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Porphyrin complexes are present in many natural systems and have significant
biological roles, such as light harvesting, oxygen transport, and catalysis. Owing to
their intrinsic aromatic structure, porphyrin derivatives exhibit characteristic
photophysical and electrochemical properties. Porphyrins and porphyrin-
based derivatives have been extensively utilized in biomedical applications
during the last decade. Specifically, porphyrinoids have been tested as agents
in antimicrobial and photodynamic therapy, as well as in imaging applications
(e.g., diagnosis of cancer cells). This perspective article summarizes the recent
developments in our group concerning the application of porphyrin derivatives in
biomedical applications. The current challenges and future prospects concerning
the exploitation of porphyrin-based materials in biomedical applications are
also discussed.
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1 Introduction

Porphyrinoids, frequently mentioned as “pigments of life” (Battersby, 2000), are
tetrapyrrole derivatives with significant importance in natural occurring systems.
Among the most well-known natural tetrapyrroles: i) heme is a porphyrin present in
hemoglobin, being responsible for oxygen transport in blood, ii) chlorophyll (a chlorin) is
the essential component in photosynthesis, by trapping sunlight, and iii)
bacteriochlorophyll is a bacteriochlorin accountable for the photosynthesis in bacteria
(Taniguchi and Lindsey, 2017). Ever since the seminal work of Battersby and co-workers
regarding “pigments of life” (Battersby and McDonald, 1979; Battersby et al., 1980),
porphyrin-based derivatives (and/or materials) were widely prepared for numerous
applications due to their exceptional synthetic versatility, photo-, electro-, and thermal-
stability, along with their unique photoelectrochemical features. The name of porphyrin
derivatives originates from the Greek word “porphyra”which was used by ancient Greeks to
describe the intense purple colour. From the structural viewpoint, porphyrin derivatives are
composed of four pyrrolic units that are linked in a coplanar fashion by four methene
bridges, resulting in a planar macrocyclic structure. It has an extended conjugated 18 π-
electron system which is responsible for its aromatic nature, and its central cavity enables
the accommodation of large number of metal cations.
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On account of their substantial absorption in the visible region
(400–450 nm Soret band, and 500–700 nm Q-bands) (Kim et al.,
2008), as well as their ability to act as electron/energy donors/
acceptors, porphyrins have been examined as artificial
photosynthetic mimics (Bottari et al., 2012) and utilized in
various solar cell technologies (Urbani et al., 2014; Zeng et al.,
2020; Piradi et al., 2021; Molina et al., 2023). In addition, porphyrins
(particularly metalloporphyrins), are considered as one of the most
effective class of biomimetic catalysts (both in photo- and electro-
catalysis), due to their significant catalytic activity in a great variety
of chemical processes (Lin et al., 2021; Huang et al., 2022;
Nikoloudakis et al., 2022; O’Neill et al., 2022; Domingo-Tafalla
et al., 2023). Because of their tuneable optoelectronic properties,
porphyrins are also used in molecular recognition and metal-ion
sensing applications (Ogoshi and Mizutani, 1999; Ishizuka et al.,
2022). Moreover, features of porphyrinoids such as
biocompatibility, biological function mimicking, extended
residence in cancer cells, are appealing properties for biomedical
applications (Tian et al., 2023; Wang et al., 2023; Wu et al., 2023).
For instance, photodynamic therapy (PDT) is a field dominated by
the utilization of porphyrins (Mrinalini et al., 2021).

Researchers worldwide, have been utilizing porphyrinoinds for
bio-imaging applications and drug delivery (Huang et al., 2015;
Jenkins et al., 2016). This led to the development of porphyrin-based
compounds as theragnostic agents in Magnetic Resonance Imaging
(MRI), drug delivery and photodynamic cancer therapy (Stender
et al., 2013; Cheng et al., 2014; Hammerer et al., 2014; Dong et al.,
2017). Generally, porphyrins are used in the fields of disease
treatment and in vivo diagnosis (Han et al., 2023). Regarding
disease treatment, porphyrins can effectively treat inflammation
and tumors since are able to produce reactive oxygen species
(ROS) namely, singlet oxygen (1O2), hydroxyl and superoxide
radicals, and hydrogen peroxide (Bustos et al., 2020; Wu et al.,
2021). Apart from their exploitation in photodynamic therapy
though, porphyrins can also have a photothermal therapy (PTT)
effect against inflammation and tumors (Miao et al., 2021; Zhang
et al., 2021). Concerning in vivo diagnosis, porphyrinoids can serve
as organic ligands that coordinate paramagnetic ions (contrast
agents for MRI) or as fluorescence chromophores, which both
enable diagnosis in deep tissues (Egeblad and Werb, 2002; Zhang
et al., 2007). Their intrinsic characteristics, such as: i) long resistance
in tumors, ii) ability to mimic a great variety of biological processes,

iii) biocompatibility, and iv) minimal side effects are the most
essential advantages that established them as potential agents in
biomedical applications. Nevertheless, porphyrins are subjected to
significant limitations, namely, nonspecific targeting, instability,
self-quenching under physiological conditions. Researchers
typically overcome these issues by incorporating porphyrins with
carriers such as liposomes, inorganic particles, polymers, micelles,
etc (Huang et al., 2017; Managa et al., 2018; Wang et al., 2018; Zhang
et al., 2018).

Our research group, explored the features and behaviour of
porphyrins in various biomedical applications (Figure 1). More
specifically, a water-soluble porphyrin was encapsulated in a
hydrogel as healing agent to treat skin defects in rats (Dontas
et al., 2023). In another recent report, βCD-triphenylporphyrin
conjugates found to specifically target and accumulate in
lysosomes effectively acting as drug release agents (Panagiotakis
et al., 2023). Similarly to the latter example, water insoluble
tetraphenylporphyrins bearing a single carboxyalkyl side-arm
were synthesized, showing remarkable photostability and a nearly
90% photokilling efficiency toward cancer cells (Panagiotakis et al.,
2022). We have also examined the ability of porphyrin-peptide
hybrids as labelling agents, in order to potentially be tested as
theragnostic agents (Glymenaki et al., 2022). Finally, peptide
nucleic acids (PNAs) were connected to photosensitizers (bodipy
and porphyrin) to develop compounds for photodynamic therapy
(PDT) (Chang et al., 2020).

