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Neurodegenerative diseases such as Alzheimer's, Parkinson’s, Huntington'’s, ALS,
and spinocerebellar ataxia are becoming more prevalent as populations age,
posing major global health challenges. Despite decades of research, effective
treatments that halt or reverse these conditions remain elusive. Aging is the
most significant risk factor in the development of these diseases, intertwining
with molecular processes like DNA damage, mitochondrial dysfunction,
and protein aggregation. Recent advances in gene-editing technologies,
particularly CRISPR-Cas9, are beginning to shift the therapeutic landscape. This
revolutionary tool allows for precise correction of genetic mutations associated
with neurodegeneration, offering the potential for disease modification rather
than symptom management alone. In this review, we explore how CRISPR-Cas9
is being leveraged to target key genes implicated in various neurodegenerative
conditions and how it may overcome barriers posed by aging biology.
We also examine the delivery systems and safety challenges that must be
addressed before clinical application. With continued progress, CRISPR-Cas9
could mark a turning point in our ability to treat or even prevent age-related
neurological decline.
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Introduction

A class of diseases known as neurodegenerative diseases is defined by a steady
deterioration in the composition and functionality of neurons, which eventually results in
neuronal death (Rahimi et al., 2024; Gitler et al., 2017; Checkoway et al., 2011; Wilson
et al, 2023; Gan et al, 2018). These medical conditions are extremely incapacitating
and have a major effect on motor and cognitive abilities. While examining the literature
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surveys and medical reports, some of the most common
neurodegenerative diseases discussed in them are Alzheimer’s
disease (AD), which affects the most significant number of
patients, while the second is Parkinson’s disease (PD) (Gitler
et al., 2017; Checkoway et al,, 2011; Wilson et al., 2023; Gan
et al, 2018). These diseases are predicted to become more
common as life expectancy rises globally, necessitating immediate
prevention and therapeutic measures. About 50 million individuals
across the world suffer from dementia, a severe neurological
disease, and by 2050, that figure is expected to rise to 130
million. With 60%-70% of cases, AD is the most prevalent
type of dementia, whereas PD is the second leading cause of
such devastating diseases, impacting over 6 million individuals
worldwide (Pang et al., 2022; DeTure and Dickson, 2019). The
primary symptoms that appear in patients are the episodic
loss of memory, which is followed by cognitive dysfunction,
language issues, and visuospatial impairments. Amyloid-f (AB)
plaque buildup and tau-containing neurofibrillary tangles are
its pathological hallmarks. These aggregates, which are caused
by genetic mutations and other reasons, start to form decades
before dementia symptoms appear. With 20% of women and 10%
of males acquiring AD, women are disproportionately affected
(Silva et al, 2019). Bradykinesia, rigidity, resting tremor, and
abnormalities in gait are some of the signs of PD, a movement
disorder (DeMaagd and Philip, 2015). Lewy bodies (hard protein
clumps linked to many other neurodegenerative diseases) and
Lewy neurites (faulty thread-like filamentous structures), which
are mainly found in dopamine-producing neurons, are the result
of a-synuclein aggregation. Constipation and sleep issues are
examples of non-motor symptoms that frequently appear years
before motor problems (Pang et al., 2022; DeMaagd and Philip,
2015). An uncommon genetic condition known as Huntington’s
disease (HD) is brought on by an increase in CAG trinucleotide
repeats in the gene (i.e., huntingtin) that encodes for this protein
(McColgan and Tabrizi, 2018; Roos, 2010). This gene is found on
chromosome 4 in humans. HD has no known cure, despite the
fact that its progression makes people totally reliant on others
for everyday necessities, necessitating 24-h care (McColgan and
Tabrizi, 2018; Roos, 2010). After being formerly believed to affect
only motor neurons, it is now recognized as a multi-system
disorder. Amyotrophic lateral sclerosis (ALS) mostly manifests as
weakness, muscular atrophy, and ultimately paralysis (Rahimi et al.,
2024; Masrori and Van Damme, 2020; Hou et al., 2019). This
disease also becomes more severe than others because the affected
individual does not survive after a few years (2-10). The most
common cause of death is the failure of respiration due to severe
muscle loss in the diaphragm. Due to this reason, the diagnosed
patient is unable to breathe correctly. Also, while other diseases
usually occur in the older generation, ALS could be diagnosed
even in younger ages, such as in teenagers (Hardiman et al., 2017;
Brown and Al-Chalabi, 2017). Other neurodegenerative diseases
might exhibit unique pathologies but share commonalities in the
progressive neuronal damage associated with aging.

Aging and its role in neurodegeneration

A fundamental biological process, aging, raises the risk of
illness and death by causing a deterioration in both physical and
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functional abilities. In terms of neurodegenerative illnesses, it is
the most important risk factor (Azam et al., 2021). According to
projections, the number of Americans over 65 will increase from
53 million in 2018 to 88 million by 2050, highlighting the growing
prevalence of age-related illnesses. Neurodegenerative diseases
stand out among these because of their significant effects on life
expectancy and quality of life. Neurodegeneration is influenced
by age in a number of ways. It is uncertain if aberrant protein
aggregates like AP, hyperphosphorylated tau, and a-synuclein are
directly linked to cognitive impairment, yet they are frequently
found in older people’s brain tissue (Azam et al., 20215 Bourdenx
et al,, 2017). Neuroplasticity is also impacted by aging, increasing
the brain’s susceptibility to genetic and environmental factors
(Azam et al., 2021; Schaefers and Teuchert-Noodt, 2016).

The apolipoprotein E (APOE) ¢4 allele, for instance, is a key
gene that predisposes people to late-onset AD, and people with it
exhibit structural brain changes well before cognitive symptoms
appear (Azam et al., 2021; Erikson et al., 2016; Matteini et al., 2016).

