia (Dharap et al., 2009; Li G. et al,,
2018; Pluta and Jabtonski, 2021). MiRNAs have been shown to
regulate early and delayed stages of neuroinflammatory signaling
following cerebral ischemia (KKhoshnam et al., 2017).

Innate immune cells, including neutrophils, monocytes,
macrophages, and NK cells, have been found to begin infiltrating the
brain within hours of ischemia and release proinflammatory factors
that promote neuroinflammation (ladecola et al., 2020; Pluta, 2025).
MiRNA-193a-5p has been shown to protect the brain after ischemia
by restoring N2-type neutrophils by reprogramming them towards an
anti-inflammatory phenotype (Han et al., 2023). In patients after focal
cerebral ischemia, increased miR-193a-5p levels correlated with better
neurological outcomes after 3 months of follow-up (Han et al., 2023).
Similarly, miR-193a agomiR reduced infarct size and improved motor
function after transient focal cerebral ischemia in mice, indicating a
protective effect of miR-193a-5p (Han et al., 2023).

In patients after ischemia, reduced miR-424 concentration in
blood was found, which correlated positively with neurological
outcomes (Zhao et al., 2013). Mice subjected to permanent focal
cerebral ischemia also showed reduced levels of miR-424 in the blood
and ipsilateral cerebral hemisphere, and treatment with a miR-424
mimic inhibited microglia activation, resulting in neuroprotection
(Zhao etal., 2013). In mice, after permanent or transient local cerebral
ischemia, the level of miR-669c increased in the peri-infarct brain
cortex (Kolosowska et al., 2020). Lentiviral overexpression of
miR-669c decreased brain damage and improved neurological
outcomes in mice after regional cerebral ischemia (Kolosowska et al.,
2020). It was found that the positive effect of miR-669¢ was associated
with the induction of alternative activation of microglia and
macrophages (Kolosowska et al., 2020).

It was revealed that after reversible focal cerebral ischemia in mice,
the level of miR-210 in the brain increased and was maintained for 7 days,
and its inhibition suppresses TNF-q, IL-1 and IL-6 as well as reduced the

10.3389/fncel.2025.1670462

infarct volume and improved motor functions (Lou et al., 2012; Huang
etal, 2018). Abnormally regulated miRNAs have been found in blood
even months after ischemic stroke in young patients. It has been shown
that miRNAs can be used to differentiate stroke types. It has also been
found that miRNAs profiling can provide an additional tool for clinicians
to determine stroke outcome (Tan et al, 2009). It was found that
miRNA-15a/miRNA-16-1 knockout mice showed resistance to reversible
cerebral 2017).  Additionally,
antagomiRNA-15a/miRNA16-1 was shown to reduce brain damage and

local ischemia (Yang et al,
improve motor function after local cerebral ischemia (Yang et al., 2017).
The obtained neuroprotective effects were associated with a reduction in
the levels of TNF-q, IL-6, MCP-1 and VCAM-1 (Yang et al., 2017).
Induction of miRNA-181 after focal ischemia promoted secondary brain
injury, while its inhibition via suppression of NF-kB activity reduced
infarct volume and improved behavioral recovery (Xu et al., 2015). Thus,
several miRNAs have been shown to have the potential to regulate post-
ischemic neuroinflammation and its associated secondary brain injury
(Table 1).

2.2 LncRNAs and post-ischemic
neuroinflammation

Clinical observations have revealed that IncRNAs are significantly
altered in the blood and brains of patients with ischemic stroke and
play a key role in its pathogenesis (Chen J. et al., 2021). Studies on the
role and mechanisms of IncRNAs in the pathogenesis and recovery of
stroke aim to promote the clinical application of IncRNAs as potential
diagnostic and prognostic markers and therapeutic targets.

LncRNA FosDT induced after reversible focal cerebral ischemia
has been shown to promote injury and behavioral deficits (Mechta
etal, 2015). In contrast, silencing or knockdown the expression of the
IncRNA FosDT gene after ischemia reduced the infarct size and
improved motor functions (Mehta et al., 2015; Mehta et al., 2021a).
The influence of IncRNA FosDT has been shown to be associated with
the activation of inflammatory genes following ischemia (Mechta et al.,
2015; Mehta et al., 2021a).

TABLE 1 Regulatory role of non-coding RNAs in neuroinflammation in the post-ischemic brain.

NcRNA type Regulatory path Effect Brain ischemia Reference

miRNA-181 1 NF-xB Pro-inflammatory Harmful Focal Xu et al. (2015)

miRNA-193a-5p 1 N2-type neutrophils Anti-inflammatory Beneficial Focal Han et al. (2023)

miRNA-424 1 Inhibition microglia Anti-inflammatory Beneficial Permanent focal Zhao et al. (2013)

miRNA-669¢ t Inhibition microglia & Anti-inflammatory Beneficial Focal Kolosowska et al. (2020)
macrophages

miRNA-210 1 TNFa, IL-1p, IL-6 1 Pro-inflammatory Harmful Focal Huang et al. (2018)

IncRNA H19 t HDACI1-M1 microglia Pro-inflammatory Harmful Focal Wang et al. (2017)
polarization

IncRNA MEG3 1 KLF4-M1 microglia Pro-inflammatory Harmful Focal Li T. et al. (2020)
polarization

circRNA CDRIlas | TNFa, IL-1 1, Pro-inflammatory Harmful Focal Mehta et al. (2023b)
a-synuclein pathology 1

circRNA HCTD1 1 TNFa, IL-16, IL-6 1 Pro-inflammatory Harmful Focal Peng et al. (2019)

HDACI, histone deacetylase 1; KLF4, Kriippel-like factor 4; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; TNFa, tumor necrosis factor o; IL-1p, Interleukin-1 beta;

IL-6, Interleukin 6. Expression: 1-increase, |-decrease.
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It has been shown that patients after cerebral ischemia have
increased levels of IncRNA H19 in the blood, which promotes the
development of neuroinflammation by driving histone deacetylase
1-dependent M1 microglial polarization (Wang et al, 2017).
Moreover, after reversible focal cerebral ischemia in mice, increased
levels of IncRNA H19 were demonstrated in white blood cells and
brain (Wang et al., 2017). However, downregulation of IncRNA H19
after ischemia had a beneficial effect, reducing infarct size, cerebral
edema, and improving motor function (Wang et al., 2017). It was
shown that the above effect was caused by a decrease in the levels of
TNF-a and IL-1f and an increase in the level of IL-10, which indicates
the immunomodulatory role of IncRNA H19 post-ischemia (Wang
et al., 2017). The above mechanism was confirmed in an in vitro
ischemic model where it was shown that IncRNA H19 reduction
changed the phenotype of microglial cells from pro-inflammatory to
anti-inflammatory via inhibition of histone deacetylase 1 (Wang et al.,
2017). Moreover, after reversible experimental local cerebral ischemia,
IncRNA H19 was shown to promote leukocyte activation via the
miRNA-29b/C1QTNF6 axis, triggering the release of TNF-a and
IL-1p, which enhanced neuroinflammation (Li G. et al., 2022).

Microglia polarization has been shown to be influenced by IncRNA
NEAT]1, which is increased in the blood of patients after cerebral
ischemia. Knockdown of IncRNA NEAT1 downregulates microglia
activation, reduces neuronal apoptosis and infarct size after cerebral
ischemia (Ni et al., 2020). Another study revealed reduced expression
of IncRNA MALAT1 in the blood of patients after cerebral ischemia,
which was closely associated with the negative effects of ischemia (Ren
etal., 2020). However, high expression of IncRNA MALAT1 resulted
in a reduction of the effects of cerebral ischemia and a decrease in the
level of pro-inflammatory factors (Ren et al., 2020). Experimental
studies after reversible cerebral ischemia revealed that IncRNA
MALAT]1 is upregulated in cerebral microvessels (Zhang et al., 2017).
Mice with the IncRNA MALAT1 gene knocked out showed increased
brain damage, neurological deficits and impaired motor function
(Zhang etal., 2017). Increased levels of pro-inflammatory factors such
as [L-6, E-selectin and MCP-1 were found in ischemic mice with the
IncRNA MALAT1 gene knocked out (Zhang et al., 2017). The above
studies provided evidence that IncRNA MALAT1 plays an important
role after ischemia in reducing cerebrovascular and brain parenchyma
damage through anti-apoptotic and anti-inflammatory activity.

In a subsequent study, IncRNA MEG3 was shown to be upregulated
following ischemia and its downregulation promoted better neurological
outcomes following reversible cerebral ischemia in animals (Yan et al.,
20165 Li T et al,, 2020). The beneficial effect of IncRNA MEGS3 silencing
was associated with a change in microglial cell polarization towards an
anti-inflammatory phenotype, as well as with a reduction in TNF-a and
IL-1p levels, and a reduction in neuronal cell loss (Yan et al., 2016; Li
T et al, 2020). These studies indicate an important role of IncRNAs in
the regulation of post-ischemic neuroinflammation and suggest their
potential utility as therapeutic targets in the development of post-
ischemic brain neurodegeneration (Table 1).