2 Results and discussion

2.1 Wound healing

During the last decades, various approaches regarding the
treatment and healing of skin defects have been explored (Takeo
et al., 2015; Kamolz et al., 2022). The query though that frequently
rises in clinical trials, is which treatment plan can be followed in each
individual trauma. In many cases, a period of treatment with an
effective agent is followed by the application of an alternative agent,
since the wound healing process reaches a plateau (Seaman, 2002).
Surgical procedures are arguably the most effective strategy to deal
with widespread skin defects, namely, xenografts, autologous full- or
split-thickness and allografts (Kamolz et al., 2022). However, apart
from the aforementioned surgical techniques, hydrogels have also
been extensively studied due to their unique features in healing skin
defects (Loo et al., 2014). More specifically, hydrogels are
biocompatible, uphold the desired hydration for the wound, are
transparent which enables the observation of the healing process,
provide gaseous permeability, and absorb the wound exudate (Amin
and Abdel-Raheem, 2014; Li et al., 2021; Nuutila and
Eriksson, 2021).

As a result, diverse hydrogels have been developed with the
intention of creating a favourable environment for wound healing
trials (Elangwe et al., 2022; Guamba et al., 2023). Self-assembling
peptide hydrogels is one form of bioactive material tested in tissue
regeneration and wound healing (Loo et al., 2014; Loo et al., 2015).
This type of hydrogels is gaining considerable research attention as a
result of their bioavailability and bioactivity. In addition, the
encapsulation of a photosensitizer with antimicrobial properties

FIGURE 1
Scheme showing the different biomedical fields for application of
porphyrin derivatives explored in our research group.
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within them is feasible. One of the most appropriate dipeptide, that
act as a hydrogelator is Fmoc (9-fluorenylmethoxy-carbonyl)
protected phenylalanine-phenylalanine (Fmoc-FF). Fmoc-FF
hydrogels are able to encapsulate and release small molecules in
regulating manner promoting adhesion and proliferation (Mahler
et al., 2006; Fichman and Gazit, 2014). In addition, hydrogels of
Fmoc-FF are being formed with an excellent stability and are also
studied because of their chemical simplicity and versatility (Arakawa
et al., 2020; Martinez-Serrano et al., 2022). Porphyrinoids have been
used as encapsulated photosensitizers in hydrogels, since are able to
produce ROS and possess great photostability (Li et al., 2021; Ding
et al., 2021; Martinez-Serrano et al., 2022). Their good
biocompatibility, oxygen transfer, and molecular recognition
outline porphyrnoids as ideal candidates for killing various
microorganisms (McKenzie et al., 2019; Dias et al., 2020).
Remarkably, in nature peptides and porphyrins work together to
arrange molecules in an orderly fashion which is crucial for
biological functions. For example, in the light-harvesting complex
of Rhodopseudomonas acidophila’s light-harvesting complex, the
self-organization of porphyrinoids is being regulated by peptides
(Frank and Cogdell, 2012).

Various porphyrin-based hydrogels have been investigated as
antimicrobial agents in the last decades (Bonnett et al., 1993; Cabral
et al., 2023; Thapa et al., 2023). Targeting the prevention of
intraocular lens-associated infectious endophthalmitis, McCoy
and co-workers developed hydrogels by combining anionic
polymers of 2-(hydroxyethyl) methacrylate with the cationic
tetrakis (4-N-methylpyridyl) porphyrin. The performed studies
revealed high antimicrobial activity under intense light conditions
due to 1O2 generation (Parsons et al., 2009). The same year,
McCarron and co-workers evaluated poly (vinyl alcohol)-borate
complexes as drug delivery platforms in photodynamic
antimicrobial chemotherapy of wound infections. A similar
cationic porphyrin was utilized in this study as well, namely, the
tetrakis (4-N-methylpyridyl) porphyrin tetra tosylate (Donnelly
et al., 2009). The porphyrin-based hydrogels adopted the shape
of the wound, however by preserving at the same time their
structural integrity. Overall, the porphyrin-hydrogels were
phototoxic toward methicillin-resistant staphylococcus aureus. In
another report, Lovell et al. developed optically active polyamide
hydrogels using tetrakis (4-carboxyphenyl) porphyrin (TCP) (Lovell
et al., 2011). The hydrogels were stable, without any observable

degradation up to 2 months and also allowed a surgical resection in
vivo using a fluorescence camera. The same TCP derivative, was also
employed as a fluorescent tag in a biodegradable thermosensitive
hydrogel, which demonstrated stable fluorescence for real time
imaging (Lv et al., 2014).

In our recent report (Figure 2), we explored the treatment and
healing of skin defects in rats using porphyrin-peptide hydrogels
(Dontas et al., 2023). The developed hydrogels were transparent, in
order to enable: i) the covering of the underlying tissue without
adhesion, ii) the hydration during wound healing, and iii) the
absorption of wound exudate. Two different families of rats were
studied, namely, young and mature groups; interestingly, in both
cases the application of the porphyrin-peptide hydrogel assisted in
the healing process. Explicitly, concerning the mature animal group,
the healing process was more pronounced due to the reduced
healing rate of rats of advanced age. The porphyrinoid used in
this work was a water-soluble 5,10,15,20-tetra-N-methyl-4-pyridyl)
porphyrin tetra iodide ([TMPyP4

+]I4
−) which was synthesized

according to our earlier work (Figure 2A) (Lazarides et al., 2014).
For the successful development of the porphyrin-peptide hydrogel, a
solvent-switch method was followed. In detail, ethanol was used as
“good solvent” and water as the “bad solvent”. The Fmoc-FF peptide
(Figure 2B) was dissolved in ethanol and the porphyrin in water,
resulting in a final porphyrin/peptide ratio of 1:30. As illustrated in
Figures 2C, D, the type of the vessel (either a glass vial or a plastic
syringe), resulted in two different morphologies. It is worth noting
that the hydrogel formed in a plastic syringe (Figure 2D), was the
most suitable because it permitted its direct application onto the
defect of the rat.

Three different parameters were evaluated in the case of young
rats: i) the diameter, ii) the perimeter, and iii) the total area. Overall,
the porphyrin hydrogel outperformed both the control as well as the
hydrogel experiment (formed by Fmoc-FF in ethanol/water)
concerning the healing process of all defect parameters.
Noteworthy, the hydrogel was also beneficial compared to the
control experiment most likely due to the hydration of the skin
defect; however, not at the extend of the porphyrin hydrogel. Similar
to the experiment of the young rats, in the respective measurements
using the mature rats, the porphyrin hydrogel outperformed both
the hydrogel and the control experiment in terms of healing effect
(for all three different defect parameters). More importantly,
beneficial effect of the porphyrin hydrogel utilization was more

FIGURE 2
The molecular structures of: (A) (TMPyP4+)I4

−, (B) Fmoc-FF, (C) hydrogel in a glass vial, (D) hydrogel upon syringe extrusion. Figure reproduced with
permission from (Dontas et al., 2023). Copyright 2023, Springer Nature.
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visible concerning the statistical significance and the time of wound
healing. It was evident, that all the different parameters illustrated a
similar healing pattern in both young and mature rats. We have
summarized the most important results in the following Table 1. We
list herein, the comparison of porphyrin hydrogel, hydrogel and
control experiment concerning the 3rd day of our measurements
regarding the three skin defect parameters (perimeter, diameter and
area) for both the mature and young rats.

