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PURKINJE CELL BI-STABILITY
PC bi-stability is readily observed in intra- and extra- cellular 
recordings in both in vitro and in vivo preparations. In slice prepa-
rations it is occasionally periodic, where the state durations are on a 
time scale of seconds (Figure 1A). An epoch of up state (Figure 1A 
lower trace) starts with a slow membrane depolarization that upon 
reaching threshold elicits a prolonged fi ring period characterized 
by initial fast rate that slowly settles to a steady state fi ring fre-
quency with different degrees of regularity (see below). The fi r-
ing epoch terminates abruptly where the membrane potential is 
rapidly hyperpolarized below the original level. The membrane 
potential (after omitting action potentials) attains two distinct 
levels. In the example shown in Figure 1A an average value of 
−57 mV was observed during the down state, whereas the depo-
larized up state was ∼−47 mV (Figure 1B). Similar behavior can 
be observed when the activity of a single PC is extracellularly 
monitored (Figure 1C). The alternation between fi ring and qui-
escent epochs on time scales of seconds is a robust feature of the 
activity. As with the intracellular recording, a fi ring epoch starts 
abruptly with a high fi ring rate that quickly settled to a somewhat 
lower frequency of various regularities. In contrast to the intracel-
lular recording, here the bi-stability is quantifi ed by calculating 
the instantaneous fi ring frequency. The distribution of the fre-
quencies (Figure 1D) shows that almost half of the time the cell 
is quiescent, whereas when it is active, it tends to fi re at 20–30 Hz. 
Several lines of evidence support the intrinsic origin of PC bi-
stability. First, brief intracellular current injections are suffi cient 
to induce state transitions (see Figure 3). Second, a dc current 

INTRODUCTION
Like most neurons, Purkinje cells (PCs) are classically described as 
stable electrical elements where the resting potential is continuously 
interrupted by synaptic potentials. Once the synaptic potentials 
reach a certain threshold, an action potential is generated. This 
somewhat simplistic description implies that the fi ring rate of a 
cell mirrors its synaptic input. This view of PCs has recently been 
challenged by the fi nding that they operate as bi-stable elements. 
PCs seem to have two stable levels of membrane potential: a hyper-
polarized state that is devoid of simple spike fi ring (down state), 
and a depolarized state in which the cell spontaneously fi res at high 
frequencies even in the absence of any synaptic input (up state) 
(Williams et al., 2002; Loewenstein et al., 2005; Fernandez et al., 
2007). Hence, PC fi ring rate does not refl ect a simple summation of 
its inputs. This alternative view of PCs is not commonly accepted. 
De Zeeuw and colleagues reported that although bimodal distri-
butions of fi ring rate are frequently encountered in anesthetized 
animals, PCs switch to a continuous fi ring mode once the anesthesia 
is removed (Schonewille et al., 2006). Conversely, recordings from 
awake, restrained cats demonstrated that ∼50% of the cells exhibit 
bi-modal fi ring dynamics (Yartsev et al., 2009), and preliminary 
results also documented bi-modal fi ring of Purkinje cells in freely 
moving rats (Lev et al., 2006). One way to reconcile these contradic-
tory reports is to assume that the balance between continuous and 
bi-modal fi ring is modulated by the behavioral state of the animal 
such as exploration, stress or alertness. In the following we describe 
the phenomenon of bi-stability and its effect on the responses of 
PCs to synaptic inputs.
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injection that hyperpolarizes the membrane potential maintains 
the cell in the down state and does not reveal any bi-modal inputs 
(Loewenstein et al., 2005), and third, the spontaneous fi ring rate 
of PCs is not altered by synaptic blockers (Cerminara and Rawson, 
2004). Yet, synaptic inputs may still affect the timing of spikes. As 
intrinsic fi ring is expected to be regular, we estimated the fi ring 
regularity during up states using CV

2
 analysis (Holt et al., 1996). 