2.3 CircRNAs and post-ischemic
neuroinflammation

CircRNAs have been shown to undergo quantitative and temporal
changes in the peri-infarct brain cortex of animals following reversible
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ischemic brain injury (Mehta et al., 2017). It has been revealed that
m6A-modified circRNAs can regulate functions related to synaptic
processes, and this may potentially influence synaptic activity after
cerebral ischemia (Mehta et al., 2024b). Among others, it has been
presented that the level of circRNA CDR1as is downregulated during
long-term reperfusion after transient focal ischemia (Mehta et al.,
2017; Mehta et al., 2023b). However, increased expression of circRNA
CDR1as was found to provide resistance to cerebral ischemic injury
by increasing the level of miRNA-7 and inhibiting the pathological
effects of a-synuclein (Mehta et al., 2023c¢). The data therefore indicate
that miRNA-7 is a pro-survival molecule essential for the recovery of
brain function following ischemia (Mechta et al., 2023b,c). The
neuroprotective effect of circRNA CDRlas seems to be partially
mediated by reducing the level of IL-1p released from activated
microglial cells, which has a direct effect on limiting the severity of
neuroinflammation after ischemia (Mehta et al., 2023b). There is a
study indicating that overexpression of circRNA CDR1as promotes
the transition of macrophages to an anti-inflammatory phenotype,
indicating the anti-inflammatory properties of circRNA CDRlas
(Gonzalez et al., 2022).

In a study of blood mononuclear cells from patients with cerebral
ischemia, increased expression of circRNA HECTD1 in these cells was
demonstrated, which correlated with blood levels of TNF-«, IL-6, and
IL-1f. Expression of circRNA HECTD1 correlated with higher disease
risk, disease severity, neuroinflammation, and recurrent cerebral
ischemia (Peng et al, 2019). Moreover, it was revealed that the
concentrations of circRNA FUNDC, circRNA PDS5B and circRNA
CDCI14A in blood were significantly increased in patients after
cerebral ischemia, and their levels correlated with the infarct size (Zuo
etal, 2020). In patients after cerebral ischemia, a significant increase
in the expression of circRNA PDS5B in lymphocytes and granulocytes
and only in granulocytes for circRNA CDC14A was found, and their
levels positively correlated with the infarct volume. Taken together
these three circRNAs enhance neuroinflammatory responses
following brain ischemia. The combination of expression of these 3
circRNAs may serve as a biomarker for diagnosing and predicting
stroke outcomes (Zuo et al, 2020). High expression of circRNA
CDCI14A was revealed in blood and peri-infarct neutrophils and
astrocytes in mice after reversible local cerebral ischemia. Decreased
expression of circCDCI14A in peripheral blood neutrophils reduced
significantly surface area of activated astrocytes in the peri-infarct
cortex, infarct size and neurological outcome and survival rate
significantly improved within 7 days (Zuo et al., 2021). Overall, the
above evidence indicate an important role of circRNAs in regulating
post-ischemic neuroinflammation (Table 1).

3 CircRNA-miRNA interactions in
post-ischemic neuroinflammation

CircRNAs bind and control miRNAs, and this interaction controls
competitive endogenous RNA (ceRNA) networks (circRNA-miRNA-
mRNA) to regulate translation of target mRNAs. CircRNA ciRS-7/
CDR1as, which is highly expressed in neocortical and hippocampal
neurons, is an example of a circRNA with a regulatory role
in the ceRNA network (Hansen et al., 2011). Other studies indicate
that the circRNA/mRNA network plays a key role in controlling
neuroinflammation in neurodegeneration (Piwecka et al., 2017; Mehta
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etal,, 2020; Mehta et al., 2023b). CircRNA polymorphisms associated
with neuroinflammation development have been shown to
be associated with functional outcomes in patients after cerebral
ischemia (Liu et al., 2021). For example, the circ-STAT3 rs2293152 GG
genotype was identified as associated with poorer recovery 90 days
after ischemia. The results indicate that circ-STAT3 may be a novel
biomarker for predicting functional outcomes after ischemic stroke
and an important contributor to post-ischemic recovery (Liu
etal., 2021).

It was found that the levels of circRNA DLGAP4 in blood were
significantly reduced in both patients and mice after focal cerebral
ischemia (Bai et al, 2018). Upregulation of circRNA DLGAP4
significantly attenuated neurological deficits and reduced infarct
volume and blood-brain barrier permeability in transient focal
cerebral ischemia in mice. Data indicate that circRNA DLGAP4
ameliorates the effects of cerebral ischemia by targeting miR-143 (Bai
etal., 2018). Another study revealed that the expression of circRNA
TTC3 was upregulated in mice after focal cerebral ischemia (Yang
etal, 2021). Depletion of circRNA TTC3 reduced the infarct volume,
neurological deficits, and brain water content. In this study, it was
found that circRNA TTC3 promoted post-ischemic brain injury via
the miR-372-3p/TLR4 axis (Yang et al., 2021). One day after ischemia,
circRNA_0000831 was shown to be significantly reduced in the mouse
brain (Huang et al, 2022). In contrast, overexpression of the
circRNA_0000831 inhibited neuroinflammation and apoptosis by
blocking miRNA-16-5p (Huang et al., 2022).

CircRNA CDCI14A was shown to be induced in in vivo and
in vitro ischemia models (Huo et al., 2022). In contrast, silencing
circRNA CDCI14A reduced cerebral infarction, apoptosis, and
neurological deficits induced by local cerebral ischemia. Thus,
circCDC14A promoted post-ischemic brain injury via regulating the
miR-23a-3p/CXCL12 axis, suggesting that circCDC14A may become
a potential therapeutic target for cerebral ischemia (Huo et al., 2022).

Transient focal cerebral ischemia in mice significantly reduced the
levels of both circRNA CDRlas and miR-7 in the peri-infarct cortex
within 3-72 h of recirculation (Mehta et al., 2023b). Overexpression
of circRNA CDR1as inhibited a-synuclein generation after ischemia,
accelerated motor function recovery, reduced infarct size, and reduced
markers of apoptosis, autophagy, mitochondrial fragmentation, and
neuroinflammation. Stimulation of circRNA CDR1as was shown to
exert neuroprotective effects after ischemia, likely by protecting
miRNA-7 and preventing a-synuclein-induced neuronal death (Mehta
etal., 2023b). Transient cerebral ischemia has been shown to increase
a-synuclein gene expression and protein levels in neurons (Kim
Toetal, 2016; Pluta et al., 20252). It has also been shown that knocking
down or knocking out a-synuclein significantly reduced
neuroinflammation, infarct volume, and promoted neurological
recovery in rodents subjected to cerebral ischemia (Kim T. et al,,
2016).
a-synuclein translation, leading to improved neuronal survival after

Moreover, increased miRNA-7a-5p level suppressed
experimental focal cerebral ischemia (Kim et al., 2018; Mehta et al.,
2023c). It has been noted that the relationship between circRNA
CDRI1as and miRNA-7 is quite complex, namely, instead of inhibiting
its function, circRNA CDRlas can protect, stabilize and transport
miRNA-7 in cells, suggesting that interactions between circRNA
CDRlas and miRNAs are important for proper brain function
(Piwecka et al, 2017; Mehta et al,, 2023b). Data indicate that

interactions between circRNAs and miRNAs play a key role in
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the modulation of neuroinflammation in post-ischemic brain
neurodegeneration.

4 Interaction of different ncRNAs in
post-ischemic neuroinflammation

Various types of ncRNAs, including IncRNAs, circRNAs and
miRNAs, form regulatory networks that influence gene expression
and cellular processes, thus playing an important role in regulating
physiological and pathological processes in the brain (IVehta et al,
2021b). Many IncRNAs have been found to be dysregulated in patients
after cerebral ischemia, and in experimental models of cerebral
ischemia, they have been shown to act as competing RNAs that
mRNAs and thus
neuropathological processes, including neuroinflammation (Bhattarai
etal, 2017; He et al,, 2018; Zhang et al., 2020). Expression of IncRNA
SNHG14 was increased in mice with focal cerebral ischemia. Silencing
of IncRNA SNHG14 reduced ischemic brain damage by inhibiting
neuroinflammation and also brain edema via miR-199b/miRNA-145/
AQP4 axis (Qi et al., 2017; Wang et al., 2020; Zhang G. et al., 2021;
Zhang Z. et al., 2021; Zhang H. et al., 2021).

In patients after brain ischemia, synchronized overexpression of

remove control many post-ischemic

IncRNA H19 and tumor necrosis factor Clq-related protein 6
(C1QTNEF6) and decreased expression of miRNA-29b were found in
leukocytes (Li G. et al., 2022). Similar changes in the expression of
IncRNA H19 and miRNA-29b were found after the first day of
recirculation following local brain ischemia in rats (Li G. et al., 2022).
It has been shown that miRNA-29b can bind CIQTNF6 mRNA and
suppress its expression, while IncRNA HI19 can prevent the
suppression of C1QTNF6 expression by acting as a sponge for
miRNA-29b, thereby maintaining the expression of C1QTNF6.
Overexpression of CIQTNF6 promoted the release of TNF-a and
IL-1p in leukocytes, further increased the permeability of the blood-
brain barrier and aggravated ischemic brain injury (Li G. et al., 2022).
These results confirm that IncRNA H19 promotes leukocyte activity
by targeting the miRNA-29b/C1QTNF6 axis in post-ischemic brain
injury (Li G. et al., 2022). In another study, IncRNA Tugl was shown
to contribute to NLRP3 inflammasome-dependent pyroptosis after
cerebral ischemia via the miRNA-145a-5p/Tlr4 axis (Yao et al., 2022).
However, inhibition of IncRNA Tugl after experimental cerebral
ischemia led to reduced microglial cell activity, reduced infarct size,
and improved neurological outcomes (Yao et al., 2022).