2.2 Photodynamic therapy (PDT)

Photodynamic therapy (PDT) is a widely used oncological
intervention which has approved by various countries, bringing
hope in patients diagnosed with cancer each year (Siegel et al., 2022).
Compared to conventional methods, such as surgery, chemotherapy
and radiation treatment, PDT presents several advantages. In
specific, PDT is non-invasive, nonradiative and with spatial
accuracy of the operation, leading to minimal side effects,
cumulative radiation dose and recurrence (Lucky et al., 2015).
PDT is a type of phototherapy that combines light irradiation,
photosensitizers, and oxygen to selectively destroy cancer cells
(Brown et al., 2004; Castano et al., 2006; Li et al., 2019). The
photosensitizer (PS) is excited with light in order to convert
molecular oxygen into cytotoxic ROS, such as 1O2 (Warszyńska
et al., 2023). This procedure causes oxidative stress in cancer cells,
which leads to cell death. PDT offers targeted treatment due to the
specific activation of the PS by light, sparing normal tissues from
unnecessary harm. Additionally, the targeted nature of PDT reduces
side effects, establishing it as a more favourable choice compared to
traditional cancer treatments. To that end, plenty research groups
are exploring the utilization of PDT as a viable potential treatment
for a variety of cancer types.

Even though PDT has been around for more than a century
(Spikes, 1977; Szeimies et al., 2001), the vast interest in this kind of
oncotherapy has grown as a result of recent progress in the fields of
medicinal chemistry, cancer immunology, photochemistry,
biochemistry, etc (Brown et al., 2004). Furthermore, PDT is
employed in ophthalmology (age-related macular degeneration,
AMD and treatment of localized infections) (Fine, 1999; Sułek
et al., 2019), and dermatology (non-melanoma skin
malignancies). The rising incidence of bacterial and fungal
illnesses brought on by multidrug-resistant pathogens makes the
latter use more crucial (Aroso et al., 2019). Many photosensitizers
have been evaluated in PDT studies, both in vitro and in vivo;
nonetheless, only a few of them demonstrated perfect abilities. As a
result, contemporary research has been focussed on developing

novel photosensitizers (PSs) (Dąbrowski et al., 2016; Kwiatkowski
et al., 2018). Chemical purity, tumor cell selectivity, physico-
chemical stability, brief period of time between dose and
maximum accumulation in tumor tissues, activation at longer
wavelengths for deeper penetration in the biological tissue, and
quick bodily clearance are all necessary features that an ideal PS
should possess (Castano et al., 2005). Porphyrinoids such as
porphycenes, porphyrins, phthalocyanines and chlorins are the
four primary families of PSs. Interestingly, each class possess
unique photochemical and photophysical characteristics which
lead to wide-range methods of action and light activation (De
Rosa and Bentley, 2000).

The mechanisms of light absorption and energy transfer are the
two key components of PDT (Figure 3). The singlet ground state of
PS is a low energy molecular orbital containing two electrons with
opposing spins. One of these electrons is promoted to a higher
energy orbital after absorption of a photon retaining its spin state.
The additional energy of the PS in this transient state can be
dissipated either by internal conversion as heat or emission of a
photon, as fluorescence. The PS in the singlet excited state may also
go through a process called intersystem crossing, in which the spin
of the excited electron is inverted, converting the molecule to an
excited triplet state with two electrons with parallel spin (Ochsner,
1996; Juzeniene and Moan, 2007). Then the PS from the triplet
excited state returns to the singlet ground state by emission of light
(phosphorescence) or undergoes two kinds of reactions with
surrounding molecules.

First, it can react with a biological substrate, for instance a cell
membrane or a molecule, by transferring an electron or a proton to
generate a radical cation or anion, respectively. ROS might be
created by these radicals after their reaction with molecular
oxygen. As an alternative, the triplet PS can transfer its energy
directly to molecular oxygen, resulting in the formation of excited
singlet oxygen (Figure 3). The ratio between both routes, which can
happen concurrently, is determined by the nature of the PS, as well
as the substrate and oxygen concentrations (Castano et al., 2004).
The major advantage of PDT lies to the fact that due to the high
reactivity and brief half-life of singlet oxygen and hydroxyl radicals,
only molecules that are close to the PS (i.e., regions of PS
localization) are immediately impacted and eventually destroyed.

To efficiently produce ROS in PDT, a well-chosen PS is
necessary. The ideal combination of optical and photophysical
properties should be present, including long triplet state lifetimes,
high triplet quantum yield, and efficient absorption (Dąbrowski
et al., 2016). To guarantee proper photon penetration deep into
tissues and avoid endogenous chromophores, it is preferred to utilize
molecules that absorb in the red or even near-infrared range

TABLE 1 Comparison of young and mature animals concerning the defect parameters (perimeter, diameter and area) for each experimental group
(porphyrin-hydrogel, hydrogel, control).

Defect parameter Porphyrin hydrogel Hydrogel Control

Young Mature Young Mature Young Mature

Perimeter 71.06 ± 5.88 75.99 ± 10.65 72.73 ± 3.72 85.83 ± 4.80 87.03 ± 11.01 87.97 ± 6.00

Diameter 72.07 ± 6.48 78.72 ± 11.35 77.32 ± 4.56 82.51 ±10.99 93.47 ± 13.63 88.25 ± 6.88