Bridging aging and neurodegenerative
diseases

Neurodegeneration and aging constitute a continuum, with the
onset and course of neurodegenerative illnesses being influenced by
the characteristics of aging, such as loss of proteostasis (Lopez-Otin
et al., 2013), mitochondrial malfunction, and genomic instability
(Azam et al,, 2021). According to molecular research, aging of the
brain may be an accelerated type of neurodegeneration, especially
in extremely elderly people (Azam et al., 2021; Wyss-Coray, 2016).
Additionally, developmental environmental exposures like trauma
or poisons may have long-term consequences, making people
more susceptible to neurodegenerative illnesses in later life (Nabi
and Tabassum, 2022). The burden of neurodegenerative illnesses
will rise sharply as the population ages, calling for immediate
improvements in treatment approaches. To create interventions
that can extend the lifespan of old individuals, it is essential to
comprehend the biological processes of aging and how they interact
with neurodegeneration. Addressing the underlying mechanisms of
aging and neurodegeneration holds potential for more effective and
long-lasting remedies, even though present treatments concentrate
on managing symptoms.

Current and emerging therapies for
neurodegenerative diseases

Medication is frequently used to treat neurodegenerative
diseases with the goal of reducing symptoms and delaying the
course of the illness. To manage these issues, the following are
some standard therapy options (Cascione et al., 2020; Lipton, 2004;
Hallett and Standaert, 2004; Armstrong and Okun, 2020; Caraci
et al,, 2020; Song C. et al., 2022; Sudhakar and Richardson, 2019):

Inhibitors of acetylcholinesterase: For AD medications

including galantamine, rivastigmine, and donepezil are
commonly recommended to treat dementia-related symptoms. By

blocking acetylcholinesterase, which facilitates better nerve-cell

frontiersin.org


https://doi.org/10.3389/fncel.2025.1681891
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/

Shamsi et al.

communication, these drugs may stabilize cognitive function and
prevent future cognitive loss in AD patients.

Antagonists of NMDA receptors: Excessive NMDA receptor
activation can lead to neurodegeneration in conditions like stroke,
dementia, and neuropathic pain. By preventing glutamate, a
neurotransmitter that can harm brain cells when it is hyperactive,
memantine, a common NMDA receptor antagonist, helps control
the medical indications of PD and AD (Lipton, 2004; Hallett and
Standaert, 2004).

Agonists of dopamine: Dopamine agonists, which imitate
the brain’s dopamine function, are crucial in the cure of PD
because they help control symptoms such bradykinesia, rigidity,
and tremors. Movement, memory, and other processes depend on
dopamine, and agonists help make up for the loss of dopamine-
producing neurons in Parkinson’s disease. Antipsychotic Drugs:
These medications, which are frequently recommended for
Parkinson’s and Alzheimer’s illnesses, can reduce neuropsychiatric
symptoms like agitation, delusions, and hallucinations (Caraci
et al., 2020). However, its use needs to be closely watched because
of the possible adverse effects and elevated mortality risk.

Immunomodulatory The goal of
immunomodulatory therapies is to lessen inflammation in

substances:

the brain, which is assumed to contribute to neurodegenerative
illnesses (Song C. et al., 2022). Specific treatments aim to improve
the brain’s ability to eliminate amyloid-f (Af), such as vaccinations
and antibodies that target Af. In order to fight neurodegeneration,
other researchers concentrate on the tau protein as a possible
therapeutic target. Presently, immunotherapies are mainly in
the developmental stage, although a few, such as lecanemab and
Donanemab, have recently received approval for Alzheimer’s
disease, but hold a promising future (Espay et al., 2024).

Gene therapy: By injecting new or altered genes into
the brain, gene therapy is a cutting-edge method of treating
neurodegenerative illnesses. Although for now gene therapies
are considered an experimental approach but, in the future,
this approach offers hope for long-term illness management and
possible cures by correcting underlying genetic abnormalities,
providing neuroprotection, and stimulating neurorestoration
(Sudhakar and Richardson, 2019).

Pharmacological therapies for neurodegenerative diseases
are challenging due to the limited efficacy of current drugs,
progressive disease course and, more importantly, heterogeneity
across motor, cognitive, and psychiatric domains. Despite
ongoing research, there remains no definitive cure for these
conditions, and the existing therapeutic options primarily focus
on symptomatic relief. However, promising prospects for the
future are emerging, fueled by advances in understanding
the pathophysiological mechanisms underlying such medical
conditions for the discovery of undiscovered pharmacological
agents. Recent curative approaches have addressed the hallmark
pathologies of neurological implications by concentrating on
anti-amyloid and anti-tau therapies. Although these therapies have
some potential, they cannot stop the development of neuronal
degeneration or brain atrophy. Additionally, new pathways for
intervention have been made possible by the development of
advanced gene-modifying approaches like CRISPR/Cas9. Because
they provide new opportunities for the selective genetic material
modifications to rectify pathogenic processes at the molecular
level, these cutting-edge techniques have shown promise in the
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treatment of a variety of aging disorders, containing AD, PD, and
HD (Rahimi et al., 2024; Lamptey et al., 2022).

Revolutionizing the treatment of
aging-related neurodegenerative
diseases: the promise of CRISPR-Cas
gene editing

One of the most revolutionary and significant scientific
breakthroughs, Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR), was first discovered in the bacterial strain
Escherichia coli in 1987 (Ishino et al., 1987). According to Jansen
et al. (2002), CRISPR-associated (cas) genes were reported for
the first time, while Makarova et al. (2006) later provided a
comprehensive comparative genomic analysis and classification
of these genes. Together, CRISPR and RNA-guided Cas proteins
have been shown to function, and Barrangou’s team thoroughly
verified the CRISPR-Cas system’s ability to protect prokaryotic cells
against invasive phages in 2007 (Barrangou et al., 2007). Makarova
et al. (2011) described that there are three main stages to the
immunological response to CRISPR-Cas: adaptation, expression,
and interference (Makarova et al., 2011). Multiple Cas-linked
proteins make a group and form a complex that attaches itself to
a particular DNA segment, frequently identified by a brief motif
called PAM, and eliminates one portion of the nucleic acid, DNA
known as the protospacer during the adaptation phase (Nufez
et al., 2014). The protospacer DNA is subsequently inserted as a
space occupier into the CRISPR array by the adaptation complex,
either by obtaining it from RNA through reverse transcription or
by copying the repeat at the 5’ end (Swarts et al., 2012; Heler et al,
2015). The spacer section contains a specific sequence, and certain
portions of the flanking repeats are present in each mature CRISPR
RNA (crRNA), which is produced during the expression stage by
transcription of the CRISPR array into pre-CRISPR RNA (pre-
crRNA) (Brouns et al., 2008; Deltcheva et al., 2011). Based on the
CRISPR-Cas variant, this processing is performed by non-Cas host
RNases, a single multidomain Cas protein, or distinct components
of a Cas complex. The Cas nuclease is guided to the protospacer
or a comparable sequence in the genome of a virus or plasmid
by the crRNA, which stays attached to the processing complex
during the interference phase (Brouns et al., 2008; Jinek et al,
2012). The protospacer is then cleaved and rendered inactive. Based
on the design principles of their effector modules, the CRISPR-
Cas systems can be divided into two main classes along with six
categories (I-VI) (Makarova et al,, 2015). The basic difference
between these systems is that the Class 1 (consisting of types I,
IIL, and IV) uses multi-subunit effector complexes protein. On the
other hand, the Class II system (consisting of types II, V, and VI) is
comprised of large single effector proteins (Makarova et al., 2015;
Charpentier and Doudna, 2013).