In patients after cerebral ischemia, the expression of IncRNA
UCAL1 increased and miRNA-18a-5p decreased (Yan et al., 2023).
Knockdown of IncRNA UCA1 showed a protective role by reducing
infarct size, neurological deficits, and neuroinflammation in rats via
increased expression of miRNA-18a-5. MiRNA-18a-5p was involved
in the regulation of IncRNA UCAL1 on cell viability, cell apoptosis, and
neuroinflammation. In patients after cerebral ischemia, overexpression
of IncRNA UCAL1 and under expression of miR-18a-5p showed an
inverse correlation (Yan et al., 2023).

Moreover, inhibition of IncRNA ANRIL after ischemia using
siRNA showed beneficial effects on neuroinflammation after focal
cerebral ischemia in mice by increasing the expression of miRNA-
671-5p (Deng et al,, 2022). Inhibition of IncRNA ANRIL reduced the
levels of TNF-q, IL-1f, IL-6, and NF-kB and preserved the expression
of tight junction proteins, affecting the restriction of blood-brain
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barrier permeability in mice after focal cerebral ischemia (Deng et al.,
2022). IncRNA  ANRIL
neuroinflammation in the middle cerebral artery occlusion-

Downregulation  of attenuates
reperfusion model by modulating the miR-671-5p/NF-xB pathway.

Studies of patients after cerebral ischemia have shown the influence
of reduced expression of IncRNA ZFASI in mononuclear cells on the
development of neuroinflammation, neurological impairment and
survival (Wang et al., 2022). In contrast, high expression of IncRNA
ZFAS1 was associated with low levels of TNF-a, IL-1f and IL-6. The
explanation may be that IncRNA ZFAS1 reduces the expression of
miRNA-582 to decrease the production of pro-inflammatory cytokines,
thereby attenuating inflammation in patients post-ischemia (Wang
etal., 2022). In contrast, it has been shown that exosomes released from
bone marrow stem cells which carry the IncRNA ZFAS], can limit
oxidative stress and neuroinflammation associated with ischemia by
inhibiting miRNA-15a-5p (Yang and Chen, 2022). There are data
indicating that genetic deletion of endothelial miRNA-15a/16-1
attenuated blood-brain barrier pathology, reduced infarct size and
decreased infiltration of peripheral immune cells after ischemia (IVia
et al, 2020). These mice also showed reduced infiltration of
pro-inflammatory M1-type microglia/macrophages in the peri-infarct
area, without changes in the number of proliferating M2-type cells.
Elucidation of the molecular mechanisms of miRNA-15a/16-1-
dependent blood-brain barrier dysfunction may enable the discovery
of novel therapies for cerebral ischemia (Ma et al, 2020). Since
endothelial claudin-5 plays a key role in blood-brain barrier
permeability after ischemia, inhibition of miRNA-15a directly or
indirectly via overexpression of IncRNA ZFAS1 may be a novel strategy
to limit the infiltration of the ischemic lesion by peripheral immune cells.

The expression of IncRNA HCG11 was found to be increased after
local reversible cerebral ischemia (Gao et al., 2022). Studies with
IncRNA HCG11 downregulation showed that it inhibited the growth
of neuroinflammatory factors, limited infarct size, and improved
neurological outcomes after ischemia (Gao et al., 2022). LncRNA
HCG11 was shown to affect and negatively regulate miRNA-381-3p
in the post-ischemic brain (Gao et al., 2022). However, co-inhibition
of miR-381-3p with antagomir and IncRNA HCG11 with siRNA
exacerbated post-ischemic brain injury, which was reduced by siRNA
alone. These effects of IncRNA HCG11 and miRNA-381-3p were
mediated by p53, a key regulatory factor in Wnt signaling and
necrosis/apoptosis (Gao J. et al., 2023). It has been shown that loss of
p53 can cause the production of Wnt ligands, which stimulate
macrophages to produce IL-1/, which leads to the development of
neuroinflammation (Wellenstein et al., 2019; Gao C. et al., 2023). The
presented studies show that silencing of IncRNA HCG11 protects the
brain from neurodegenerative damage after ischemia by regulating
p53 through miR-381-3p (Gao et al., 2022). Taken together, the results
of the above studies clearly indicate that the interaction between
IncRNA and miRNA modulates mRNA function and
neuroinflammation after cerebral ischemia.

5 Cross-talk of circRNAs, miRNAs, and
IncRNAs in post-ischemic
neuroinflammation

The complexity of ceRNA networks increases when IncRNAs and
circRNAs compete for a single miRNA target, indicating an
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additional dimension of genetic regulation (Kleaveland et al., 2018;
Mehta et al., 2021b). Targeting of miRNAs by other ncRNAs can have
opposing effects. For example, circRNA CDRlas and IncRNA
Cyrano compete with each other for miRNA-7a-5p in the brain
(Kleaveland et al,, 2018). LncRNA Cyrano induces a structural
change in miRNA-7a-5p recognized by ZSWIMS8 Cullin-RING,
leading to its proteolysis and exposure of miRNA-7a-5p to
cytoplasmic nucleases (Shi et al., 2020). Degradation of miRNA-
7a-5p after ischemia leads to increased a-synuclein levels and
neuroinflammation (Kim et al., 2018; Mehta et al., 2023c¢). Thus,
investigating the interplay of different classes of ncRNAs in
controlling neuronal phenomena and thus pathological events such
as neuroinflammation leads to the identification of potential
mechanisms for designing new therapeutic targets to improve post-
ischemic outcomes (Table 1).

6 MiRNAs influence amyloid
production and clearance

Amyloid production and aggregation are essential for the
progression of post-ischemic brain neurodegeneration. Some studies
have revealed the role of miRNAs in regulating amyloid production,
metabolism and elimination (Sun et al., 2026). In recent years, the
following miRNAs: miRNA-106, miRNA-520c, miRNA-101,
miRNA-20a, miRNA-17-5p, miRNA-106b, miRNA-16, miRNA-135a,
miRNA-200b, miRNA-153, miRNA-298, miRNA-342-5p and miRNA-
346 have been shown to have the ability to regulate the level of amyloid
precursor protein (Patel et al., 2008; Hébert et al., 2009; Vilardo et al.,
2010; Long et al., 2012; Massone et al., 2012; Liu et al., 2014; Long
et al., 2019; Chopra et al., 2021; Dong et al., 2022; Sun et al., 2026).

MiRNAs play a key role in regulating the activity of the three main
secretases involved in the metabolism of amyloid precursor protein
and in amyloid production, ie., a-secretase, P-secretase and
y-secretase (Table 2) (Sun et al,, 2026). Under normal conditions,
a-secretase triggers the non-amyloidogenic pathway by cleaving the
amyloid precursor protein at the alpha site, thereby preventing
amyloid formation (Lichtenthaler and Haass, 2004). MiRNA-30a-5p
inhibits the production of non-amyloidogenic proteins by inhibiting
a-secretase, thereby contributing to the increased level of amyloid
peptide 1-42 (Sun et al., 2022). In addition, miRNA-144 reduces the
level of a-secretase by blocking the transcriptional and translational
processes of a-secretase (Sun et al., 2017).

In contrast, beta-site amyloid precursor protein cleaving enzyme
1 (BACEL) acts as a p-secretase, cleaving the N-terminal region of the
amyloid precursor protein, resulting in the formation of the amyloid-
containing C99 fragment. The C99 fragment is then cleaved by
y-secretase (Takasugi et al., 2023). Increased expression of miRNA-29a
and miRNA-29b-1 has been shown to lead to decreased expression of
BACE], resulting in reduced amyloid production (Hébert et al., 2008).
MiRNA-186 and miRNA-298, reduce levels of human amyloid
precursor protein and BACE1 which result in lower amyloid levels
(Kim J. etal,, 2016; Chopra et al., 2021). However, reduced expression
of the miRNA-107 positively affects the level of BACEI, which results
in increased amyloid levels (Wang et al., 2008). Upregulation of
miRNA-34a-5p, miRNA-125b-5p, and miRNA-340 leads to
downregulation of BACE1l expression and reduced amyloid
accumulation (Li T. et al., 2020; Tan et al., 2020).

frontiersin.org


https://doi.org/10.3389/fncel.2025.1670462
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org

Pluta

TABLE 2 Regulatory role of non-coding RNAs in amyloid production from amyloid precursor protein.

10.3389/fncel.2025.1670462

NcRNA type Target Regulation of amyloid Effect Reference
miRNA-30-a-5p 1 o-secretase | Amyloid 1 Harmful Sun et al. (2022)
miRNA-144 1 o-secretase | Amyloid 1 Harmful Sun et al. (2017)
miRNA-29a | B-secretase 1 Amyloid 1 Harmful Hébert et al. (2008)
miRNA-29b-1 1 B-secretase | Amyloid | Beneficial Hébert et al. (2008)
miRNA-186 | B-secretase 1 Amyloid 1 Harmful Kim J. et al. (2016)
miRNA-298 1 APP |, B-secretase | Amyloid | Beneficial Chopra et al. (2021)
miRNA-107 | B-secretase T Amyloid 1 Harmful Wang et al. (2008)
miRNA-34a-5p, miRNA- B-secretase | Amyloid | Beneficial LiP. et al. (2020)
125b-5p, 1

miRNA-340 1 B-secretase | Amyloid | Beneficial Tan et al. (2020)
miRNA-34a | y-secretase | Amyloid | Beneficial Jian et al. (2017)
miRNA-3940-5p 1 Presenilin 1 | Amyloid | Beneficial Qietal. (2024)
IncRNA-BC200 | B-secretase | Amyloid | Beneficial Li H. et al. (2018)
IncRNA-BACE1L-AS 1 B-secretase T Amyloid 1 Harmful Zeng et al. (2019)
circRNA Cwe27 1 Pur-a |, APP 1 Amyloid 1 Harmful Song et al. (2022)
circRNA-AXL 1 B-secretase 1 Amyloid 1 Harmful Li L. et al. (2022)
circRNARS-7 | Ubiquitin-26S proteasome clearance system | | Amyloid accumulation and senile plaque 1 = Harmful Zhao et al. (2016)

Pur-a, Purine-rich element-binding protein A; APP, amyloid precursor protein. Expression: 1-increase, |-decrease.