Area 45.15 ± 9.54 56.52 ± 15.95 45.92 ± 7.39 69.16 ±10.30 69.62 ± 20.39 75.72 ± 11.21
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(λ ~ 630–850 nm). To minimize the damage of healthy tissues, the
PS should be biocompatible, non-toxic, and quickly removed from
the body after photodynamic therapy avoiding long-term
accumulation. This explains why the bulk of PSs used today are
naturally occurring porphyrinoids, which may be found in a variety
of animal and plant species. Because of their availability, low toxicity,
and beneficial optical properties, porphyrinoids are frequently used
in PDT. In addition, they can conveniently bind a wide range of
metal ions. The first medication used in PDT was created by
extracting hematoporphyrin (HP) from dried blood by
eliminating iron, and was given the brand name Photofrin®.
Albeit the first results indicated promising cancer treatment
results, especially regarding esophageal and lung cancer, the
medical world did not widely acknowledge it as a significant
breakthrough. Other porphyrin-based PSs that were examined by
the Food and Drug Administration (FDA) and applied in clinical
trials are Visudyne and Foscan. PDT alone is typically insufficient to
elicit a suitable immune response because cancer cells may produce
additional promoting chemicals or immunosuppressive cytokines
via non-immunogenic mechanisms. Thus, it is considered crucial to
start with the most comprehensive approach when designing PDT
PSs with the desired qualities and to appropriately combine various
therapeutic approaches later on. One way to improve PDT
effectiveness is the utilization of nanotechnology. Therefore, it is
possible to engineer nanoparticles to deliver PSs to cancer cells
improving selectivity and minimizing side effects. Additional
development could be achieved, by enhancing photosensitizers’
bioavailability and retention at the tumor site. Thus, many
researchers designed novel nanomaterials with controllable
structures via self-assembly approach (Charalambidis et al., 2011;
Charalambidis et al., 2016; Karikis et al., 2016; Karikis et al., 2018; Li
et al., 2018; Nikoloudakis et al., 2018; Xing et al., 2019).

Porphyrin chromophores present excellent biosafety and their
absorption features are compatible with the biological window
(650–900 nm), enabling deep tissue penetration. However, their
low solubility in aqueous media significantly lowers singlet
oxygen generation and limits their medical application.

Therefore, various approaches were employed to improve the
solubility of the porphyrin-based PSs in water, such as,
encapsulation of PS in appropriate carriers (Yang et al., 2019)
and conjugation of PS with hydrophilic moieties (Feng et al.,
2016). In another approach, van Hest’s group prepared a
peptide-porphyrin conjugate by coupling a pH-responsive
dipeptide tryptophan-glycine (WG) to a hydrophobic porphyrin
(P) core via amidation (Sun et al., 2020). This peptide-porphyrin
hybrid (PWG) self-assembles into spherical nanoparticles under
physiological conditions. However, when the nanoparticles were
exposed to the acidic tumor microenvironment they transformed
into nanofibers. The fibrillar nanostructures presented improved
singlet oxygen generation ability and enabled high accumulation
and long-term retention at tumor sites. In other report, Liang and
co-workers prepared a porphyrin-oligopeptide conjugate (Ac-
DEVDD-TPP) which demonstrated excellent solubility in water
(Liu et al., 2023). Interestingly, after being taken up by oral
cancer cells, Ac-DEVDD-TPP derivative was converted to
D-TPP, which self-assembles into nanofibers around a
mitochondrion. In vivo experiments demonstrated that upon
laser irradiation, the porphyrin nanofibers induced efficient cell
apoptosis and pyroptosis.

Another significant drawback of porphyrin-based PSs is their
strong inclination to aggregate, which leads to the electronic excited
state’s quenching and, therefore, reduces the quantum yield of
singlet oxygen (Escudero et al., 2006; Helmich et al., 2010). Many
approaches have been described to move past this difficulty, such as
the use of metal-organic frameworks (MOFs) (Lu et al., 2014; Li
et al., 2017), adding special groups onto porphyrin-based PSs
(Haynes et al., 2017), and anchoring porphyrins onto
nanoparticle drug carriers (Yu et al., 2016; Huang et al., 2017).
To a certain extent, all of the aforementioned tactics may reduce
aggregation-induced quenching of the PS and enhance singlet
oxygen quantum yield. Nevertheless, hydrophobic porphyrinic
PSs could be encapsulated into amphiphilic copolymers, and
subsequently released properly. Zhang and co-workers reported
an approach based on the preparation of novel

FIGURE 3
Illustration of mechanism of photodynamic therapy reaction. Figure reproduced with permission from (Kwiatkowski et al., 2018). Copyright
2018, Elsevier.
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porphyrin-polymeric nanoparticles (Jin et al., 2018). In this report,
pollyhedral oligomeric silsesquioxane (POSS) and cage-shaped
Si8O12-based NPs (Cordes et al., 2010), were used as polymers
with increased mechanical strength and thermal stability. Therefore,
a porphyrin and POSS copolymer were synthesized from 4-
vinylbenzyl-terminated tetraphenylporphyrin and maleimide
isobutyl polyhedral oligomeric silsesquioxane, via alternating
reversible addition-fragmentation chain transfer polymerization.
It was found that the aggregation induced quenching of the
material and the PDT efficacy of this new porphyrin/POSS co-
polymer was increased.

Peptides are easily conjugated with other functional groups,
including PSs, in many examples. The peptide-PS conjugates that
are produced have the ability to operate like PS in addition to possess
self-assembling capabilities. Consequently, phototherapy and
catalysis can employ nanomaterials created by conjugate self-
assembly (Li et al., 2015; Zhang et al., 2015; Carrión et al., 2017;
Han et al., 2017). Additionally, DNA self-assembly relies on
Watson-Crick base pairing, a specific interaction between base
pairs. On the contrary, in the respective peptide self-assembly
noncovalent interactions govern the process (Nikolova et al.,
2011; Wu et al., 2017). A unique approach to create hybrid
materials is to combine DNA nanoparticles with flexible and
complicated peptide-based nanomaterials. The self-assembling
properties of both peptides and DNA are combined in peptide
nucleic acids (PNAs), synthetic structures having a peptide
backbone and DNA bases (Berger et al., 2015). Because PNAs are
very resistant to being broken down by nucleases or proteases, they
are perfect building blocks for use in biomedical applications. The
Watson-Crick base pairs, stacking interactions, and optical
characteristics of PNAs were confirmed by Gazit and co-workers
a few years ago (Berger et al., 2015). We recently developed two
PNA-photosensitizer conjugates (PNA-BDP and PNA-TPP), in
order to examine their catalytic potential and assembly behavior
(Nikoloudakis et al., 2019). The assemblies that are produced have
distinct architectures, suitable dimensions, and distinctive light-
absorbing properties. In this work, Coutsolelos and co-workers
explored their potency in antitumor phototherapy (Figure 4A)
(Chang et al., 2020). The synthetic protocol for the preparation
of both PNA-hybrids is illustrated in Figure 4B. The hybrid PNA-
TPP was produced in high yield via an amide coupling between the
TPP-NH2 and the Fmoc-PNA-G-(Boc)-OH. The coupling reagents

for this reaction were dicyclohexylcarbodiimide (DCC) and
N-hydroxybenzotriazole (HOBt), resulting in the final product
(PNA-TPP) upon stirring at low temperature (8°C) for 48 h
(yield: 58%). A similar process was used to prepare PNA-BDP;
however, in this case room temperature was needed for the
successful amide coupling reaction.