As shown in Figure 2, simple spike fi ring is rather regular both 
in vitro (Figure 2A) and in vivo (Figure 2C). The mean CV

2
 value 

in vitro was 0.25 ± 0.03, indistinguishable from the CV
2
 values 

obtained in vivo (0.26 ± 0.03, p > 0.5; Figure 2D). The regularity 
of fi ring was also examined by plotting the relationship between 
consecutive ISIs (Figure 2A1). Most of the ISIs were in the range 
of 20–40 ms however occasional prolonged ISIs were observed. 
These prolonged ISIs were accompanied by hyperpolarizations, 
suggesting the involvement of spontaneous IPSPs (see inset in 
Figure 2A). To test this possibility we measured the effect of 
gabazine (0.5 µM) on fi ring regularity. Although the maximal fi r-
ing frequency was not affected by gabazine, a signifi cant increase 
in fi ring regularity was observed (Hausser and Clark, 1997). In the 

example shown in Figure 2 the prolonged ISIs and the accompa-
nied  hyperpolarizations (Figure 2A) were absent in the presence of 
GABAzine (Figure 2B), and accordingly the CV

2
 value was reduced 

from 0.45 to 0.19. These observations lead to the conclusion that 
the fi ring during the up state in vitro is intrinsically generated and 
can be modulated by inhibitory synaptic potentials.

STATE TRANSITIONS
The intrinsic bi-modality of simple spikes implies that PC inputs 
to the cerebellar nuclei (CN) are binary signals and therefore can 
report the PC state but not individual synaptic events. Nonetheless, 
for these signals to be meaningful, the transitions between the 
states should be governed by synaptic inputs. Indeed, a variety 
of input signals are extremely effi cient in inducing state transi-
tions (Figure 3). Interestingly, most of these signals can induce 
both upward and downward shifts. For example, a brief hyper- or 
depolarizing current injection during a down state will shift the 
membrane potential to an up state whereas the same current dur-
ing an up state will shift the cell to a down state (Figures 3A,B). 
Similarly, climbing fi ber (CF) inputs can induce bi-directional state 
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FIGURE 1 | PC bi stability recorded intracellularly in a cerebellar slice (A) 

and extracellularly in a ketamine anesthetized rat (C) (see Tal et al., 2008 for 

methods). An epoch of up state (marked by horizontal bars in the upper traces) 

is displayed on an extended time scale in the lower traces in (A) and (C). 
(B,D) Show the percentage of time spent in each membrane potential (B) and 
instantaneous frequency (D).
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FIGURE 2 | The regularity of PC fi ring during upstate. (A,B) Traces 
showing the up state fi ring of a PC in a slice preparation (see Tal et al., 
2008 for methods) before (A) and after (B) application of GABAzine 
(0.5 µM). Inset in (A) shows examples of the IPSPs in the original trace 
in an expanded scale. (A1,B1) the relations between consecutive ISIs 

before (A1) and after (B1) GABAzine application constructed from 2 min of 
recordings of the same cells as in (A) and (B). (C) Two extreme examples of 
the most non-regular (left) and the most regular (right) units that were 
recorded in an anesthetized rat in vivo. (D) The average CV2 values obtained 
in vitro and in vivo n = 12 and 6, respectively.
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FIGURE 3 | State transitions can be induced by current injections (A,B) 

synaptic inputs (C,D) or can occur spontaneously (E). (A) A 35-ms 
depolarizing current pulse of 100 pA induced a transition to an up state (left) and 
to a down state (right). (B) The same as in (A) for a hyperpolarizing current pulse. 
(C) Transitions induced by CSs that were evoked by stimulating the white matter 
just below the recorded PC. (D) State transitions induced by stimulating the 

granule cells (left) and the molecular layer interneurons (MLIs; right). For granule 
cells activation the stimulating electrode was placed at the granular layer just 
below the recorded PC and for activation of the MLIs the electrode was placed 
either in the molecular layer or in the granular layer laterally to the recorded PC. 
(E) Spontaneous transitions. All traces were obtained with whole cell recordings 
in slice preparations (see Tal et al., 2008 for methods).
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Isope and Barbour, 2002; Sims and Hartell, 2005, 2006; Rokni et al., 
2007; Lu et al., 2009; Walter et al., 2009). Thus, a mossy fi ber input 
can, theoretically, generate a spatially organized patch of PCs in 
their up state. It follows that the role of the mossy fi bers input onto 
PCs is to induce state transitions rather than control their fi ring 
rate or spike timing.