I"-secretase, which consists of at least presenilin 1 and 2, also plays
a key role in the processing of amyloid precursor protein into amyloid
(Hur, 2022). Studies with a lack of miRNA-34a have shown improved
cognitive performance in transgenic mice by inhibiting y-secretase
activity but without affecting B- and a-secretase activity (Jian et al.,
2017). Another study showed the inhibition of presenilin 1, a key
component of y-secretase by miRNA-3940-5p (Qi et al., 2024).
Furthermore, inhibition of miR-4536-3p has been shown to reduce
amyloid accumulation and tau protein phosphorylation in the brain
(Choi et al., 2025).

It has been shown that the elimination of harmful amyloid from
the brain in neurodegenerative diseases, also after ischemia, occurs via
autophagy (Utamek-Koziot et al., 2016; Utamek-Koziol et al., 2017;
Utamek-Koziot et al., 2019; Limanaqi et al., 2020; Pluta et al., 2024;
Tang et al., 2024; Pluta et al., 2025b). In the brains of Alzheimer’s
disease patients, miRNA-7 deficiencies were found to be associated
with a deficiency of the ubiquitin-conjugating enzyme UBE2A, which
is necessary for amyloid degradation (Zhao et al., 2016). Following
ischemia, the lysosomal pathway involved in autophagy has been
shown to play a critical role in recycling cellular components by
degrading excess or damaged organelles and misfolded proteins,
including amyloid. This process maintains cellular homeostasis by
converting misfolded proteins, such as amyloid, into their basic
components, thereby preserving cellular integrity (Zhang Z. et al.,
2021). During the progression of neurodegeneration, including after
ischemia, changes in the miRNA regulation of autophagy-related
proteins are crucial for the occurrence and development of pathology.
In a transgenic model of Alzheimer’s disease, the expression of
miRNA-331-3p and miRNA-9-5p was found to be decreased in the
early stage of the disease and increased in the late stage (Sun et al.,
2026). MiRNA-331-3p and miRNA-9-5p have been shown to interact
with the autophagy receptors sequestosome 1 and optineurin,
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respectively (Chen M. L. et al, 2021). It was observed that
overexpression of miRNA-331-3p and miRNA-9-5p in SH-SY5Y cell
line impaired autophagy activity and promoted the accumulation of
amyloid plaques. In contrast, in a mouse model of Alzheimer’s disease,
enhanced amyloid clearance, improved cognitive functions and
mobility were demonstrated after treatment with miR-331-3p and
miR-9-5p antagonists in the late stage of the disease (Chen M. L. et al.,
2021). Research indicates that the use of miRNA-331-3p and miRNA-
9-5p, along with autophagy activity and amyloid plaques, may allow
for the differentiation of early and late stages of Alzheimer’s disease,
which will translate into a more accurate and faster diagnosis.

In contrast, silencing the miRNA-140 gene repressed the
development of Alzheimer’s disease in a rat model. This was associated
with increased autophagy, which prevented mitochondrial
dysfunction by silenced miRNA-140 (Liang et al, 2021).
Intracerebroventricular administration of agomiRNA-299-5p in
Alzheimer’s disease mouse model inhibited both autophagy and
apoptosis and improved cognitive performance of mice. Results
suggest that miRNA-299-5p modulates neuronal survival programs
by regulating autophagy (Zhang et al., 2016). However, miRNA-101a
has been shown to have a negative effect on the regulation of
autophagy (Li et al., 2019). It has been observed that inhibition of
autophagy activity by overexpression of miRNA-23b may be associated
with the improvement of cognitive functions after brain injury (Sun
etal., 2018).

7 MiRNAs influence tau protein
hyperphosphorylation and clearance

In post-ischemic neurodegeneration, tau protein undergoes
changes mainly through phosphorylation, which adversely affects the
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condition of neurons and contributes to the formation of
neurofibrillary tangles (Kato et al., 1988; Hatsuta et al., 2019; Khan
et al.,, 2018; Pluta et al., 2021b, 2022a,b; Pluta and Czuczwar, 2024b).
MiRNAs have been shown to influence tau protein levels by
modulating MAPT gene expression (Table 3) (Piscopo et al., 2023; Sun
etal., 2026). It has been found that the deficiency of miRNA-132/212
and miRNA-219 disrupts the metabolism of tau protein and promotes
its pathological aggregation in neurons, which ultimately leads to the
development of neurofibrillary tangles (Santa-Maria et al., 2015; Smith
etal., 2015).

Glycogen synthase kinase-38 has been shown to play a
multifaceted role in cerebral ischemia-reperfusion injury (Li et al.,
2024). MiRNA-23b-3p has been shown to protect against amyloid-
induced tau protein hyperphosphorylation by acting on GSK-3p,
thereby protecting neurons from programmed death (Sun et al., 2026).
In cells treated with the miRNA-23b-3p analogue, a significant
decrease in tau protein phosphorylation at serine-396 and serine-404
residues was observed, as well as a decrease in the production of
amyloid peptide 1-42 (Sun et al., 2026). MiRNA-539-5p has been
shown to bind directly to GSK-3p, leading to reduced GSK-3p activity
and consequently reduced amyloid accumulation in the brain (Sun
etal,, 2026). Also miRNA-128 inhibits tau protein phosphorylation by
inhibiting GSK3p expression and as a result reduces amyloid
accumulation (Li et al., 2023).

Cyclin-dependent kinase 5 (CDK5) has been shown to cause
increased phosphorylation of tau protein, leading to increased tau
protein accumulation and toxicity, which ultimately leads to the
development of neurofibrillary tangles (Saito et al., 2019). It was
presented that melatonin alleviates tau protein-related pathologies via
upregulation of miRNA-504-3p and p39/CDKS5 axis (Chen et al.,
2022). In other studies, miRNA-103/107, miRNA-124 and miRNA-26a
were found to inhibit CDK5 expression in neurodegeneration and

TABLE 3 Regulatory role of non-coding RNAs in tau protein modification.

10.3389/fncel.2025.1670462

control apoptosis (Farina et al., 2017; Angelopoulou et al., 2019; Sun
etal., 2026).

Elevated microtubule affinity-regulating kinases (MARKs)
differentially regulate tau protein missorting and amyloid-dependent
synaptic pathology and are closely linked to early tau protein
phosphorylation in the brains of Alzheimer’s disease patients (Lund
et al, 2014; Chudobova and Zempel, 2023). MiRNA-515-5p and
miRNA-582-3p were revealed to act as suppressors of microtubule
affinity regulating kinase gene expression and inhibited apoptosis via
regulation of the miRNA-582-3p/MARK3 axis (Pardo et al., 2016;
Wang L. et al., 2023). Moreover, the degradation of phosphorylated
tau protein is largely regulated by the autophagy pathway, in which
miRNA-9 plays an important role by reducing its phosphorylation
(Subramanian et al., 2021).

8 LncRNAs influence amyloid
production and clearance

It has been shown that patients with Alzheimer’s disease have
elevated levels of IncRNA SORLI in the brain, which influences the
formation of amyloid and is a risk factor for the development of this
disease (Ciarlo et al., 2013; Mishra et al., 2023). Silencing of IncRNA
BC200 was shown to suppress BACEl expression, and
overexpression of IncRNA BC200 increased BACE1 expression and
enhanced the formation of amyloid peptide 1-42 (Table 2).
Furthermore, inhibition of IncRNA BC200 increased cell viability
and reduced cell apoptosis in an Alzheimer’s disease model by
directly targeting BACE1 (Li H. et al., 2018). In a subsequent study,
IncRNA BACE1-AS was shown to prevent BACEl mRNA
degradation by sequestering BACE1-targeting miRNAs (Zeng et al.,
2019). Another study showed that increasing the level of IncRNA

NcRNA type Target Regulation of tau Effect Reference
protein
miRNA-219 | GSK-3p phosphorylation 1 Expression and aggregation 1 Harmful Santa-Maria et al. (2015)
miRNA-132/212 | GSK-3p, PP2B phosphorylation 1 Expression, aggregation and Harmful Smith et al. (2015)
insoluble form 1
miRNA-23b-3p 1 GSK-3p phosphorylation | Amyloid tau protein interaction | Beneficial Sun et al. (2026)
1
miRNA-128 1 GSK-3f, APPBP2, mTOR | Amyloid deposition and tau Beneficial Liet al. (2023)
protein interaction |
miRNA-539-5p 1 GSK-3p phosphorylation | Amyloid deposition and tau Beneficial Jiang et al. (2020)
protein interaction |
IncRNA NEAT1 t FZD3/GSK3p/pathway Microtubule stabilization by tau | Beneficial Zhao et al. (2020)
phosphorylation | protein
IncRNA MALAT1 1 CDKS5 phosphorylation 1 Aggregation and neurofibrillary | Harmful Spreafico et al. (2018)
tangles 1
IncRNA-00507 1 Hyperphosphorylation by P25/P35/ Aggregation 1 Harmful Yan et al. (2020)
GSK3p 1
IncRNA ZBTB20-AS1 1 GSK-3p phosphorylation 1 Aggregation 1 Harmful Wang Y. et al. (2023)
circRNA AXL 1 Phosphorylation 1 Aggregation 1 Harmful Li Y. et al. (2020)