Both PNA-BDP and PNA-TPP nanomaterials were prepared via
self-assembly in aqueous solution through π-π stacking and
hydrophobic interactions, forming materials with uniform
spherical morphology as demonstrated in SEM images (Figure 5).
The diameter of the spheres was measured 102 ± 34 nm via dynamic
light scattering (DLS). UV-Vis absorption measurements of the
nanomaterials showed broadening of the peaks compared to their
molecular counterparts. It is worth noting that in the case of PNA-
TPP, a red-shift was observed, which is indicative for formation of
J-aggregates. Similarly, quenching of their fluorescence spectra
revealed the self-aggregation of the composites. Moreover, since
stability of nanodrugs is quite important DLS measurements
resulted that the average size of the particles was stable in
various concentrations. Additionally, in cell culture media,
namely, phosphate buffered saline (PBS) the size of the
nanoparticles was not significantly altered. Upon light irradiation,
the absorption band of PNA-TPP was slightly decreased, while the
band of PNA-BDP was significantly decreased. The ability of both
materials to produce singlet oxygen was perceived with the use of a
trapping reagent, 9,10-anthracenediyl-bis(methylene) dimalonic
acid. In vitro experiments PNA-BDP and PNA-TPP
nanoparticles were incubated with MCF-7 and 3T3 cells and in
both cases the cells could uptake the nanocomposites efficiently.
Then, PDT evaluation was performed by scanning at 488 nm
excitation (4 mW). Both nanoparticles showed efficient
cytotoxicity of cells in a certain selected area, while in the dark
no cytotoxicity was observed (Figure 5).

To date many porphyrin-based PDT studies have been reported,
where porphyrins are in conjunction with a variety of materials,
including amphiphiles, polymers, supramolecular polymers, and 3D
nanoparticles. Porphyrin-based materials can lead to an increased
PDT efficiency and a high loading concentration. However, in order
to fully utilize these types of materials, a number of difficulties must
be resolved in the near future. First, in order to reach deeper tissue,
porphyrin-based materials’ emission and absorption must be shifted
to longer wavelengths. Second, despite the variety of reported

FIGURE 4
(A) Supramolecular nanoparticles constructed by self-assembly of PNA-photosensitizer conjugates for photodynamic therapy, (B) Synthetic
procedure of PNA-TPP and PNA-BDP. Figure reproduced with permission from (Chang et al., 2020). Copyright 2020, ACS publications.
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organic, inorganic, or hybrid porphyrin-based materials, it would be
ideal to develop alternative therapies to rationally arrange the
various functions against the particular tumor environment and
get around PDT’s inherent limitations. Thirdly, up to now, the
majority of published research papers on porphyrin-based materials
have mostly concentrated on fundamental and basic scientific study.
Therefore, porphyrin-based materials activated by NIR light that
have superior biocompatibility and biodegradability, high
photocytoxicity, outstanding distribution efficiency throughout
the body, and efficient tumor targeting with minimum side
effects are required for translational and clinical PDT practice.
Consequently, further research and development are required to
assure the effective use of these materials in clinical settings.

2.3 Photokilling cancer cells and
drug release

As discussed in the previous paragraph, the key component in
PDT, i.e., the PS, should possess the following features: i) ability to
produce 1O2 efficiently which is the cytotoxic agent responsible for
the photokilling of tumor cells, ii) high absorbance in the long visible
wavelengths (700–800 nm), iii) no toxicity in absence of light, iv)
amphiphilic chemical structure as well as v) stability and solubility in
injectable solvents (Ethirajan et al., 2011). Despite their great
potential, typical porphyrins are insoluble in aqueous media;
hence, demand a suitable molecular carrier which renders them
water-soluble and assists their optimum delivery without changing
their photosensitizing activity (Dąbrowski et al., 2016).
Cyclodextrins (CDs) are promising candidates for this role since

they include guest molecules in their hollow structures producing
inclusion complexes. In addition, cyclodextrins can host porphyrin
molecules and improve their solubility in water, physicochemical
stability and bioavailability as well as controlling their release (Tian
et al., 2020). Several reports have been published dealing with
porphyrin PSs combined with cyclodextrins towards PDT activity
(Liu et al., 2016).

In a recent report, Ikeda et al. (2017) prepared water-soluble
complexes of cyclodextrin enclosing porphyrin derivatives with
different substituents in the meso-positions (Figure 6A) and
investigated their activity towards PDT (Ikeda et al., 2017). In
particular, aniline- and phenol-substituted porphyrins
demonstrated high photodynamic activity which was even greater
than photofrin; i.e., a common drug in clinical used as
photosensitizer. Covalent attachment of cyclodextrin with
porphyrin is another approach towards cancer therapy. The
porphyrin-cyclodextrin conjugates (Figure 6B) prepared by Král
and co-workers presented combined PDT activity with
chemotherapy (Králová et al., 2010). The versatile supramolecular
system combined efficient enclosing of the drug in the cavity of the
cyclodextrin moiety as well as the photosensitizing properties of the
porphyrin moiety while the entire complex was accumulating in the
cancer tissue. The combination of PDT and chemotherapy was
explored also in a more recent work, where Zhao and co-workers
synthesized the porphyrin-cyclodextrin PEG-Por-CD nanocarriers
presented in Figure 6C (Lim et al., 2019). These conjugates self-
assembled with oxaliplatin via host-guest interactions and
demonstrated enhanced cytotoxicity and apoptosis compared to
the corresponding monotherapy. Besides covalent and Van-der
Waals interactions, cyclodextrins can be combined with

FIGURE 5
(A) Images from CLSM (right) and bright-field (left) demonstrating the PNA-BDP NPs’ selective PDT action on MCF-7 cells. Dead cells are shown by
the red signal from PI. (B) Bright-field (left) and CLSM (right) pictures demonstrating the PNA-TPP NPs’ selective PDT action on MCF-7 cells; scale bars
indicate 50 μm. The MCF-7 cells that were incubated with PNA-BDP NPs (C) and PNA-TPP NPs (D), treated with or without light irradiation, were tested
for viability. Scale bars indicate 50 μm. Standard deviation (n= 5) is shown by error bars. Figure reproducedwith permission from (Chang et al., 2020).
Copyright 2020, ACS publications.