Among the several CRISPR-Cas systems for genome editing,
the Type II CRISPR-Cas9 system that is discovered from
Streptococcus pyogenes (Spy-Cas9) is the most researched and
extensively used (Jinek et al., 2012). For Spy-Cas9 to cleave DNA,
two RNA molecules, ie., a trans-activating crRNA (tracrRNA)
and a crRNA, must be present, where these two RNAs merge
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to form a single guide RNA (sgRNA). In essence, the CRISPR-
Cas9 framework comprises an RNA-directed Cas9 endonuclease
coupled with a single guide RNA that precisely directs the Cas9
nuclease to designated loci within chromosomal DNA sequences.
As a result, a double-strand break (DSB) is created, which can
be restored by either the homology-directed repair (HDR) or the
), which
are both endogenous self-repair mechanisms contained within the

non-homologous end joining (NHE]) pathway (

organism ( ; ; ).

A complicated structure with several domains, the Cas9 protein
is divided into two separate sections referred to as the recognition
(REC) lobe and the nuclease (NUC) lobe. A bridge helix (BH)
with an elevated level of arginine residues connects these two lobes
( ). In order to allow the Cas9 protein to attach
to the target DNA, the NUC lobe of Cas9 has a PAM-interacting
domain in addition to two endonuclease domains, HNH and RuvC.
Each of these two domains cuts a single strand of DNA, producing
double-stranded DNA. Furthermore, SpCas9’s REC lobe is made
up of many recognition domains (REC1-REC3) that let SpCas9
connect to DNA and RNA. Cas9 can function as a modifiable
instrument to generate chromosomal double-strand cleavages
in vitro and in vivo due to its strong and dependable activity
( ). As a result, CRISPR/Cas9 has evolved into a
straightforward and adaptable RNA-guided genomic modification
platform that can be implemented across diverse organisms and
cellular populations, encompassing pigs, mice, rats, zebrafish,
bacteria and human cells for the treatment of diseases (

). shows the comparison of different gene editing
and gene regulation technologies, highlighting their respective
advantages and limitations, but among these, the CRISPR/Cas9 has
been widely adopted due to its ease in designing, cost-effectiveness
and high efficacy. The foremost application of CRISPR/Cas9 in
therapeutic applications occurred in 2016. Patients with advanced
lung cancer were treated by a Chinese team using cells that
had been altered using CRISPR/Cas9 (
clinical trials have been carried out in recent years, and a number

). Many

of the results have been reported in published literature. These
results include the application of CRISPR/Cas9-linked therapies
for diseases like B-thalassemia, sickle cell disease (SCD), acquired
immunodeficiency syndrome (AIDS), and various malignancies
( ; ; )

The CRISPR components are usually injected into the cells
to alter the genes in mammalian cells for therapeutic purposes.
Mostly mRNA, viral, plasmid, as well as protein-based techniques
are employed to transport the CRISPR/Cas9 elements within the
cellular environments ( ). Among these approaches,
viral-mediated delivery represents the most employed strategy for
CRISPR/Cas9 administration (

of virus delivery systems have been used that includes lentiviral

). To achieve this, a variety

vectors (LV), adenoviral vectors (AdV), and adeno-associated
viruses (AAV) ( , H ;

). For the following reasons, they are frequently utilized
in CRISPR genomic modification: The first benefit of using AAV's
for illness treatment is their ability to penetrate the target cell and
survive without the help of the host cell’s genome (

; ). Second, because of their varied capsids,
AAVs can infect a range of tissues. The other advantages of using
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AAVs also include tissue tropism, episomal persistence in non-
dividing cells, and low genomic integration rates (
).

Introducing Cas9-encoded mRNA into cells is another popular
technique for introducing CRISPR technology. mRNA-based
methods minimize the possible hazards associated with becoming
an integral part of the host genome and serve a transient purpose.
Furthermore, there is a rapid translation of Cas9 mRNA into
protein; these tactics offer the benefit of quicker outcomes.

Another appealing technique for introducing CRISPR
components into cells is plasmid-based methods. This strategy has
several advantages. First, the method of gene synthesis is simple.
Second, continuous expression is possible since the generated gene
can be delivered to the target cell via a plasmid without needing to
integrate into the host genome ( ).

Genetic engineering has been revolutionized by protein-based
CRISPR/Cas9 techniques, which are another efficient way to deliver
CRISPR components. Ribonucleoprotein (RNP) is a crucial part of
the CRISPR/Cas9 mechanism in this system. The RNP complex,
which is made up of the Cas9 protein and an sgRNA, is how
the Cas9 protein is transported to the target cells in the CRISPR-
Cas9 RNP delivery system (
diminished unintended consequences, and enhanced performance

). Enhanced selectivity,

are just a few of the benefits that make the RNP complex an
appealing delivery technique. Immune cells, primary cells, and
stem cells are among the various model animals and cell types
that the Cas9 ribonucleoprotein (RNP) method can be used to
with ease ( ; H )-
In the therapeutic intervention for neurodegenerative illnesses,
the CRISPR-Cas9 system has shown encouraging outcomes. The
CRISPR-Cas9 applications that have been used to treat various
illnesses will be discussed in the sections that follow, and a
comparative mechanism is shown in

Alzheimer's disease (AD)

AD one of the leading causes of progressive neurological illness
that is currently a leading cause of death and disability, behind
cancer and heart disease. Memory impairments and cognitive
decline are common features of the disease, which eventually affect
language, behavior, movement, reasoning, judgment, and memory
before resulting in dementia and mortality (