GSK-3p, glycogen synthase kinase-3p; PP2B, protein phosphatase 2B; APPBP2, amyloid beta precursor protein binding protein 2; CDK5, cyclin-dependent kinase 5. Expression: 1-increase,

J-decrease.
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BACEI1-AS led to the inhibition of miR-485-5p, which in turn
reduced the inhibition of BACEI mRNA (Faghihi et al., 2010). In
contrast, the study of IncRNA BDNF-AS revealed that through the
regulation of the miR-9-5p/BACEl pathway, it enhanced
neurotoxicity in Alzheimer’s disease by promoting the formation of
amyloid plaques (Ding Y. et al., 2022). This indicates a key role of
IncRNA BDNEF-AS in the occurrence and development of
Alzheimer’s disease. Subsequently, IncRNA NEAT1 was shown to act
as a promoting factor for Alzheimer’s disease progression via
modulation of the miRNA-124/BACE1 axis (Zhao et al., 2019).
Furthermore, silencing of IncRNA XIST reduced the Alzheimer’s
disease-associated alteration of BACE1 via miR-124 (Yue et al.,
2020). Recent facts imply that interaction between IncRNA
CYP3A43-2/miRNA-29b-2-5p and PSEN1 affected its activity and
decreased amyloid plaque development and improved cognitive
function (Wuli et al., 2022).

The low-density lipoprotein receptor protein 1 (LRP1) in
neuroglial cells forms complexes with amyloid and removes it into the
extracellular space (Shinohara et al., 2017; Faissner, 2023; Pluta et al,
2023b). Increased expression of IncRNA LRP1-AS and decreased
expression of LRP1 were found in patients with Alzheimer’s disease.
Increased levels of IncRNA LRP1-AS were shown to be associated
with decreased stability and inhibited translation of LRP1 mRNA,
which impairs amyloid clearance by LRP1 (Yamanaka et al., 2015).
Another study revealed that IncRNA BACE1-AS promotes neuronal
damage by autophagy via miRNA-214-3p/ATGS5 signaling axis (Zhou
et al., 2021). In contrast, suppression of miR-214-3p reversed the
effects of IncRNA BACE1-AS and ATG5 on amyloid peptide 1-42-
induced cellular damage (Sun et al., 2026).

9 LncRNAs influence tau protein
phosphorylation

Studies in neurodegeneration, IncRNA NEATI, IncRNA
HOTAIR, and IncRNA MALATI, revealed their effects on CDK5R1
expression, and this affected CDKS5 activity, which is associated with
tau protein phosphorylation (Table 3) (Spreafico et al., 2018). LncRNA
NEATI and IncRNA HOTAIR were shown to negatively regulate
CDK5R1 mRNA levels, while IncRNA MALAT1 had a positive effect.
It was also found that all three IncRNAs positively controlled the
miRNA-15/107 family. LncRNA NEAT1 had increased expression
levels in the temporal cortex and hippocampus of Alzheimer’s disease
patients. It is suggested that the upregulated IncRNA NEAT1 in
Alzheimer’s disease brain probably acts as part of a protective
mechanism against neuronal death (Spreafico et al., 2018). Moreover,
IncRNA NEAT1 was shown to regulate microtubule stabilization via
the FZD3/GSK3p/P-tau pathway in APP/PS1 mice (Zhao et al., 2020).
The above findings revealed that IncRNA NEAT]1 affects tau protein
hyperphosphorylation in neurodegenerative processes (Zhao et al.,
2020). Another study showed that IncRNA 00507 also regulates tau
protein hyperphosphorylation in neurodegenerative diseases via the
miRNA-181c-5p/TTBK1/MAPT axis (Yan et al., 2020). Subsequent
study showed that overexpression of IncRNA ZBTB20-AS1 inhibited
ZBTB20 expression and increased GSK-3p expression and tau protein
phosphorylation (Table 3) with apoptosis, which promoted the
progression of Alzheimer’s disease (Wang Y. et al., 2023). Data indicate
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that long non-coding RNAs play a key role in the pathogenesis of
neurodegenerative diseases by controlling amyloid and tau protein
(Yang et al., 2025).

10 CircRNAs influence amyloid
production and tau protein status

The circRNA HDAC9/miRNA-138/sirtuin-1 pathway mediates
amyloidogenic processing of amyloid precursor protein, amyloid
accumulation and its neurotoxicity resulting in synaptic dysfunction
and the development of cognitive deficits in Alzheimer’s disease (Lu
etal., 2019). Furthermore, it was revealed that circRNA Cwc27 was
upregulated in neurons and brains of APP/PS1 mice, as well as in
temporal cortex and blood of Alzheimer’s disease patients (Song
et al., 2022). Silencing circRNA Cwc27 reduced neuropathological
changes in Alzheimer’s disease and alleviated cognitive deficits.
Moreover, a novel RNA-binding protein-dependent regulatory axis
was identified, where circRNA Cwc27 interacted with purine-rich
element-binding protein @ and trapped it in the cytoplasm, resulting
in its inactivation and transcriptional upregulation of amyloid
precursor protein and other Alzheimer’s disease-related genes (Song
etal,, 2022). Knockdown of circRNA_0004381 reduced hippocampal
neuronal injury and promoted microglia M2-type polarization by
the miR-647/PSENT1 axis, ultimately improving cognitive function
in a mouse model of Alzheimer’s disease (I.i N. et al., 2022).
Deficiency of the circRNA RS-7, which downregulates the expression
of the ubiquitin-conjugating enzyme UBE2A and affects amyloid
clearance by proteolysis, has been shown to be depleted in the brains
of Alzheimer’s disease patients, leading to amyloid accumulation
and the formation of amyloid plaques (Zhao et al., 2016). It was
further shown that increased expression of circRNA hsa_
circ_0131235 in the temporal cortex was closely associated with the
neuropathology of Alzheimer’s disease (Bigarré et al., 2021). In
addition, in patients with Alzheimer’s disease, circRNA-AXL and
circRNA-GPHN correlated negatively, while circRNA-PCCA and
circRNA-HAUS4 correlated positively with Mini-mental State
Examination scores (Li Y. et al., 2020). CircRNA-AXL correlated
negatively, while circRNA-PCCA, circRNA-HAUS4, and circRNA-
KIF18B correlated positively with f-amyloid peptide 1-42 levels.
CircRNA-AXL and circRNA-GPHN correlated positively, while
circRNA-HAUS4 correlated negatively with total tau protein.
CircRNA-AXL correlated positively with phosphorylated tau protein
(Table 3) (Li Y. et al., 2020).

Exosome treatment improved cognitive function by delivering
circRNA-Epcl and changing the M1/M2 polarization of microglial
cells in a mouse model of Alzheimer’s disease. As a result,
neuroinflammatory factors and neuronal apoptosis in the
hippocampus were reduced (Liu et al., 2022). In contrast, circRNA
NF1-419 increased autophagy in astrocytes via PI3K-1/Akt-AMPK-
mTOR and PI3K-I/Akt-mTOR signaling pathways and affected
inflammatory mediators and delayed the development of dementia in
an animal model of Alzheimer’s disease (Diling et al., 2019). It was
revealed that circRNA circ_0000950 in Alzheimer’s disease promoted
neuronal apoptosis and increased the expression of inflammatory
cytokines via miRNA-103 sponge (Yang et al., 2019). But circRNA
AXL increased neuronal damage and neuroinflammation via
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miRNA-328’s effect on BACE1 in Alzheimer’s disease (Li et al., 2022a).
It was shown that circRNA LPARI promoted AP25-35-induced
apoptosis, neuroinflammation, and oxidative stress by the miRNA-
212-3p/ZNF217 axis (Wu et al., 2021).

Nrf2 was revealed to enhance hippocampal synaptic plasticity,
learning, and memory by the circRNA-Vps41/miRNA-26a-5p/
CaMKIV regulatory network (Zhang et al., 2022). Overexpression of
circRNA-Vps41 positively affected synaptic plasticity and memory
dysfunction via the miRNA-24-3p/Synaptophysin axis (Li et al,
2022b). These findings revealed the regulatory network of
circRNA-Vps41l and provided new insights into its potential to
improve learning and memory in association with aging (Li et al.,
2022b). It should be noted that in patients with Alzheimer’s disease, a
sex-dependent deregulation of circRNA HOMERI variants was
revealed in the entorhinal cortex (Urddnoz-Casado et al, 2021).
N6-methyladenosine-modified circRNA RIMS2 was shown to
mediate synaptic and memory impairments in Alzheimer’s disease by
activation of UBE2K-dependent GIuN2B ubiquitination and
degradation via sponging miRNA-3968 (Wang L. et al., 2023).
Recently, circular RNAs and exosomes have been shown to play an
important role in amyloid and tau protein pathologies in Alzheimer’s
disease (Pala and Yilmaz, 2025).