STATE DEPENDENCE OF COMPLEX SPIKE WAVEFORM
As described above the climbing fi ber (CF) input into PCs can 
induce state transitions. This is not surprising since this unique 
input is one of the most powerful synapses in the nervous system. 
Activation of the CF input results in an all-or-none response known 
as a complex spike (CS) (Eccles et al., 1966). In contrast to the brief 
simple spike, the complex spike consists of a large initial spike 
followed by a train of secondary spikes or wavelets. This complex 
response, which occasionally appears in the form of a voltage ripple, 
is triggered by an enormous synaptic potential generated by the 
activation of hundreds of synaptic releasing sites (Rossi et al., 1993). 
The exceptionally high quantal content of this synapse ensures very 
small variations in the amplitude of the synaptic current triggered 
by a single pre-synaptic action potential. Nevertheless, as shown 
in Figure 4A the response is state dependent, being longer at the 

transitions (Figure 3C). In fact transitions are so easily induced that 
they occasional occur spontaneously (Figure 3E). In a recent study 
we showed that the mossy fi ber – granule cell input can also induce 
bi-directional transitions (Jacobson et al., 2008). Transitions from a 
down to an up state occurred when an excitatory granule cell input 
was activated, while transitions from an up to a down state occurred 
when the molecular layer interneurons were activated (Figure 3D). 
We found that the probability of transitions induced by granule 
cell inputs is tightly linked to EPSP amplitude. At high stimulation 
intensity that generated an EPSP of ∼15 mV and usually elicited an 
action potential, transitions from down state to up state occurred 
at 74% and transitions from up state to down state at 62%. At low 
stimulation intensity that generated an EPSP of ∼8 mV and only 
occasionally an action potential, transitions from down state to up 
state occurred at 19% and transitions from up state to down state 
at 3%. It is important to note that transitions were not limited to 
stimulations that directly triggered an action potential.

There is ample evidence to support the idea that a signifi cant 
excitatory input to PCs is organized along the ascending branch 
of the granule cell axons whereas the inhibitory input, presumably 
activated by the same mossy fi bers, are likely to be most effective 
at the perimeter of the excitatory input (Cohen and Yarom, 1998; 
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FIGURE 4 | Variability of the CS waveform. (A) Examples of CSs recorded 
from 3 PCs in slice preparation. The superimposed traces represent CSs that 
were elicited by stimulating the white matter below the recorded PC. Note the 
variable waveform and the changes in the resting potential just before the onset 

of the CSs. (B) Examples of spontaneously occurring CSs recorded from 3 PC in 
anesthetized rats. Note the limited variability of the initial part of the waveform 
as opposed to the extensive variations in the late wavelets (fi gure modifi ed from 
Tal et al., 2008).
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during the up state were smaller than those occurring during the 
down state. In contrast, the Ca++ signals at the dendritic level were 
larger in the up state than in the down state.

Here, we examined the trial by trial variability of the Ca++ wave-
form. Generally speaking, Ca++ signals covaried in different areas 
of the dendritic tree. However there were some exceptions. One of 
these is shown in Figure 5. This PC had two dendrites emerging 
from the cell body (Figure 5A). Fluorescence was averaged in each 
dendritic region of interest (ROI) (Figure 5A) to generate the tran-
sients shown in Figures 5B,C. Comparing the amplitudes of these 
transients in the two dendrites (Figure 5D) revealed that: (a) There 
are signifi cant trial by trial changes in the amount of Ca++ infl ux, 
and (b) The variations occurred independently in the two branches 
of the dendritic tree; and (c) Although most of the variability in 
the right dendrite could be attributed to noise, variability in the 
left dendrite clearly exceeded the noise level. This spatial specifi city 
is most likely determined by interneuron activity (Callaway et al., 
1995). We concluded that the variability in the Ca++ signal can only 
partially account for the variability of the CS waveform and that 
the mechanisms underlying the variations in CS waveforms differ 
from the mechanisms that induce variation in the dendritic Ca++ 
signals (see Callaway et al., 1995; Davie et al., 2008).