). The cleavage of amyloid precursor protein (APP) generates
AP peptides, which accumulate to form amyloid plaques—abnormal
deposits implicated in the pathogenesis of AD (
; ). Neurofibrillary tangles
(NFTs) are another constituent of these plaques, which, together
with AP are responsible for the AD symptoms. These are the two
neuropathological features that most commonly define AD. The
classical hallmark of AD is thought to be the link between these
two pathologies. According to researchers, the conventional AP
hypothesis offered a fundamental basis for the creation of possible
AD modulating treatments that target and stop the production of
AR and encourage the removal of harmful proteins from the brain,
including AR (
trials to create disease-modulating therapies utilizing in vivo disease
models of the illness, nevertheless. As a result, the CRISPR/Cas9

). There have been several unsuccessful
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FIGURE 1

CRISPR-Cas9 mechanism of action. Bottom left-hand side of image shows hon-homologous end joining while the bottom right hand side section

shows the homology-directed repair.

technique has become more well-known in the field of AD in
recent years because of its low consumption and brief trial period.
For activities including creating AD models, detecting harmful
genes through screening, and implementing targeted therapy, it is
currently widely used.

A tiny proportion of AD cases are familial, also referred to as
familial AD or FAD, even though most cases are sporadic (

). These instances arise due to pathogenic variants
inherited in an autosomal dominant manner affecting one of the
following loci: the gene encoding amyloidogenic precursor protein
(APP), presenilin-1 (PSEN1), or presenilin-2 (PSEN2). The main
cause of FAD is PSEN1 mutations, which usually cause symptoms
to appear earlier than those caused by mutations in the other
two genes ( ). The majority of PSEN1 mutations
result in an elevated production of the more aggregation-prone
AB42 compared to AB40. The development of AP plaques in
the brain, a defining feature of Alzheimer’s disease, is known to
be facilitated by this aberrant AB42 synthesis (

; ). Recent research suggests that
autosomal dominant mutations may be successfully corrected using
the CRISPR/Cas9 technology. This nucleic acid alteration tool’s
potential for genetic modification is further supported by reports
that it has effectively corrected similar kinds of mutations. Later
research has shown that employing the CRISPR-Cas9 genome
editing technique modifies cell models derived from PSEN2 N1411
variant-carrying patient fibroblasts can effectively reverse related
electrical activity disruptions and reestablish a physiological AB42
to AB40 ratio ( ; ;

). These findings were further supported by other
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research investigations that used iPSCs obtained from patients and
CRISPR/Cas9 to fix the genetic alterations in the PSEN gene in
FAD. Furthermore, another study showed that the background of
endogenous y-secretase was abolished when PSENI1 genes were
knocked out in N2a cells using the Type II CRISPR/Cas9 method.
Additionally, they found that the synthesis of AB42 and AB40 was
reduced when the PSEN1 mutation-derived recombinant protein
was introduced ( ).

When Swedish APP (APPswe) mutations were eliminated using
Type II CRISPR/Cas9 technology, the expression of AP protein
decreased, according to a distinct study conducted on patient-
derived fibroblasts ( ). This mutation, often
referred to be Swedish KM670/671NL APP, raises the amounts of
AP protein by increasing enzymatic cleavage through B-secretase.
Furthermore, Guyon led a team of researchers that introduced a
novel mutation in 2021 by modifying the APP gene using this
technique ( ). In both mammalian cell lines (SH-
SY5Y cells and HEK293T cells) containing the APP gene, having
the amine group removed from the cytosine one and the cytosine
two R groups. They changed the alanine codon to threonine
( ). According to their reported findings, they
succeeded in the insertion of the A673T mutation in every 53
out of 100 HEK293T cells, along with a unique mutation in the
amino acid residue number 674, which was replaced from E to
K. This alteration further reduced the accumulation of Af peptide
( ).

It is now known that the APOE (apolipoprotein E) gene
increases a person’s risk of developing sporadic AD (SAD). In AD
patients, the APOE allele primarily originates from an individual’s
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TABLE 1 Comparative framework for genome editing approaches and regulation tools.

Mec of action

Gene editing method

CRSIPR/Cas9

that target gene.

Produce double stand breaks by using cas9 guided gRNA at
specific target site. In turn HDR and NHE] repair mechanism
gets activated and leads to knockout, correction or disruption of

ADV: easy design, high efficacy, low cost.
LIM: off targeting, less precise.

CRISPRi/CRISPRa/other
dCas9-based activators and

repressors etc.,

Alters target gene expression (down/up regulating) by using
dead version of cas9 i.e., dCas9 fused with transcription

activators/ repressors or epigenetic modifiers

ADV: reversible in nature, no permanent change in genome,
safe, more specific.

LIM: repeated dosing needed, incomplete knockdown
(CRISPRi), limited by promoter context (CRISPRa).

Cas13 mediated RNA RNA editing by RNA editing enzymes like Cas13, or by splicing
-editing/splice to remove mutant exons

modulation/antisense

oligonucleotides

ADV: reversible in nature (antisense oligonucleotides), no
permanent change in genome and directly modulate RNA
splicing, stability and translation.

LIM: only effect RNA, repeated dosing needed

Prime editing

target site

It produces cuts only in one strand of DNA by the help of
nCas9-RT fusion guided by the help of pegRNA at specific

ADV: highly precise, versatile, can install substitutions,
insertions, deletions without DSBs.

LIM: delivery challenges, larger and more complex machinery.

Base editing

deaminase acts on single base

This is for single base changes where cas9-deaminase complex
is guided to the DNA site, Cas9 opens a small DNA bubble and

ADV: highly precise for point mutations.
LIM: limited to transition mutations only (not all possible
edits), off targeting

Zinc finger nucleases (ZFN)

that dimerizes and creates DSBs

It uses Zinc finger proteins that recognize 3-bp DNA sequence.
This method can be used to target the specific DNA sequence
by kinking the fingers in the tandem. It uses Fokl endonucleases

ADV: easy delivery due to compact and small size, proven in
clinical trials, no guide RNAs needed.