Frontiers in Chemical Biology frontiersin.org07

Nikolaou et al. 10.3389/fchbi.2023.1346465

https://www.frontiersin.org/journals/chemical-biology
https://www.frontiersin.org
https://doi.org/10.3389/fchbi.2023.1346465


porphyrins via electrostatic interactions towards 1O2 generation
(Zagami et al., 2023).

In 2022, our research group contributed in this field through the
preparation of porphyrin-cyclodextrin complexes towards PDT. In
detail, we prepared and fully characterized unsymmetrical, mildly
amphiphilic porphyrin derivatives, in addition to their complexes
with pMβCD in water, and investigated their intracellular delivery,
phototoxicity and dark toxicity against MCF-7 breast cancer cells
(Panagiotakis et al., 2022). Scheme 1 illustrates the synthetic
procedures for the preparation of the porphyrin derivatives
bearing different peripheral substituents and a carboxylic side-
chain of different length. In detail TPPOCOOHC2,
TPPOCOOHC5, TPPOCOOHC11 and the meta-trihydroxy
derivative mTHPPOCOOHC5, were synthesized in high yields
starting from the corresponding ester followed by basic
hydrolysis. The ester precursor porphyrins were prepared via
nucleophilic substitution reactions between TPPOH and the

appropriate ω-bromoalkyl ester (Brulé et al., 2004) (Scheme 1A).
The meta-substituted ester precursor was synthesized from the
suitable ester-protected aldehydes and pyrrole (Scheme 1B) using
trifluoroacetic acid (TFA) according to Lindsey’s method (Lindsey
et al., 1987). The symmetrical compounds TPP and mTHPP were
also synthesized by the Adler and Longo method for comparison
purposes (Adler et al., 1964). Analysis of the 1D and 2D NMR
spectra proved that the stoichiometry of the complexes of pMβCD
with the unsymmetrical amphiphilic porphyrins is 2:1, while there
are variations in the complexation modes and in the number of
supramolecular isomers.

Photogeneration of singlet oxygen was monitored using the
water-soluble 1O2 sensor 9,10-anthracenediylbis(methylene)
dimalonic acid (ABDA) and clearly verified that the rates of 1O2

production were larger in case of the porphyrin-CD complexes than
for the free porphyrins, especially for TPPOCOOHC5, while no
difference was detected for mTHPPOCOOHC5. After establishing

FIGURE 6
(A) Structures of the water-soluble complexes of TMe-β-CyD cyclodextrin enclosing meso-substituted porphyrin derivatives. Figure reproduced
with permission from (Ikeda et al., 2017). Copyright 2017, ACS publications; (B) schematic representation of the porphyrin-cyclodextrin supramolecular
carrier-drug complex. Figure reproduced with permission from (Králová et al., 2010). Copyright 2010, ACS publications; (C) chemical structures of PEG-
Por-CD carrier and oxliPt(IV)- ada drug. Figure reproduced with permission from (Lim et al., 2019). Copyright 2019, ACS publications.
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the excellent stability of the pMβCD/porphyrin complexes under
prolonged light irradiation in the presence of cell culture proteins for
24 h, the authors studied their cellular uptake by MCF-7 breast
cancer cells using confocal microscopy. It was proven that pMβCD
promotes enhanced cell uptake as well as endoplasmic reticulum
(ER) distribution and high phototoxicity, while toxicity without light

remains low. In Figure 7, the photodynamic activity against MCF-7
cells of the pMβCD/porphyrin complexes compared to the parent
porphyrins is illustrated. The most effective
monocarboxyporphyrins may be suggested as parts of more
advanced photo and chemotherapy platforms, and their function
can be facilitated by pMβCD.

In addition, our research group recently developed
combinational PDT and chemotherapy systems based on

SCHEME 1
Synthesis of carboxy-substituted porphyrins for the preparation of porphyrin-cyclodextrin complexes: (A) I) n = 1, n = 4: K2CO3, KI, DMF, 80°C, 2 h;
n = 10: K2CO3, KI, DMF, r.t., 18 h, II) 1. KOH (aq), THF, MeOH, r.t., 24 h, 2. HCl 1 M, pH 4-5; (B) I) 1.TFA, r.t., 17 h, DCM, 2. DDQ, r.t., 2 h, DCM, 3. TEA, r.t.,
15 min, DCM, II) 1. KOH (aq), THF, MeOH, r.t., 24 h, 2. HCl 1 M, pH 4-5. Figure reproduced with permission from (Panagiotakis et al., 2022). Copyright
2022, Elsevier.

FIGURE 7
Viability of MCF-7 cancer cells after 24 h of incubation with
pMβCD/porphyrin complexes (2 μM) compared to the parent
porphyrins (2 μM). All compounds were irradiated at 6.28 J/cm2. The
MTT assays were performed at 24 h post-irradiation. Figure
reproduced with permission from (Panagiotakis et al., 2022).
Copyright 2022, Elsevier.

FIGURE 8
Structures of porphyrin-βCD conjugates. Figure reproduced with
permission from (Panagiotakis et al., 2023). Copyright 2023, Elsevier.
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cyclodextrins and porphyrins (Panagiotakis et al., 2023). The aim
was to develop photoactive nanoparticle targeting cancer cell
lysosomes for drug delivery and light-controlled release. In detail
they covalently connected the best performing porphyrins of their
previous work with mono-amino-substituted cyclodextrin and
obtained new amphiphilic porphyrin-βCD conjugates. The
successful synthesis of the porphyrin-βCD conjugates (Figure 8)
was achieved via amide linkage between the mono(6-amino-6-
deoxy)-βCD (Petter et al., 1990) and TPPOCOOHCx (Scheme 1)
utilizing 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmor
pholinium chloride (DMTMM) (Kunishima et al., 1999) coupling
reagent. Noteworthy the employment of common coupling reagents
and conditions such as DCC and HOBt, or hexafluorophosphate
azabenzotriazolyl-tetramethyluronium (HATU) or thionyl chloride
(SOCl2) lead only to the recovery of the starting materials.
Absorption and emission spectroscopy studies revealed that the
length of the aliphatic chain linkers between the porphyrin and βCD
moieties porphyrin-βCDmolecules does not alter the photophysical
properties both in DMF and in aqueous media. The conjugates self-
assembled into nanoparticles of approximately ~60 nm as
demonstrated by scanning and transmission electron microscopy
as well as DLS experiments. Importantly, the self-assembled
nanoparticles (NPs) were photoactive and selectively targeted the
lysosomes of MCF-7 cells.