CONCLUSIONS
THE CONTROVERSY OVER PURKINJE CELL BI-STABILITY
Although it has become widely accepted that PCs fi re intrinsically 
and do not refl ect granule cell inputs in a simple manner, the exact 
nature of PC fi ring is a matter of controversy. This controversy 
cannot be attributed only to differences in preparations, condi-
tions or anesthesia, as even in slices the descriptions of PC fi ring 
range from tonic fi ring (Williams et al., 2002; Schonewille et al., 
2006), through bi-stable (Loewenstein et al., 2005; Tal et al., 2008), 
to tri-stablel (Womack and Khodakhah, 2002). These differences 
are partially due to terminology or the investigators point of view. 
For example, bi-modal fi ring of PCs has been described already 
by Bell and Grimm (1969) in the late 1960s, and later again by 
Llinas and Sugimori (1980) and yet these authors have not used 
the term bi-stability. In addition to these technicalities that may 
generate an apparent controversy, real differences in physiological 
observations have been reported. These differences can be attrib-
uted to a different state of the system. For example different levels 
of neuromodulators may either induce a bi-stable state or alterna-
tively abolish it. Indeed Williams et al. (2002) show that serotonin 
transforms tonic fi ring PCs in vitro to bi-stable cells. In our hands 
PCs can be transformed from bi-stable to tonic fi ring and back by 
application of small dc currents. Further investigations are needed 
in order to unravel how the modulation of intrinsic fi ring of PCs 
serves behavior.

FUNCTIONAL IMPLICATIONS OF PC BI-STABILITY
The involvement of the cerebellum in temporal coordination 
of motor tasks as well as in a variety of behavioral paradigms is 
well documented (Ivry et al., 1988; Timmann et al., 1999, 2001; 
Zackowski et al., 2002; Ackermann, 2008; O’Reilly et al., 2008). 
These paradigms typically require representation of temporal 
information in timescales of tens to hundreds of milliseconds. The 
capacity of PCs to attain prolonged fi ring states endows the system 

depolarized state. The trial by trial changes in the CS waveform, 
despite the invariability of the underlying synaptic potential, sug-
gests that it is governed by the cell’s current excitability state. Similar 
variation in the CS waveform has been observed in in-vivo extra-
cellular recordings (Figure 4B). These variations, which have been 
previously reported (Gilbert and Thach, 1977; Llinas and Sugimori, 
1980; Callaway et al., 1995; Hansel and Linden, 2000; Servais et al., 
2004; Khaliq and Raman, 2005; Loewenstein et al., 2005; Sacconi 
et al., 2008; Zagha et al., 2008) may refl ect the effect of the PC 
state on the response. However, under in vivo conditions other 
parameters contribute to these variations. For example it has been 
recently demonstrated that the prolonged olivary action potential 
generates a short burst of action potentials that propagates all the 
way to the cerebellar cortex. The number of action potentials will 
undoubtedly change the CS waveform although this effect will be 
diminished due to synaptic depression (Eccles et al., 1966; Dittman 
and Regehr, 1998). Nevertheless the state of the PC is bound to 
exert its modulatory effect on the response whether it is evoked 
by a single spike or a burst of spikes. Furthermore, it is likely that 
long term changes in the synaptic potential such as different levels 
of potentiation or depression of the CF–PC synapses contribute to 
alterations of the CS waveform on a longer time scale (Hashimoto 
and Kano, 1998; Hansel and Linden, 2000; Weber et al., 2003).