LIM: expensive, designing complexity and lower efficiency as
compared to CRISPR

Transcription activator like
effector nucleases (TALENS)

It uses TALE proteins that recognize single nucleotide. It uses
Fokl endonucleases that dimerizes and creates DSBs

ADV: high efficacy and flexible target range
LIM: lower efficiency as compared to CRISPR, delivery problem
due to large size

RNA interference

It uses the siRNA/shRNA to degrade target mRNA in the cells.

ADV: easy design works in many organisms, reversible and
transient in nature and effective in knocking down the gene
expression.

LIM: off targeting, efficiency varies across, incomplete
knockdown

central nervous system, containing an astrocyte-rich area. There
are several variations of the APOE gene, such as E2, E3, and
E4. Among these variations, the strongest genetic risk factor for
SAD is the APOE4 type (Lozupone et al., 2023). To ascertain the
function of APOE4, Lin and associates used hiPSC and the Type
II CRISPR system in 2018. The research-driven outcomes of their
study provided the conclusion that, depending on the kind of cell,
APOE4 had different effects on Ap metabolism (Lin et al., 2018).
Additionally, Wadhwani et al. (2019) investigated possible APOE4
treatment targets in 2019. They corrected the E4 allele to the E3/E3
genotype in iPSCs from two AD patients using the Type II CRISPR
system. The findings demonstrated that E3 neurons exhibited
lowered numbers of phosphorylated tau protein (Wadhwani et al.,
2019). Their study thus also suggests that E3 neurons may be more
resistant to ionomycin-driven cellular toxicity in comparison to the
E4 neurons.

Parkinson'’s disease (PD)

Without any conflict, PD has now taken the place
of the second most common neurodegenerative disorder
2008; 2015). Like AD, this
disease also primarily occurs due to aging and affected
individuals are of 55-plus aged. Impaired body movements

(Jankovic, Kalia and Lang,
are a defining feature of these diverse neurodegenerative

Frontiers in Cellular Neuroscience

2008;
Kalia and Lang, 2015). As we all know, dopamine is one of

disorders  with medical implications (Jankovic,
the most important neurotransmitters found in humans, playing
a crucial role in controlling normal muscular movements. These
signal transmitter molecules are produced in the section of
the brain known as the substantia nigra pars compacta (and
abbreviated as SNPC) (Kalia and Lang, 2015). In PD, the SNPC
region fails to produce adequate levels of dopamine, which, over
time, as the individual ages, continues to decrease. Now that the
dopamine levels are continuously declining in the patient, normal
muscular movements turn out to be impaired, resulting in visible
abnormal movements (Kalia and Lang, 2015; Surmeier et al,
2017; Dorsey et al, 2018). According to Blesa and Przedborski
(2014), this sudden decrease in dopamine count in the striatum is
significantly reduced. This reduction impairs the motor circuit’s
ability to function, which ultimately causes PD symptoms. From
reported symptoms and available literature, we know that such
symptoms may include resting tremors (unwilling shaking gestures
without any apparent will), bradykinesia (slowness in locomotory
speed and actions), and rigidity (increased resistance to arm and
leg movement) (Blesa and Przedborski, 20145 Hacker et al., 2012).
Another distinguishing feature is the existence of intra-
cytoplasmic Lewy bodies (LB), which are mainly made up of
ubiquitin and a-synuclein (Blesa et al., 2012). Although mutations
in the a-synuclein gene have only been associated with rare familial
cases of Parkinson’s disease, it is important to remember that
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all Lewy bodies include a-synuclein. The remaining 10% of PD
patients have familial PD brought on by mutations in particular
genes such as PRKN/PARK2, SNCA, PINK1, UCH-L1, LRRK2,
PARK7, MAPT/STH, and DJ-1, GBA. Around 90% of patients
having PD have no known etiology (idiopathic). These mutations
might possibly be linked to sporadic Parkinson’s disease (PD)
(Cota-Coronado et al., 2020; Nalls et al., 2019). The SNCA gene
is intimately associated with a-synuclein expression (Ferreira and
Massano, 2017). SNCA gene mutation, particularly at amino acid
residue number 53, is one of the most significant risk factors
of PD. At this position, originally lies Alanine residue, which
gets replaced by Threonine due to the occurrence of a missense
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mutation. Although SNCA contains several mutations, A53T
stands out due to its correlation with Parkinson’s disease (Spira
et al, 2001). According to a study done in the year 2022 by
Yoon et al. (2022), the increase in a-synuclein protein and reactive
microgliosis caused by it or PD-linked motor neuron indications
may be considerably improved by employing the newly developed
CRISPR-Cas9 technique by targeting this mutation within the
SNCA gene.

Several attempts have been made to test whether this technique
is effective against PD. An example of such an effort is Kantor
etal. (2018), for utilized CRISPR-Cas9 technology; their team chose
a lentiviral vector. They succeeded and reported that using the
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CRISPR-Cas9 technique, mRNA linked to the SNCA gene was
precisely downregulated, limiting its protein expression (Kantor
et al., 2018). Further attempts were made by Chen et al. (2021),
who sought to identify the mechanism that works behind the
functioning of the SNCA gene within the nucleus of a cell. For
this purpose, their group obtained human-induced pluripotent
stem cells from patients diagnosed with PD having the A53T and
SNCA-triplication dominant mutations, along with their version
of the same gene, which was obtained upon modification using
the CRISPR-Cas9 technique. In their findings based on preclinical
models, it was reported that the absence of this gene leads to
the development of resistance against Lewy body pathology (Chen
V. et al.,, 2020; Chen X. et al.,, 2020). Then Zhou et al. (2015)
tried to test the same using porcine models obtained from a
domestically grown environment. Then, a combinatory technique
encompassing CRISPR-Cas9 and somatic cell nuclear transfer
(abbreviated as SCNT) was used to determine the effects of PARK2
and PINKI genes (Zhou et al., 2015). Both of these genes were
then knocked out with a success rate of approximately 38%. In a
separate notable study focusing on nigral dopaminergic neurons
(DN), CRISPR/Cas-mediated ablation targeted the ATP13A2
(PARKDY), DJ-1 (PARK?7), and PRKN (PARKIN) genes. Integrated
transcriptomic and proteomic analyses across these isogenic cell
models consistently identified oxidative stress as a common
dysregulated pathway (Ahfeldt et al, 2020). In another more
recent study, it has been reported that loss-of-function mutations
in DNAJC6, which encodes the HSP40 co-chaperone auxilin, are
associated with early-onset PD pathogenesis. To elucidate the
functional consequences of such genetic alterations, CRISPR-Cas9-
mediated genome editing was applied to human embryonic stem
cells (hESCs). Transcript profiling and experimental validation
suggested that disruptions in DNAJC6 dependent endocytic
processes impair WNT-LMXIA signaling during the development
of dopaminergic neurons found within the midbrain (mDA). Such
impairments cause the reduced LMX1A expression throughout
the process of neurogenesis, which may consequently lead to the
generation of developmentally compromised mDA neurons. mDA
neurons are known to exhibit increased pathogenic vulnerabilities
(Wulansari et al., 2021; Nouri Nojadeh et al., 2023).