11 Amyloid versus neuroinflammation

Studies have shown a marked activation of neuroglial cells that
exhibit an inflammatory phenotype in post-ischemic brain
neurodegeneration, especially in the vicinity of amyloid deposits
(Pluta et al., 2009; Swardfager et al., 2014). Ultrastructural studies have
revealed that microglia accumulate and direct their processes towards
amyloid deposits, indicating a direct interaction between microglia
and amyloid and suggesting that amyloid accumulation is the main
driving force for microglial cell activation (Wisniewski et al., 1992). Tt
has been found that microglia can take up amyloid via their processes
and store it in endosomes. This event increases the size and number
of microglia in proportion to the surface area of amyloid deposits
(Ebrahimi et al., 2025). Amyloid can bind to microglial surface
receptors, such as the receptor for advanced glycation end products
(RAGE), thereby inducing an inflammatory signaling pathway
(Ebrahimi et al., 2025). In addition, positron emission tomography
confirmed this link, showing an increased number of activated
microglial cells in the brains of people with Alzheimer’s disease, and
this increase was directly correlated with cognitive decline (Okello
etal, 2009). Activated microglia release pro-inflammatory cytokines
such as tumor necrosis factor alpha, interleukin 6, and 1p, as well as
cytotoxic molecules such as nitric oxide and reactive oxygen species,
leading to neuronal cell damage (AmeliMojarad and AmeliMojarad,
2024). In the post-ischemic brain, similarly to Alzheimer’s disease,
chronic activation of glial cells near amyloid deposits is consistently
observed (Pluta et al., 1994a; Pluta et al., 2009; Swardfager et al., 2014;
Ding et al., 2025), and the release of pro-inflammatory factors from
these activated cells exacerbates disease progression (Gao J. et al,
2023; AmeliMojarad and AmeliMojarad, 2024; Pluta, 2025). On the
one hand, microglia can phagocytize and degrade amyloid. On the
other hand, prolonged exposure to amyloid triggers the release of
pro-inflammatory factors that cause chronic neuroinflammation,
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contributing to synaptic dysfunction, myelin damage, neuronal cell
death, and cognitive impairment (Swardfager et al., 2014; Zhang
H. et al,, 2021; Gao J. et al,, 2023; AmeliMojarad and AmeliMojarad,
2024; Chiarini et al., 2025; Hong et al., 2025; Patel et al., 2025).

Activated microglia have an unrestricted influence on the scope
and severity of neuroinflammation and the spread of abnormal
protein aggregates like amyloid (Chiarini et al., 2025; Yuasa-Kawada
etal., 2026). Increased levels of apoptosis-associated speck-like protein
containing a caspase recruitment domain are observed following
microglial activation (Yuasa-Kawada et al., 2026). ASC is an important
adaptor protein involved in the inflammasome, playing a critical role
in the innate immune response to inflammatory stimuli. ASC also
forms speckles through self-oligomerization in response to pathology,
a key step in inflammasome activation and pyroptosis (a form of
programmed cell death). Accumulated ASC molecules are released
from glial cells and taken up by neighboring cells, causing the
inflammation to spread. Extracellular ASC specks bind to amyloid,
providing a core for amyloid seeding/cross-seeding, thereby
amplifying amyloid pathology like neuroinflammation (Yuasa-
Kawada et al., 2026). Amyloid-ASC composite fibrils have been shown
to increase amyloid toxicity in microglial cells, leading to their death
(Friker et al., 2020).

The presence of inflammatory mediators is clearly increased in the
vicinity of amyloid deposits and neurofibrillary tangles, but on the
other hand, these factors are known to promote the production of
amyloid peptides (Chiarini et al., 2025; Ebrahimi et al., 2025).
Neuroinflammatory processes are further enhanced by key
pro-inflammatory factors that promote amyloid accumulation, thus
exerting a cytotoxic effect on neuronal cells (Swardfager et al., 2014;
Patel et al., 2025). Chronic activation of glial cells, especially microglia
and astrocytes, leads to the continuous production of proinflammatory
factors (Sekeljic et al, 2012; Radenovic et al, 2020), driving
neurodegenerative processes and causing cognitive dysfunction, as
demonstrated in animal models of cerebral ischemia and observed in
patients after brain ischemia (Kiryk et al., 2011; Cohan et al., 2015;
Rost et al., 20225 Pluta and Czuczwar, 2024a). Major pathological
phenomena such as microgliosis, astrogliosis and amyloid
accumulation have been shown to be inextricably linked to cognitive
decline and progression of neurodegeneration after ischemia (Pluta
et al., 1997; Pluta et al., 2009; Sekeljic et al., 2012; Swardfager et al.,
2014; Radenovic et al., 2020).

Microglia interact with amyloid through both innate immune
responses and antibody-dependent responses (Ebrahimi et al., 2025).
Microglial cells phagocytize fibrillar amyloid via binding to innate
immune receptors on their surface, whereas soluble amyloid is
engulfed via LRP 1 and micropinocytosis (Ebrahimi et al., 2025).
IL-1p in microglia and astrocytes has been shown to induce the
production of amyloid precursor protein, leading to the formation of
more amyloid deposits and plaques and increased neuroinflammation
(Figure 1) (Chiarini et al., 2025; Ebrahimi et al., 2025). In addition,
IL-1p promotes the secretion of amyloid-binding proteins such as
al-antichymotrypsin and apolipoprotein E by astrocytes, which
triggers amyloid aggregation (Ebrahimi et al., 2025). Microglial cells
and astrocytes have been found to accumulate around amyloid
deposits and become highly activated upon attachment to amyloid
plaques (Zhang G. et al., 2021; Zhang Z. et al., 2021; Zhang H. et al.,
2021; Chiarini et al., 2025; Ebrahimi et al., 2025).
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Vicious cycle between amyloid, tau protein and inflammation in
post-ischemic brain neurodegeneration. 1-increase.

12 Tau protein versus
neuroinflammation

The initiation and development of tau protein pathology in the
brain after ischemia (Kato et al., 1988; Wen et al., 2004; Khan et al,,
2018; Hatsuta et al., 2019) and subsequent neurodegeneration depend
mainly on microglial cells and inflammatory factors (Swardfager et al,,
2014; Chiarini et al., 2025; Patel et al., 2025). Abnormal function of
microglial and astrocytic cells phagocytizing different neuronal
compartments exacerbates tau protein pathology (Chiarini et al., 2025;
Ebrahimi et al., 2025). In addition, microglia and astrocytes help
spread tau protein, which leads to the progression of tau protein
pathology and its spread to various brain structures (Chiarini et al.,
20255 Ebrahimi et al., 2025). Tau protein aggregates localize in the
vicinity of microglia and directly activate them (Ebrahimi et al., 2025;
Hong et al, 2025). Tau protein aggregates change microglia
morphology and induce their secretion of pro-inflammatory factors.
Pathological tau protein activity begins concurrently with amyloid
neurotoxicity (Chiarini et al., 2025; Ebrahimi et al., 2025). In the
meantime, tau protein leads to increased amyloid accumulation
(Figure 1) (Ebrahimi et al., 2025). Ultimately, amyloid-tau protein
synergy, with the help of neuroinflammatory factors (Sekeljic et al.,
20125 Radenovic et al., 2020), leads to synaptic dysfunction and
neuronal death and post-ischemic neurodegeneration, identical to
Alzheimer’s disease (Pluta et al., 2009; Swardfager et al., 2014; Guan
et al., 2022; Pluta, 2024; Ebrahimi et al., 2025; Pluta, 2025). Post-
ischemic brain neuroinflammation is generally believed to result from
the amyloid cascade in response to neurofibrillary tangles (Kato et al.,
1988; Hatsuta et al., 2019; Guan et al., 2022; Chiarini et al., 2025;
Ebrahimi et al., 2025).

Interferon-induced transmembrane protein 3 has been shown
to be significantly increased in astrocytes following cerebral
ischemia and plays a key role in modulating the neuroinflammatory
response and amyloids production (Ni et al., 2025). Increased
production of amyloid peptides 1-40 and 1-42 results from
increased y-secretase activity induced by increased expression of
interferon-induced transmembrane protein 3 in astrocytes (INi
et al., 2025).
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Both astrocytic and microglial cells contribute to the
neuroinflammatory response observed in post-ischemic brain
neurodegeneration (Figure 1), similar to that seen in Alzheimer’s
disease (Swardfager et al., 2014; Chiarini et al., 2025; Ding et al., 2025;
LiL.etal, 2025; Patel et al., 2025; Pluta, 2025). Reactive astrocytes and
microglia release inflammatory mediators that contribute to chronic
neuroinflammation (Li L. et al., 2025; Pluta, 2025). In addition,
astrocytes are involved in the removal of amyloid, while microglia play
a key role in the phagocytosis of amyloid plaques what influences
neuroinflammation (Li L. et al., 2025; Pluta, 2025). In post-ischemic
neurodegeneration, ongoing neuroinflammation causes amyloid
accumulation (Figure 1) (Chiarini et al., 2025), which affects astrocytic
and microglial cells dysfunction and deepens communication
problems between neurons, which in turn impairs cognitive function
(Kiryk et al., 2011; Cohan et al., 2015; Pluta and Czuczwar, 2024a).
Moreover, amyloid-activated ASC specks increase the expression of
tau protein kinases in microglia and influence the aggregation of
hyperphosphorylated tau protein in neuronal cells (Ising et al., 2019;
Chiarini et al., 2025). The above effect is enhanced by tau protein
monomers/oligomers released from neurons. Phagocytosis by
microglial cells, secretion, and uptake of exosomes causes the spread
of tau protein between neurons. Therefore, phagocytosis of microglial
cells and their aggregative (cross-) spreading combined with
neuroinflammation enhance neurodegeneration (Yuasa-Kawada et al,,
2026). which
neuroinflammation occurs in response to amyloid deposition has

Analysis of neuropathological events in
shown an association with hyperphosphorylated tau protein
aggregation, which contributes to disease progression by further
increasing neuroinflammation (Figure 1) (Yuasa-Kawada et al., 2026).
Thus, non-coding RNAs play an important role in the pathogenesis of
brain neurodegeneration by interacting with amyloid, tau protein, and

neuroinflammation (Jiménez-Ramirez and Castano, 2025).