The variability in CS waveform is demonstrated in Figure 4 
for intracellular recordings in slice preparation (Figure 4A) and 
extracellular recordings in anesthetized rats (Figure 4B). Signifi cant 
variation in the waveform duration was observed in both modes 
of recordings. The variability in duration is due to variability in 
both the number of wavelets and their duration. In a recent study 
(Tal et al., 2008), we explored whether bi-stability could account 
for the variability in CS waveform. We found that indeed there is a 
signifi cant difference between the CSs generated during the up state 
and those generated during the down state. The difference between 
these groups lies in the amplitude of the initial overshooting action 
potential and the amplitude and dynamics of the subsequent train 
of wavelets (Tal et al., 2008). Following this study we concluded that 
indeed the CS waveform is state dependent but the characteristics 
of this dependence are cell specifi c.

STATE DEPENDENT CA++++ SIGNALING
The rather long durations of the up state, suggest that the dynam-
ics of calcium current and intracellular calcium concentration 
([Ca++]), may be involved in the mechanism underlying the for-
mation of the state as well as the state transitions. [Ca++] is a mul-
tifunctional parameter that participates in a variety of processes 
including synaptic release (Simon and Llinas, 1985; Mulkey and 
Zucker, 1993), direct activation of K currents (Meech and Standen, 
1974; Yarom et al., 1985), and long term modulation of synaptic 
effi cacy (Christie et al., 1996; Ito, 2001; Sjostrom and Nelson, 2002). 
Therefore we have recently examined the dynamics of [Ca++] in the 
two states and the effect of these states on synaptically evoked Ca++ 
infl ux (Rokni and Yarom, 2009). Using Ca++ imaging to record the 
changes in [Ca++], we found that epochs of up states are associated 
with a somatic increase in [Ca++], resembling the increase in [Ca++] 
induced by intracellularly evoked bursts of Na+-spikes (Lev-Ram 
et al., 1992). We further demonstrated that the Ca++ signal associ-
ated with CSs is state dependent. At the somatic level the Ca++ signals 
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with intrinsically generated prolonged timescales without the need 
for a continuous synaptic input. We showed that the fi ring during 
these states has a certain degree of irregularity. This irregularity has 
recently been suggested to encode meaningful information (Steuber 
et al., 2007; De Schutter and Steuber, 2009). However, the ability of 
the PC-CN synapse to reliably transmit this information is an open 
question. A partial answer to this question can be found in numer-
ous reports on the properties of the PC-CN synapse (Aizenman 
et al., 2000; Kreiner and Jaeger, 2004; Telgkamp et al., 2004). This 
synapse is characterized by the rapid depression of its effi cacy upon 
high frequency stimulation. Thus it is expected that during PC up 
states the amplitude of the PC-CN synaptic potential will decrease 
to about 50% of its original value (Telgkamp and Raman, 2002; 
Pedroarena and Schwarz, 2003). Furthermore, because of the mas-
sive convergence of hundreds of PC axons onto each CN neuron, 
the ability of this synapse to transmit the information encoded in 
the inter spike intervals (ISIs) of PC simple spikes fi ring, is severely 
limited. Since there is no indication for tight correlation in simple 
spike timing in neighboring PCs, we conclude that if the irregularity 
encodes information it cannot be read by CN neurons. The massive 

convergence of PC axons in the CN also raises doubts about the 
ability of CN neurons to resolve changes in PC fi ring within the up 
states. This issue has been discussed by Jacobson et al. (2008).

We have recently suggested a conceptual framework in which the 
olivo-cerebellar system serves as a generator of temporal patterns. 
These patterns, which are needed to perform specifi c behavioral 
tasks, are the product of the oscillatory activity in the inferior olive 
and the bi-stability of PC fi ring (Jacobson et al., 2008). Accordingly, 
the onset and duration of the oscillatory activity in the inferior olive 
is administrated by the fi ring states of the PCs. The spatial arrange-
ment of the fi ring states, which is organized by mossy fi ber inputs, 
governs olivary activity via the GABAergic projection neurons of 
the CN. According to this framework the information delivered by 
PCs is the onset and duration of the fi ring states rather than the 
irregularities of the inter-spike intervals.