Huntington’s disease (HD)

An autosomal dominant pattern of inheritance leads to a
single genetic mutation that causes Huntington’s disease (HD), a
progressive neurological illness. According to Bates et al. (2015),
it is the most common hereditary neurodegenerative illness,
and it is caused by a pathogenic mutation [CAG trinucleotide
repeat expansion, encoding glutamine (Q)] (Paulsen, 2011). As
a result, the huntingtin protein’s N-terminal domain develops
an extended polyglutamine strand (Kim et al, 2001; Orr and
Zoghbi, 2007). A wide range of molecular and cellular processes
in the brain are disrupted by this mutant protein, which leads to
clinical symptoms like a continuous decrease in decision-making
capabilities, accompanied by multiple disorders such as chorea,
dystonia, non-coordination, and psychiatric disorders (Waldvogel
et al, 2015; Byun et al, 2022). HD is a suitable candidate for
gene therapy since it is caused by a single genetic alteration,
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accompanied by the deposition of faulty protein aggregates.
Nowadays, with advancements in the CRISPR/Cas9 technique, it
is also pronounced as one gene one therapy and has the potential to
inhibit the expression of the faulty HTT gene (Shin et al., 2016).
Shin and associates carried out a study to increase allele
specificity. They employed a customized allele-selective
CRISPR/Cas9 approach based on SNPs that modify the Pro-
tospacer Adjacent Motif (PAM) (Shin et al., 2016). This approach
combined a thorough understanding of the huntingtin (HTT) gene
haplotype structure with a focus on patient-specific CRISPR/Cas9
locations. According to them, the objective is to specifically
deactivate the mutated HTT allele and limit its conversion into
a specific diplopic gene (Shin et al., 2016). Furthermore, Suzuki
and colleagues devised a method known as homology-independent
targeted integration (HITI), which employs CRISPR to effectively
eliminate nucleic acids in a growing population of cells observed
through in vitro/vivo methods (Suzuki et al., 2016). By enhancing
visual function, HITI was demonstrated to be effective in a rat
retinitis pigmentosa model, a disorder that results in retinal
degeneration (Suzuki et al, 2016). Yang et al. (2017) showed
in another study that polyglutamine expansion-driven toxic
environment within neuronal cells within the mature brain may be
successfully and permanently eliminated by employing CRISPR.
They came to such conclusions upon performing their studies
on the HD140Q-KI mouse model, where HTT was eliminated.
CRISPR/Cas9 in HD140Q-KI mice to deplete HTT in a non-
allele-specific way (Yang et al, 2017). According to them, the
experimental group showed a significant improvement in motor
dysfunction and a notable decrease in reactive astrocytes (Yang
et al,, 2017). Additionally, a study by Ekman et al. (2019) showed
that neurotoxic inclusion development was reduced by two times
when CRISPR-Cas9 was used for targeting the altered HTT gene
in an R6/2 mouse model strain. The mouse model used by them
carried exon 1, which is found on the HTT gene, having 115-150
CAG repetitions. In the same mice, this also resulted in a longer
lifespan and improvement in some of the motor neuro defects
(Nouri Nojadeh et al., 2023; Xie et al., 2019). Such outcomes show
the potential of CRISPR-Cas9 as a tool for HD, reaffirming its
applicability to address other similar neurodegenerative diseases.

Amyotrophic lateral sclerosis (ALS)

Also, named as Lou Gehrig’s disease (given upon a famous
athlete), it affects the human motor system and progresses quickly.
According to van den Bos et al. (2019), this disorder is brought
on by the central nervous system’s motor neuron. Dysfunction
in motor neurons is the most observed pathological hallmark
affecting the whole-body movement and is the most frequently
observed type of motor neuron disease (MND). As the disease
progresses, patients witness multiple malformations encompassing
lack of strength, severe muscle loss (atrophy), partially or complete
lack of movement (or paralysis), and finally failure in respiration
due to weakened diaphragm muscles, becoming the most common
cause of death because of this dysfunction (Oskarsson et al., 2018).
There are two forms of ALS: the first one that runs in families,
familial ALS (fALS), which makes up only a small portion of the
observed cases (approximately 10%), while the other one, which
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is developed during an individual’s lifetime due to unclear reasons
( ). C9orf72, SOD1, TARDBP, and FUS are the most
common pathogenic genes linked to ALS ( ).
Furthermore, some of the most frequently observed reasons for
ALS patients, both inherited (40%) and sporadic (5-6%), are the
recurrence in noncoding regions of the hexanucleotide sequence
of the gene C9ORF72 ( ;

). To eliminate HRE from the C9ORF72 chromosomal
locus, Meijboom’s team used an adeno-linked viral vector method
for the transfer of the CRISPR-Cas9 system. Various models
were used to successfully demonstrate this purpose, including
murine models, patient-derived iPSC motor neurons, organoids,
and primary cortical neurons. All-important markers C9-ALS/FTD
(such as RNA foci, poly-dipeptides, and haploinsufficiency) used
in ALS detection and treatments were observed to lower signifying
positive results. Treating these illnesses with this therapy approach
is hopeful ( ).

In a work by , they edited transgenes
(hSOD1-G93A) linked to Lou Gehrig’s disease using transgenic
mice with CRISPR/Cas9. In two other mouse model studies with
hSOD1-G93A (G1H and G1L) mutations, it was shown that the
gene-editing approach is beneficial in targeting and correcting the
mutation. Another work addressed the SOD1 E100G mutation
by using the CRISPR/Cas9 technique. iPSCs from an ALS patient
having these mutations underwent targeted gene repair (

). Later, the iPSCs developed into motor neurons. In
addition,
method for CRISPR-Cas9-induced point mutations associated with

described a quick, easy, and effective

ALS in human iPSCs without the need for antibiotic selection.