After establishing the above desired properties, we proceeded with
the inclusion of anticancer drugs in the NPs. Two different drugs were
investigated, the citrate salt of Tamoxifen (TamCit) and the
N-adamantyl derivative of Gemcitabine (GEMADA). PBS solutions

of the pre-assembled NPs were incubated with TamCit, GEM and a
model guest 1-adamantylcarboxylic acid (ADACOOH) and according
to DLS experiments the diameter of the nanoparticles was significantly
increased. Confocal laser scanning microscopy was utilized once again
for live imaging of human breast adenocarcinoma MCF-7 cells
incubated with the conjugate NPs. Either empty or with the drug,
the NPs present no toxicity in the dark for 48 h; thus, light irradiation
induces the release of the drugs. After irradiation at 640 nmwith a LED
array lamp, the cells incubated with drug-loaded NPs displayed a major
decrease of viability (>85%) for 48 h. The results showed strong synergy
between the photodynamic and chemotherapeutic effects and therefore,
photochemical internalization (PCI) is suggested to be the drug release
mechanism. The above results are illustrated in Figure 9 which describes
the viability of MCF-7 cells after 24 h of incubation with the NPs, with
or without the investigated anticancer drugs. The authors suggest that
the prepared porphyrin-βCD NPs, should be considered, along with
other nano-assemblies (Xue et al., 2019), as efficient vehicles for the
photo delivery of small drugs.

2.4 Peptide labelling

Visualizing the trafficking and localization of proteins in living
systems is the key to understand protein functions in their natural
environment. Thus, labelling and tracking of biomolecules (peptides,
antibodies, and proteins) inside alive cells provides a pathway for the
determination of their interactions, mobility, dynamics, and functions
(Schneider and Hackenberger, 2017). Several labelling methods such as

FIGURE 9
Toxicity against MCF-7 cells after 24 h of incubation with porphyrin-βCDNPs (10 μM) with or without anticancer drugs (7.5 μM), without (white and
light grey bars) or with irradiation at 4.18 J/cm2, λ = 640 nm (dark grey and black bars). The MTT assays were performed at 24 h (dark grey bars) or 48 h
(black bars) post-irradiation: (A) Control experiments with cells alone (control), TamCit or GEMADA; (B) TPPOCNHbmC2; (C) TPPOCNHbmC5; (D)
TPPOCNHbmC11, alone and loaded with the drugs Figure reproduced with permission from (Panagiotakis et al., 2023). Copyright 2023, Elsevier.
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radioactive tracers, photochromic compounds, electrochemical sensors,
colorimetric biosensors, isotope markers, photo switchable biomaterials
and fluorescent labels are available for this purpose (Ong and Mann,
2006; Chudakov et al., 2010; Rocha-Santos, 2014; Velikyan, 2014;
Abdollahi et al., 2019; Rai and Ferreira, 2021). Among them, optical
imaging by fluorescencemicroscopy is themost widely used and versatile
visualization strategy in research and clinical practice mainly due to its
non-destructive features and high sensitivity. Additionally, it fulfils the
requirements of low concentration of fluorescent material and small
measurement volume (Dean and Palmer, 2014). Recently, fluorescence
microscopy and imaging have gained significant attention, owing to the
growing availability of dyes, fluorescent proteins and probes alongside
with an increasing number of fluorescent imaging methods.

Optical visualization by fluorescence microscopy requires the site-
specific labelling of a protein of interest (POI) with a fluorescent
derivative. The connection of the fluorophore with the desired
biomolecule can be achieved biologically or chemically (Lotze et al.,
2016). Peptide-based recognition tags provide an attractive strategy for
protein labelling. In the tag-based method, the POI is genetically fused
with an oligo-peptide that binds site-specifically to a desired synthetic
fluorophore (Lai et al., 2015). The attachment of the fluorophore with
the tag through metallochelate coupling is one of the most widely used
strategies and has been employed in biotechnology and molecular
biology by several research groups (Connell and Donnelly, 2018). It
is based on the capability of nitrilotriacetic (NTA) complexes with
transition metals (Zn2+, Ni2+, Co2+, or Cu2+) to coordinate specific
amino acid residues, mostly oligo-histidine sequences, such as the hexa-
histidine tag (His6-tag) (Leonhardt et al., 2023). TheHis6-tag is an oligo-
histidine sequence in which six histidine residues have the ability to
interact noncovalently and reversibly with a metallic complex of NTA.
The main advantage of this approach is the high specificity, and
additionally the tag can be expressed either at the N-termini or
C-termini during the expression of the protein (You and Piehler, 2014).

Porphyrins and metallo-porphyrins are considered as promising
labelling tools (Ethirajan et al., 2011; Rabiee et al., 2020; Sandland
et al., 2021; Jin et al., 2023). Additionally, porphyrin derivatives were
employed in PDTof tumours and as labels for the detection of cancer cells
(Tian et al., 2020; Chen et al., 2021; Park et al., 2021; Shi et al., 2021).
Dmitriev et al. (2016) reported the first example where porphyrin
complexes bearing NTA moieties were applied in the labelling of
various biomolecules that possess the His6-tag. More specifically, they
succeeded to label through metallochelate coupling several peptides and
proteins with phosphorescent Pt-porphyrin derivatives bearing NTA
group. Their studies revealed that all synthesized metallochelate
complexes display phosphorescence and sensitivity to O2, which is
comparable with other (poly)peptide-based probes.

Coutsolelos and co-workers reported the synthesis and
characterization of three porphyrin-based fluorescent probes
(Figure 10), bearing modified lysine-NTA groups and could be
applied in protein labelling through metallochelate coupling chemistry
(Glymenaki et al., 2022). All hybrids were based on a free base porphyrin
macrocycle which was covalently connected with an appropriately NTA-
substituted ligand. In the first two probes (TPP-Lys-NTA and TPP-CC-
Lys-NTA) the same phenyl-substituted porphyrin ring was employed,
with the only difference being the group linking the twomoieties. In TPP-
Lys-NTA, the linkage was performed through an amide bond, while in
TPP-CC-Lys-NTA, a triazine ring was employed as linker in order to
increase the distance between the porphyrin and the NTA ligand. In the

third dyad (Py3P-Lys-NTA) three pyridyl groups were introduced to the
porphyrin periphery, targeting to increase the hydrophilicity of the probe;
a desirable feature for labelling water-soluble peptides. The connection of
the porphyrin with theNTA ligandwas achieved through an amide bond
using standard coupling reagents.