STATE TRANSITIONS
The induction of state transitions by a variety of input signals 
indicates that indeed PC states are under strict neuronal control 
and therefore likely to contain valuable information. The most 
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 interesting mode of control is that of the mossy fi bers. Here the 
direct excitatory input, via the granule cells, can shift the PCs to their 
up state, while the indirect inhibitory input via the MLI can shift 
the cells to their down state or alternatively prevent the shift to an 
up state. The spatial organization of these two inputs to the cerebel-
lar cortex as well as their temporal relationships will undoubtedly 
generate a specifi c spatial organization of the PC states. This spatial 
organization will be determined by the effi cacy of the parallel fi ber 
input. The well documented long term plasticity of the parallel fi b-
ers input into PCs offers an additional possibility to this scheme. It 
implies that the specifi c spatial organization is a dynamic feature that 
is molded by experience. Plasticity at the mossy fi ber granular cell 
synapse (Mapelli and D’Angelo, 2007) can contribute to the dynamic 
control of the spatial organization of PC states. These possibilities 
are in line with the commonly accepted notion that the cerebellum 
is the site of learning and storage of motor skills. The spatial and 
temporal distributions of the fi ring states of PCs that are formed by 
the CF input, have completely different properties. The isochronic 
organization along the parasagittal plane is a rather rigid organiza-
tion. The effectiveness of this input in upswing shifts renders this 
input a somewhat different role. A tempting possibility is that the 
shifts induced by the CF input serve in emergency situations where 
rigid, fast and instinctive measures are to be implemented.

It is interesting to note that all types of synaptic inputs can 
operate as toggle switches, inducing bi-directional transitions. It 
follows that the response of a PC to synaptic input (the direction 
of state transition) depends on the current state. For example the 
response of a quiescent PC to a CF input would be a transition to 
the up state and prolonged fi ring. Conversely, in the up state the 
same PC may respond to the CF input by seizing fi re. Hence to 
reach a particular spatial organization of fi ring states the input has 
to be designed according to the current situation. In other words 
the ‘designer’ of the input should know the current state of the 

cells. Such knowledge is most unlikely. An alternative possibility 
is that the effi ciency of an input to shift the state of the neuron 
depends on its state. The slow processes that are responsible for 
the spontaneous transitions suggest that the threshold for transi-
tions decreases with time and thus the state itself may determine 
the threshold. This is supported by the observation that the ability 
to shift state, depends on the time of the input relative to the onset 
of the state. Thus, a depolarizing input from down state that shifts 
to an up state is more effi cient the longer the cell has been in the 
down state. The ease in which each input shifts PCs between states 
needs a thorough examination and characterization.

THE STABILITY OF THE INPUT SIGNAL
As stated above, in order to reach a particular spatial organiza-
tion of fi ring states, the response to a specifi c input has to be state 
dependent. In previous work we demonstrated that the response to 
a CF input is state dependent. During a depolarizing state complex 
spikes tend to be prolonged (Tal et al., 2008) and are associated with 
differential changes in the calcium infl ux (Rokni and Yarom, 2009). 
A dendritic increase in calcium infl ux was observed during the up 
state whereas a decrease was observed at the soma. Here we further 
investigated the calcium infl ux associated with the response to CF 
inputs. First we demonstrated that there is a trial by trial variability 
in the amount of calcium infl ux that seems to be independent of 
the variability in the voltage responses. Second, we presented a spe-
cifi c example of the independent variability of calcium infl ux that 
occurred in two dendrites of the same PC. Together these observa-
tions suggest that the calcium infl ux in response to CF inputs is 
modulated by both, the inhibitory network of the molecular layer 
interneurons and the PC’s membrane potential. These two modes 
of modulation of the calcium infl ux, can furnish the system with 
the ability to organize the spatial distribution of the fi ring state 
independently of the current states.
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