In 2018, state  that
spinocerebellar ataxias (SCAs) constitute a category of progressive
neurodegenerative conditions that mostly affect the cerebellum
and are transmitted in an autosomal dominant fashion. The main
clinical characteristic of SCAs is a progressive decline in stability
and agility, which is frequently concomitant with communication
difficulties. Observable features typically manifest in adulthood.
To date, over 40 genetically different subtypes of SCAs have
been found, making them a diverse collection of illnesses. Every
subcategory is identified by the abbreviation SCA, which is
subsequently succeeded by a numerical sequence that reflects the
episode in which the causal gene or disorder locus was identified
( ). More than half of cases are of the standard
and well-defined subtypes SCA1, SCA2, SCA3, and SCA®6, while
the remainder instances are of uncommon variations (

). The SCAs can be divided into two primary groups
in terms of genetics: those resulting from non-repeat mutations
and those resulting from dynamic repeat expansion mutations.
The prevalence of neurological disorders that are not classified as
SCA:s is also significantly influenced by dynamic repeat expansions
( ). Repeat expansion mutations are the cause
of at least 12 SCAs. Six of these mutations [specifically SCA1,
SCA2, SCA3/Machado-Joseph disease (SCA3/MJD), SCA6, SCA7,
and SCAL17], result from pathogenic CAG trinucleotide repeat
amplifications within coding sequences that produce extended
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polyglutamine tracts in the respective disease-associated proteins.
These illnesses are therefore known as polyglutamine SCAs (
; )-

The main goal of reducing mATXN3 in research that used
the CRISPR technique for SCA3 was successfully achieved by
removing the mutant trinucleotide CAG expansions within the
ATXN3 locus ( ). This was accomplished
through targeted disruption of the pathogenic CAG trinucleotide
repeats located within the tenth exon’s region or at the beginning
of 11 exon ( ). The gene was primarily
repaired by the NHE] process, which ultimately produced a
shortened ATXN3 incorporating a premature termination signal
at the initiation of the eleventh exon sequence.
also showed that the 74-repeat CAG trinucleotide extension
present in exonic segment 10 of ATXN3 in SCA3-iPSCs
can be successfully repaired using dual sgRNA/Cas9n nickase
approach combined with homologous recombination methodology
in an alternative investigation utilizing CRISPR/Cas9 genomic
modification technology for accurate genetic correction through
HR-mediated repair and complementary single guide RNAs. This
results in a targeted and effective attenuation of aberrant ATXN3
protein expression. Furthermore, developed
efficient methods for one-step genetic repair in SCA3-iP-SCs of
the SCA3 patients by utilizing homologous recombination in
conjunction with a CRISPR/Cas9 technology. By creating SCA3
illness models in particular neurons that were differentiated based
on the cerebellar area and disease-specific features, they further
advanced their research. A recent study successfully developed and
validated a CRISPR/Cas9 treatment strategy for fibroblasts derived
from SCA1 patients ( ). The method effectively
reduced the synthesis of both healthy and mutant ATXNI
protein by utilizing G3 and G8 guide RNA/Cas9 ribonucleoprotein
assemblies. This research demonstrates the encouraging results in
preclinical models of some polyQ-related disorders utilizing the
CRISPR genomic modification technique; however, the therapeutic
applicability may vary across its subtypes due to genetic content

( )-

Even though research into aging and neurodegenerative
diseases has come a long way ( ) ;

s s ), we still don’t
have treatments that can truly prevent or reverse these conditions.
One of the biggest challenges is that we lack effective disease
models that can accurately mimic what happens in the human brain
during neurodegeneration. In this review, we've highlighted several
key features of aging, like DNA damage, cellular senescence, and
mitochondrial dysfunction, that are closely tied to these diseases.
Going forward, it will be crucial to build better models that reflect
how these aging-related changes contribute to conditions like AD
and PD and other neurodegenerative diseases.

One of the most promising developments in recent times is
the rise of CRISPR/Cas9 gene editing ( ;

; ; ). This
technology gives scientists the ability to precisely edit genes linked
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TABLE 2 Preclinical Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) interventions in neurodegeneration.

Disease

Alzheimer’s disease

CRISPR/spCas9

Amphiphilic RNP complexes

Editing method/tool Delivery system used Efficacy/behavioral changes/key
outcomes

45% indels, 34% reduction Bacel mRNA, Positive
improvements (Park et al,, 2019)

Alzheimer’s disease

CRISPR RNA-guided Adenine Base
editors/NG-ABE8e

AAV9

Rescued cognitive decline; improvements in tau
pathology and behavior (Gee et al,, 2024)

Alzheimer’s disease

CRISPR-Cas9 via sgRNA

AAV9-Cas9-SW1

Decrease in Ap pathology, reduced microgliosis,
neurite dystrophy, cognitive improvements (Duan
etal,, 2021)

Alzheimer’s disease

CRISPR/saCas9

AAV

Editing ameliorates neuropathologic,
electrophysiologic, and behavioral deficits in an AD
knocking mouse model (Aulston et al., 2024)

Parkinson’s disease

dCas9-DNMT3A (CRISPRi/epigenetic
silencing)

Engineered exosomes with targeting
peptide (RVG), delivered across BBB
via focused ultrasound;

sgRNA + dCas9-DNMT3A complex
delivered via the exosome.