13 Conclusions and perspectives

Acute cerebral ischemia in humans is a clinical emergency and a
condition associated with significant morbidity, mortality and
disability. Accurate prognostic and predictive biomarkers and
therapeutic targets for acute cerebral ischemia and post-ischemic
neurodegeneration remain undefined. This review explores the
multifaceted interactions between ncRNAs, amyloid and tau protein
and their contribution to the pathological picture of post-ischemic
brain neurodegeneration, including neuroinflammation as a
secondary insult. The accumulation of amyloid and tau protein, as well
as the neuroinflammatory reaction in brain cells, triggers
neurodegenerative processes, which thus accelerate the progression of
the disease. Thus, recent advances in ncRNAs and genetics research
have allowed for more detailed insight into the interactions between
amyloid, tau protein, and the immune response.

It is important to note that this pioneering review highlights the
limitations in the availability of studies and findings due to their lack
of data and suggests a path forward for the presented research.
Currently, no study provides data on survival over 2 years after
cerebral ischemia, although other studies suggest the feasibility of
such studies (Radenovic et al., 2020; Pluta, 2025). Such a long survival
time would allow for the definition of a therapeutic window during
post-ischemic brain neurodegeneration. Previous genetic studies
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(e.g., on APD, tau protein, autophagy, mitophagy, apoptosis) indicate
that a dramatic increase in genetic changes occurs after approximately
one year of ischemia (Czuczwar et al., 2024; Pluta, 2024; Pluta et al,
2024; Pluta et al., 2025b). If we had ncRNAs data from this survival
period, they could indicate a therapeutic window for post-ischemia
brain neurodegeneration, i.e., the presumed time for effective
treatment. This would facilitate the search for the appropriate timing
of action, but such data are currently lacking. In the absence of a
defined therapeutic window, the most effective timing of drug
administration is currently a matter of speculation. Studies with very
long animal survival times, i.e., up to 2 years, may allow for long-term
assessment of genetic changes and increase their accuracy and
validity, given that current cerebral ischemia studies terminate their
observations after several days. Therefore, the data originate from the
beginning of the acute phase of changes. Long-term studies would
allow us to determine the pattern of changes in gene expression
related to ncRNAs and amyloid and tau protein, given that symptoms
of post-ischemic brain neurodegeneration, including dementia,
appear after approximately 10 to 20 years of survival. Furthermore, it
is well known that 2years of age in rodents corresponds to
approximately 80 years in humans. Data on ncRNAs in different brain
structures at different survival times are lacking. These observations
require verification in studies lasting up to 2 years in different models
of cerebral ischemia in different animals, which would allow for the
correlation of genetic, proteomic, and neuropathological changes.
This would enable a precise assessment of the progression of
the complexity of dysregulation at the genomic and proteomic
levels from the acute to the chronic phase of ischemic brain
neurodegeneration.

Understanding the differential roles of ncRNAs, amyloid, tau
protein, and transcription factors in the development of
neuroinflammation in the post-ischemic brain is crucial for the
development of targeted therapies. Studying the interactions between
neurodegeneration, immune response and cell death opens promising
perspectives for the development of innovative treatment methods.
However, despite decades of research, the basic mechanisms
underlying post-ischemic neurodegeneration are still not fully
understood, although new ones are emerging all the time. A deeper
understanding of the mechanisms of neurodegeneration following
ischemia and the identification of promising biomarkers and
therapeutic targets will be crucial to advancing treatment and care.
This review discusses post-ischemic neuroinflammation as a
functionally complex immune cell response coordinated by several
transcription factors and regulated at the molecular level by ncRNAs
and intracellular epitranscriptome changes in association with the
presence of amyloid and tau protein. This highlights the importance
of further studies aimed at understanding the molecular mechanisms
of post-ischemic pathophysiology and identifying new targets to
develop treatment strategies aimed at minimizing ischemic brain
damage and accelerating recovery. Therefore, therapies aimed at
temporally regulating the neuroinflammatory cascade following
ischemia may yield better outcomes.

Neuroinflammation is a major driver of post-ischemic brain
neuropathology. Chronic post-ischemic neuroinflammation increases
neuronal damage, promotes amyloid and plaque accumulation and tau
protein dysfunction, and contributes to cognitive impairment and the
development of dementia. Current clinical treatment for ischemic brain
injury focuses on restoring cerebral blood flow and reoxygenation. These
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methods do not address the mechanisms underlying ischemic damage,
including oxidative stress, apoptosis, blood-brain barrier permeability,
and neuroinflammation. To reverse the changes and disability following
cerebral ischemia, causal drugs are needed that affect the molecular and
cellular processes induced by ischemia. Post-ischemic neuroinflammation,
necessary to remove amyloid, tau protein, and cellular debris to prepare
the brain for repair, plasticity, and regeneration, can be harmful if
prolonged. Chronic neuroinflammation exacerbates secondary brain
damage, impairs tissue repair, and contributes to progressive post-
ischemic neurodegeneration and dementia.

Modulation of post-ischemia gene expression, e.g., amyloid
precursor protein and tau protein, leads to neuroinflammation,
delayed neuronal death, and adverse outcomes. However, the
functioning of these phenomena in post-ischemic brain
neurodegeneration also depends on their interaction with ncRNAs
controlling the expression of genes responsible for post-ischemic
neuroinflammation. Various ncRNAs, including miRNAs, IncRNAs,
and circRNAs, have been shown to be essential regulators of gene
expression in ischemia and post-ischemic neuroinflammation.
Moreover, RNA modifications following ischemia (epitranscriptomics)
influence gene expression and protein synthesis, also affecting
neuroinflammation. RNA modification modulates the biogenesis and
splicing of ncRNAs, influencing neuroinflammation, e.g., by
polarizing the neuroglial cell state. Thus, manipulation of
epitranscriptomic marks may prove to be a potential means of
regulating the neuroinflammatory response, accelerating tissue repair,
and improving functional recovery after ischemia. In short, the
interplay of transcription factors, ncRNAs, and epitranscriptomic
changes is responsible for post-ischemia neuroinflammation, thereby
regulating secondary ischemia-induced brain injury and functional
outcomes. A deeper understanding of these mechanisms is crucial for
identifying new targets and developing therapeutic strategies aimed at
ameliorating post-ischemic neurological dysfunction and facilitating
functional recovery.

Following cerebral ischemia, endothelial cells release molecules
that promote the adhesion and migration of peripheral immune cells
across the blood-brain barrier into the ischemic area. The immune
response in the ischemic area is initiated by neuroglial cells. In
addition, amyloid and tau protein are involved in the above processes,
which enhance neuroinflammation after ischemia (Figure 2). This is
a novel insight, pointing to an interplay between amyloid, tau protein,
and  neuroinflammation  in  promoting  post-ischemia
neurodegeneration. Ultimately, this cascade of events activates
transcription factors that regulate gene expression, cytokine
production, neuronal survival and death, and neurological outcome.

This review presents the involvement of three types of ncRNAs:
miRNAs, IncRNAs and circRNAs in the
neuroinflammation the pathogenesis

neurodegeneration in close cooperation with amyloid and tau protein.

development of
and of post-ischemic
This article details how these three ncRNAs participate in pathological
events in the post-ischemic brain, such as amyloid production, tau
protein phosphorylation, and neuroinflammatory responses in a vicious
cycle. Furthermore, the potential use of ncRNAs as diagnostic markers
and therapeutic targets is analyzed. These studies indicate an important
role of ncRNAs in understanding the relationship with the development
of post-ischemic brain neurodegeneration. This study describes the
potential pathogenesis of post-ischemic neurodegeneration in relation
to ncRNAs and their products and key regulatory mechanisms. It also
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FIGURE 2
Summary of non-coding RNAs (ncRNAs) identified as potentially protective (x) and exacerbating brain neuropathology following ischemia. Circular
RNAs (circRNAs), long non-coding RNAs (IncRNAs) and micro RNAs (miRNAs).

highlights the current challenges in clinical diagnostics and treatment
of ncRNAs, such as issues with delivery mechanisms, precise targeting,
and ensuring treatment efficacy (Li S. et al.,, 2025). Nevertheless, our
knowledge about the regulatory functions of ncRNAs in the context of
post-ischemic neurodegeneration is still limited and many aspects
require further investigation.

It should be noted that the activity of these factors in the post-
ischemic brain is modulated by their mutual interactions, accessibility
to DNA binding sites, and cross-talk influences of ncRNAs. NcRNAs,
including miRNAs, IncRNAs, and circRNAs, have emerged as
essential regulators of gene

expression in post-ischemic
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neuroinflammation. With the advances in high-throughput gene
sequencing analysis of clinical samples and experimental models,
many aberrantly expressed ncRNAs have been detected in the brain
and blood after acute ischemia (Dykstra-Aiello etal., 2016; Li S. et al,
2025). It has been shown that differentially expressed ncRNAs in the
post-ischemic brain can lead to neuroprotection or deterioration
(Figure 2), and therefore ncRNAs may serve as therapeutic targets for
acute cerebral ischemia in humans and animals (Dykstra-Aiello et al,,
2016; Li S. et al., 2025).