Initially, absorption and emission spectroscopy studies were
performed to explore if the three probes were able to coordinate with
Ni2+ ions. These experiments demonstrated that theNTA ligand can bind
Ni2+ and the characteristic absorption features of the dyes are preserved
after the coordination. Noteworthy, emission studies revealed that the
emission of these probes is not quenched after the coordination with Ni2+

ions. This observed feature is stimulating, since the majority of the
reported fluorophores a significant emission quenching is observed upon
the connection with the transition metal. This is the most common
drawback of many fluorescent probes, since quenching of the emission
decreases the detection limit of the probe after its connection with the
desired POI (Dmitriev et al., 2016). Additionally, as a proof of concept, we
studied twooligo-peptides (Fmoc-FHandRGDSGAITIGH,Figure 11) to
examine whether the porphyrin-NTA dyads could be used as fluorescent
probes and coordinate with them through the NTA ligand. Interestingly,
these two peptides were able to self-assemble and form various
nanostructures. Moreover, one histidine residue is present in their
backbone; thus, they can be regarded as His6-tag models. Self-
assembly based on oligo-peptides provides a novel approach for
tumour nanotheranostics that possess functionality, biosafety,
controllability and programmability, enabling the transition of
supramolecular nanotheranostics from lab to bedside (Li et al., 2019).

Field-emission scanning electron microscopy (FESEM)
experiments were performed to study the capability of porphyrin-
NTA dyads to coordinate with histidine bearing peptides in the
presence of Ni2+ ions. TPP-Lys-NTA hybrid self-assembles and
forms flake-shaped nanostructures (Figure 12A). However, in the
presence of Ni2+ ions the morphology of the porphyrin self-
assembling nanostructures was altered, resulting in spherical
architectures (Figure 12B). On the other hand, the Fmoc-FH peptide
self-assembles forming a network of fibrils (Figure 12D).Noteworthy, in
the case where both Fmoc-FH and TPP-Lys-NTAwere present the two
derivatives self-assembled independently and formed a fibrillar network
covered with spherical nanostructures (Figure 12E). Finally, the sample
which contained Fmoc-FH with TPP-Lys-NTA-Ni2+ gave rise to the
formation of more well-defined nanostructures with spherical shape
and increased diameter (Figure 12C). Similar results were observed for
the other two probes as well. The differences that were observed before
and after the addition of the oligo-peptides provide a strong indication
for the successful metallochelate coupling. Solid state absorption and
emission experiments also supported the connection of the probes with
the oligopeptides through metallochelate coupling.

Moving one step forward, the authors examined the capability
of the porphyrin-peptide hybrids to penetrate and accumulate in
mammalian HeLa cancer cells, studying their potential application
as anticancer agents. Confocal microscopy studies revealed that
the porphyrin-NTA hybrids alone and their corresponding
complexes with the oligopeptides can enter the HeLa cancer cells
and accumulate into the cytoplasm. Thus, peptides with histidine
residues in their backbone are especially suitable for intracellular
deliver of labelling fluorophores or different type of molecules. The
pKa of histidine’s imidazole group is around 6 and in can be
protonated in the intracellular environment, especially in the
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acidic conditions within endosomes. This can result in endosomal
lysis and release of the fluorophore or another type of molecule
inside the cytoplasm.

3 Conclusion and outlook

Overall, in this perspective article we illustrated the
development of properly functionalized porphyrinoids as agents
in several biomedical applications, namely, wound healing, PDT,
photokilling cancer cells, drug release, and peptide labelling. The
wound healing results using porphyrin-hydrogels in young and
mature rats based on our work, illustrated that further studies
would be of great interest. More precisely, as future directions we
suggest the utilization of metallated porphyrinoids with higher 1O2

production rates, as well as diverse peptides which can still form
transparent hydrogels though. These two approaches could
potentially improve the stability and the efficiency of hydrogels
targeting defect parameters similar to our study. We have also

introduced a method for producing PDT nanodrugs by mixing
PNAs with suitably functionalized photosensitizers. We were able
to develop nanoparticles with distinct structures through the self-
assembly of PNA-BDP and PNA-TPP hybrids, which were
effectively internalized by cells and exhibited stability in
biological fluids. In the absence of irradiation negligible
cytotoxicity was observed; however, by utilizing laser irradiation
selective cytotoxicity was detected rendering these self-assembled
NPs as effective nanoagents. Moving one step forward, additional
PNA derivatives connected with appropriate decorated porphyrin-
based PSs should be developed, targeting to further improve both
the identification of tumour cells as well as their treatment. Overall,
this approach could advance the preclinical assessment and the
clinical use of bioinspired biomaterials via the incorporation of
such novel supramolecular therapeutic nanoagents. In addition, we
have utilized cyclodextrin moieties in an effort to develop water-
soluble porphyrin complexes with PDT properties. This strategy
was proved very efficient; thus, other chromophores with alike
photophysical features such as corroles, phthalocyanines and

FIGURE 10
Molecular structures of the porphyrin-based probes described in this study Figure reproduced with permission from (Glymenaki et al., 2022).
Copyright 2022, ACS publications.

FIGURE 11
Molecular structures of the oligopeptides in this work. Figure reproduced with permission from (Glymenaki et al., 2022). Copyright 2022, ACS
publications.
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BODIPY dyes could also be used as photosensitizers in PDT
studies. The porphyrin-cyclodextrin conjugates that we
developed, targeting cancer cells for light-controlled drug release,
demonstrated a facile way to develop photoactive nanoparticles;
expanding the field of combinational PDT and chemotherapy into
different small molecule chemotherapeutics. Regarding the protein
labelling applications, we covalently connected appropriately
modified NTA ligands with porphyrins in an effort to form
fluorophores. One of the possible future direction in this field
could be the preparation of similar hybrids by taking advantage of
the metallochelate coupling chemistry, and eventually penetrate
into cancer cells. Porphyrinoids have merited a distinct spot in
biomedicine, owing to: i) their broad and intense absorption, ii)
their facile structural modification, and iii) their ability to chelate
various metals. As a consequence, porphyrin-based nanohybrids
have attractive photoredox, photochemical, and photophysical
properties and are considered as ideal theragnostic agents with
vast potentials. However, in order to find a practical application,
we should improve their stability against demetallation,
biocompatibility, selectivity, off-target phototoxicity, 1O2 quantum
yield, and absorption in the visible-NIR region. Undoubtedly, the
successful preparation of porphyrin macrocycles with the above-
mentioned characteristics will result in useful theragnostic agents
in multiple disease areas.
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