Motor deficits rescued, balanced, reduced
a-synuclein expression, rescued apoptosis, slowed
disease progression (Kong et al., 2024)

Parkinson’s disease

Cas9 (SaCas9-KKH) + sgRNA targeting
the mutant SNCA allele (A53T); direct
deletion/suppression of mutant SNCA

AAV-DJ (AAV serotype DJ)

Motor deficits rescued, Reduced a-synuclein
accumulation, reduced neuroinflammation
(microgliosis), protected dopaminergic neurons
(Yoon et al., 2022)

Parkinson’s disease

dCas9-activator system (CRISPRa)

Lentiviral constructs: N-dCas9
(SpCas92-573) fused to
DnaE-N-Intein and
C-dCas9-(SpCas9574-1368) fused to
DnaE-C

Striatal astrocytes were converted into GABAergic
neurons which integrate into striatal circuits and
partial rescue of voluntary motor behavior deficits
(Giehrl-Schwab et al., 2022)

Huntington’s disease CRISPR/spCas9 AAV split system HTT protein reduction (10%-80%), motor deficits
rescued (Yang et al., 2017)

Huntington’s disease CRISPR-Cas9 via sgRNA AAV ~50% decrease in neuronal inclusions;
improvement in motor symptoms; increased life
span (~15%) relative to control (Ekman et al.,
2019)

Huntington’s disease CRISPR-Cas9/lentiCRISPRv2 AAVS Identified genes (DNA repair modifiers) that
influence the rate of somatic CAG expansion
(Mouro Pinto et al., 2025)

Huntington’s disease CRISPRi (dCas9-sgRNA)/LentiCRISPR v2 | Transduction Delayed motor deterioration; improved locomotor

plasmid activity; behavioral outcomes improved in treated
mice vs controls (Seo et al., 2023)

Amyotrophic lateral CRISPR/SaCas9 AAV9 65% reduction in SODI protein, Motor deficits,

sclerosis muscular strength and survival rescued (Gaj et al,,
2017)

LCA10 CRISPR/SaCas9 AAV5 27.9 % and 21.4% indels (Maeder et al., 2019)

Fragile X syndrome CRISPR/spCas9 CRISPR-Gold RNP complexes 14.6% indels, ~50% reduction in mGluR5 protein

and mRNA levels, rescued repetitive jumping and
excessive digging (Lee et al., 2018)

Retinitis pigmentosa

HDR/SpCas9 + sgRNA-MS2 + RecA-MS2

Plasmid electroporation

2% gene correction, Partial rescued (Cai et al., 2019)

complexes

MECP2 duplication CRISPR/SpCas9 AAV split system Reduction on MECP2 protein by around 50% and
syndrome improvements in social recognition (Yu et al., 2020)
Hearing loss (DFNA36) CRISPR/SpCas9 Cationic lipid mediated RNP 1.8% indels, stability in auditory responses (Lee

etal., 2018)

to neurodegenerative diseases (Table 2) and opens the possibility ~ (Leber Congenital Amaurosis, LCA) and NTLA-2001 (Gillmore
etal, 2021) (Transthyretin (ATTR) Amyloidosis).

Gene therapy, while full of promise, also comes with its own

for targeted clinical therapies. So far, early studies in animals
have shown promising results, but before we can bring these
advances into human medicine, there are still significant hurdles  set of challenges. CRISPR based gene editing technologies have
to overcome. Two examples of such ongoing CRISPR-mediated

clinical trials in humans include EDIT-101 (Pierce et al., 2024)

opened new vistas in the treatment of neurodegenerative diseases
(Table 2), but they have confronted several critical challenges
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that include the foremost concerns of off target effects that result
in unintended editing in the genome resulting in deleterious
mutations (Lopes and Prasad, 2024; Guo et al., 2023) or the
delivery problem due to its large size that makes inefficient delivery
across the blood brain barrier (Zou et al., 2022). Although recent
advancements in assessment of CRISPR-induced off-target editing
(in silico methods and experimental methods) and approaches
to reduce off-target genome editing (Improvement of nucleases,
sgRNAs, DSB-independent editing, Anti-CRISPR proteins and
delivery methods for spatiotemporal control of editing) have
been made, yet off-target activity remains a significant safety
consideration in the clinical setting (Guo et al., 2023; Lopes and
Prasad, 2024). Additionally, the difference between temporary or
transient (CRISPRi and CRISPRa, Prime editing, Base editing,
etc.) and permanent CRISPR-derived gene editing should be
considered (Pacesa et al., 2024). The transient approaches are
usually reversible, but they are safer, cost-effective, fast and have
less off-targeting effects as compared to permanent and traditional
CRISPR-mediated DNA editing (Pacesa et al., 2024). The other
main limitation is that when CRISPR/Cas9 induces DNA damage
in p53-proficient cells, it leads to its activation in turn as the
safety response that eventually leads to cell cycle arrest and diverts
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the cells toward cell apoptosis, hence the CRISPR-induced gene
editing efficacy is compromised (Haapaniemi et al., 2018). Another
special aspect to consider is the cell type specificity; for example,
unintended gene editing in the CNS (central nervous system)
could lead to unpredictable and lethal outcomes, hence the current
research is focusing on exploring more specific delivery systems
and CRISPR effectors with selective tropism to enhance precision.
The other things that can’t be ignored while designing the effective
CRISPR system against diseases includes the check on preexisting
immune response (humoral and cell mediated adaptive) against
Cas9, as it has been discovered that many people already have
antibodies and T cells against the cas9 (spcas9 and sacas9) (Shen
et al., 20225 Charlesworth et al., 2019) and also CRISPR therapy
has been reported to cause several immunogenic reactions that is
considered its major setback in the field of gene therapy (Hakim
et al., 2021; Ewaisha and Anderson, 2023).

considering  CRISPR
neurodegenerative diseases, the fundamental limitations like

Moreover, specifically to treat
the sporadic nature of neurodegenerative diseases (Zhang et al.,
2020; Bertram and Tanzi, 2012; Nouri Nojadeh et al., 2023). Also
come across as CRISPR is only applicable to target rare familial

forms of neurodegenerative diseases with known monogenic
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causes, which account for a small subset of patient cases
(Nouri Nojadeh et al., 2023). Apart from this, there are several
ethical and regulatory hurdles that must be considered, including
patient consent, long-term safety monitoring and germline
editing.

Looking ahead, the path
neurodegenerative diseases will depend on how well we can

to effective treatments for
bring together what we know about aging, genetics, and advanced
technologies (Figure 4).

Some key steps include:

Creating better models that capture both aging and disease
characteristics.

Carefully selecting gene targets that work in harmony with
other biological systems.

Improving how we deliver gene editing tools, while
minimizing side effects.

e Exploring combined approaches that bring gene therapy
together with drugs or other
treatments.

While the road ahead is still long, the progress being
made gives us hope. With continued research and collaboration,
were getting closer to developing therapies that can make
a real difference for millions of people living with these
devastating diseases.
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