Moreover, ncRNAs, through their presence in blood, can
be used as biomarkers to predict the development and sequelae of
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acute cerebral ischemia. Recently, the presence of ncRNAs in
peripheral immune cells has been demonstrated to be involved in
the systemic and cerebral immune response following acute brain
ischemia (Li S. et al, 2025). This review explores the latest
knowledge on ncRNAs (miRNAs, IncRNAs, and circRNAs) involved
in the phenomena following cerebral ischemia, as well as the
potential use of these ncRNAs as biomarkers in predicting and
prognosticating the outcomes of acute ischemic episodes. The data
from this review provided new ideas for the clinical application of
ncRNAs after acute brain ischemia. Parallel studies on the
mechanisms of ischemic brain neurodegeneration have focused on
genes encoding proteins associated with Alzheimer’s disease (Kocki
et al.,, 2015; Pluta et al., 2016a,b, 2018, 2020, 2024, 2025a—-c;
Czuczwar et al., 2024).

However, over the last decade, attention has also been paid to the
key role of ncRNAs in neurodegenerative processes in the brain after
ischemia (Mehta et al., 2024a; 1i S. et al., 2025). NcRNAs are functional
RNA molecules that are not translated into proteins. Generally
speaking, ncRNAs can be divided into housekeeping ncRNAs and
regulatory ncRNAs. Housekeeping ncRNAs are essential for basic
cellular functions, while regulatory ncRNAs are crucial in gene
expression which affects various cellular activities in different
conditions. NcRNAs have been shown to play key roles in immunity,
cell proliferation, apoptosis, oxidative stress, amyloid production and
aggregation, tau protein phosphorylation, autophagy, and
neuroinflammation, which have a profound impact on the
development of post-ischemic brain neurodegeneration (Pluta, 2024;
LiS. etal, 2025). They constitute a class of RNA molecules that, do
not encode proteins, interact with DNA, RNA, proteins and even
other ncRNAs to modulate a wide range of biological processes such
as gene transcription, RNA turnover, mRNA translation and
protein splicing.

MiRNA, IncRNA and circRNA have attracted the attention of
scientists due to their interaction with various molecular phenomena
and their crucial role in regulating gene expression (Dykstra-Aiello
et al., 2016; Canoy et al., 2024; Mehta et al., 2024a; Li S. et al., 2025).
In particular, miRNAs have been found to influence the expression of
genes involved in amyloid production and deposition, tau protein
phosphorylation, and neuroinflammation. LncRNAs have been
observed to regulate amyloid production and tau protein
phosphorylation. Interestingly, they have also been found to bind to
miRNAs or proteins and can therefore modulate their activity. In the
same sense, circRNAs have been observed to act as miRNA sponges.
Hence, ncRNAs offer new tools for predicting and treating the post-
ischemic brain, and their mechanisms of action and role in cerebral
ischemia and post-ischemic brain neurodegeneration deserve further
investigation. Research on the regulation of ncRNAs in post-ischemic
neurodegeneration is now extensive, but several key issues still remain
to be clarified. First, there have been few studies that have synthesized
different types of ncRNAs and the networks they form.

In general, interactions between ncRNAs are extremely complex
and diverse, and this review mainly focuses on the influence of
individual ncRNAs on processes after cerebral ischemia. Studies
conducted so far have rarely taken into account the network formed
by different categories of ncRNAs and their collective impact on target
processes. Therefore, more comprehensive studies are needed to
elucidate the exact functions of these complex regulatory networks
and feedback loops in post-ischemia neurodegeneration. Second, the
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role of ncRNAs at different stages of post-ischemic neurodegeneration
remains unclear, especially with respect to changes in their expression
and association with disease pathology from early to late clinical
stages. It is crucial to investigate the temporal dynamics and stage-
specific role of ncRNAs in the progression of neurodegeneration after
ischemia. Moreover, although the mechanisms of action of many
ncRNAs regulating post-ischemic neurodegeneration have been
initially identified, much of this knowledge remains speculative and
requires confirmation in in vivo and in vitro studies.

Several ncRNAs show potential as biomarkers of post-ischemic
but their
confirmation in large-scale, long-term studies. Furthermore, it is

neurodegeneration, clinical significance requires
necessary to develop standard protocols for the detection and
quantification of ncRNAs. Finally, although ncRNA-based therapies
have potential, they face challenges related to their efficacy, specificity,
and safety of administration. Developing effective drug delivery
systems and ensuring precise, controlled regulation in the brain
remain fundamental hurdles. In summary, the relationship between
post-ischemic neurodegeneration and ncRNAs is a promising area of
research. NcRNAs offer new insights into the pathogenesis of post-
ischemic neurodegeneration and the discovery of new biomarkers and
therapeutic targets. Ongoing studies are expected to fully elucidate the
of ncRNAs

neurodegeneration, leading to more effective strategies for its

role regulatory networks in post-ischemic
prevention and treatment.

The effect on the epitranscriptome offers hope for regulating
neuroinflammation, preventing amyloid accumulation and modifying
tau protein, promoting tissue repair and improving neurological
Influence of ncRNAs and

epitranscriptomic mechanisms suggests potential new therapeutics in

outcomes after brain ischemia.
post-ischemic brain neurodegeneration. For example, targeting
miRNA-7 and IncRNA FosDT showed improved results in
experimental models, indicating a promising direction for future
treatments for neurodegeneration (Mehta et al., 2024a; Pluta, 2025).
Certainly, further experimental studies are needed to clarify the role
of RNA modifications, RNA processing, RNA-RNA and RNA-protein
interactions in post-ischemic neuroinflammation. Epitranscriptomic
RNA modifications acting on ischemia affect functional outcomes.
Precise manipulation of these processes will be crucial in developing
future effective post-ischemia therapies.

There is much evidence that the treatment of neuroinflammation
has a future and opens up tempting possibilities for medical intervention
that patients after cerebral ischemia are waiting for. However, translating
preclinical results from experimental studies into effective clinical
therapies is currently a huge challenge (Candelario-Jalil and Paul, 2021).
Present actions center on modifying the neuroinflammatory answer to
move immune and neuroglial cells towards an anti-inflammatory
phenotype, thereby helping the survival of ischemic neuronal cells
(Mehta et al., 2024a; Pluta, 2025). This approach appears promising as a
therapeutic method to ameliorate ischemia and recirculation-induced
injury. Such actions will enhance our ability to mitigate
neuroinflammation and also reduce the global burden of post-ischemic
brain neurodegeneration. For example miRNA-155 is known to play a
key role in promoting post-ischemic brain damage, including apoptosis,
neuroinflammation, and microglia/astrocyte polarization, suggesting
that miRNA-155 inhibitors may be attractive drugs for the treatment of
acute phase of ischemia that can be combined with currently used
standard treatments. Therefore, research based on pharmacomodulation
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and/or genetic manipulation of ncRNAs and epitranscriptomic
regulators is actively conducted to develop new treatment methods.
Some studies involving ncRNA manipulation, such as miRNA-7 and
IncRNAs FosDT and IncRNA MALAT], have been shown to improve
outcomes after experimental cerebral ischemia (Kim et al., 2018; Wang
etal, 2020; Mehta et al., 2023a,c). NcRNA-based drugs are in the early
stages of development and face many challenges, including specificity,
delivery, and tolerability, which require much further research. This
review presents the neuroinflammatory response in association with
ncRNAs in post-ischemic brain neurodegeneration. It is certain that
reducing harmful neuroinflammation can help reduce the effects of
cerebral ischemia. Moreover, to determine an effective therapeutic
strategy, it is important to investigate the mechanisms between ncRNAs
and other neuroinflammatory factors such as amyloid and modified
tau protein.

This review highlights the crucial role of ncRNAs in the molecular
processes of post-ischemic brain neurodegeneration, emphasizing
their potential as biomarkers and therapeutic targets. As ncRNA
research continues to expand, there is hope that new strategies for
diagnosing, treating, and managing cerebral ischemia will
be discovered, which may lead to better outcomes for people affected
by this devastating neurodegenerative disease. The data in this review
indicate that ncRNAs may be not only promising biomarkers for the
early detection of cerebral ischemia but also novel therapeutic targets.
More detailed studies on the role of ncRNAs in post-ischemic brain
injury are certainly needed to determine the role of these potential
biomarkers as predictive and therapeutic targets. It is important to
determine the mechanism of action of ncRNAs and to determine how
they can serve as treatment targets in the long term. As shown in this
review, preliminary data on ncRNAs in the development of post-
ischemic neurodegeneration have provided valuable information on
the molecular mechanisms driving neurodegenerative processes.
These observations point the way to the development of targeted
interventions that can potentially modulate ncRNA activity, thereby
opening new avenues for the treatment and management of post-
ischemic brain neurodegeneration. Furthermore, this review clearly
indicates the importance of advancing the knowledge of ncRNAs in
cerebral ischemia through further studies. Thus, it is essential to
confirm the role of ncRNAs in a wide range of experimental and
clinical studies to strengthen their usefulness as clinical biomarkers
and therapeutic agents in cerebral ischemia.

Ischemic brain injury is also associated with secondary neuronal
cell death due to chronic neuroinflammation, induced by multiple
mechanisms, both known and unknown. Research findings regarding
these changes could help us better understand the neuropathogenesis
and mechanisms of ischemic brain injury and bridge the gap between
basic and translational research, potentially leading to the development
of new therapeutic approaches to the treatment of neurodegeneration.
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