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This work reports an alkyl acetylphosphonate (alkylAP) activity-based probe (ABP)
for 1-deoxy-D-xylulose 5-phosphate synthase DXPS, a promising antimicrobial
target. This essential thiamin diphosphate (ThDP)-dependent enzyme operates at
a branchpoint in bacterial central metabolism and is believed to play key roles in
pathogen adaptation during infection. How different bacterial pathogens harness
DXPS activity to adapt and survive within host environments remains
incompletely understood, and tools for probing DXPS function in different
contexts of infection are lacking. Here, we have developed alkylAP-based ABP
1, designed to react with the ThDP cofactor on active DXPS to form a stable C2α-
phosphonolactylThDP adduct which subsequently crosslinks to the DXPS active
site upon photoactivation. ABP 1 displays low micromolar potency against DXPS
and dose-dependent labeling of DXPS that is blocked by alkylAP-based inhibitors.
The probe displays selectivity for DXPS over ThDP-dependent enzymes and is
capable of detecting activeDXPS in a complex proteome. These studies represent
an important advance toward development of tools to probe DXPS function in
different contexts of bacterial infection, and for drug discovery efforts on
this target.
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1 Introduction

Identification of novel antimicrobial targets is essential to address the continued
global threat of antimicrobial resistance (World Health Organization, 2022). Bacterial
central metabolism remains relatively underexplored, yet promising, for development
of new antimicrobial strategies (Murima, McKinney, and Pethe, 2014; Tong and Brown,
2023). Targeting pathogen adaptation is a particularly intriguing facet of developing
this target space. Bacteria undergo metabolic remodeling in response to fluctuations in
nutrient availability within the host (Passalacqua, Charbonneau, and O’Riordan, 2016;
Fuchs et al., 2012; L. Rohmer, Hocquet, and Miller, 2011; Alteri and Mobley, 2012).
These so-called metabolic adaptations are pathogen-specific responses that are essential
for survival and pathogenicity in particular host environments (Alteri and Mobley,
2015; Turner et al., 2015). Thus, targeting essential metabolic adaptations offers the
potential for narrow-spectrum antimicrobial strategies that avoid toxicity to healthy
microbiota.
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1-Deoxy D-xylulose 5-phosphate synthase (DXPS) is an essential
central metabolic enzyme that we hypothesize is critical for bacterial
metabolic adaptation (Bartee D. and Freel Meyers CL. 2018; Sanders
et al., 2017; E. C. Chen and Freel Meyers, 2023). This enzyme
catalyzes the thiamin diphosphate (ThDP)-dependent formation of
DXP from pyruvate and D-glyceraldehyde 3-phosphate (D-GAP).
Absent in humans but widespread in high priority Gram-negative
bacterial pathogens (Heuston et al., 2012; World Health
Organization, 2022; Allamand et al., 2023), DXP is a branchpoint
metabolite that serves as a precursor to vitamins B1 (ThDP) and B6
(pyridoxal phosphate, PLP), as well as isoprenoids biosynthesized
via the methylerythritol phosphate (MEP) pathway (Figure 1)
(Rodríguez-Concepción and Boronat, 2002; Hill, Sayer, and
Spenser, 1989; M. Rohmer et al., 1993; David et al., 1981). Based
on its role in these essential metabolic pathways, DXPS should be
critical for pathogen adaptations that require vitamins or
isoprenoids.

We have recently demonstrated such a role for DXPS in the
adaptation of uropathogenic Escherichia coli (UPEC) to D-Ser, a
bacteriostatic host metabolite present at high concentrations
within the urinary tract (E. C. Chen and Freel Meyers, 2023).
UPEC detoxify D-Ser through PLP-dependent conversion to
pyruvate. Inhibiting DXPS sensitizes UPEC to D-Ser, and makes
this pathogen vulnerable to inhibition of CoA biosynthesis in the
context of urinary tract infection where the TCA cycle and
gluconeogenesis from amino acids are critical for survival
(Alteri, Smith, and Mobley, 2009; Alteri and Mobley, 2012,
2015; Alteri et al., 2019; Himpsl et al., 2020; Chan and Lewis,
2022). This is consistent with observations that bacterial sensitivity
to DXPS inhibition depends upon the growth environment
(Sanders et al., 2017, 2018), which suggests the degree to which
bacteria rely on DXPS activity is context-dependent. Its interesting
gated mechanism (Patel et al., 2012; Nemeria et al., 2009; Zhou
et al., 2017; P. Y.-T. Chen et al., 2019; Toci et al., 2024; DeColli
et al., 2019) and alternative activities (Brammer and Meyers, 2009;

Morris et al., 2013; DeColli et al., 2018; Johnston and Freel Meyers,
2021; Johnston et al., 2022) also hint that DXPS may have other
uncharacterized functions. If essential for a pathogen adaptation
and survival during infection, such functions could potentially be
targeted in an infection-specific manner.

Understanding the pathogen-specific roles of DXPS and/or
contexts in which pathogens are highly sensitive to the loss of
DXPS activity in one or more pathways at this metabolic
branchpoint will help guide development of narrow-spectrum
antibacterial strategies targeting DXPS. Paramount to this goal is
access to tools that enable investigation of DXPS activity in different
biological contexts. An activity-based probe (ABP) of DXPS would
be particularly useful in this regard, as well as for discovery and
development of antibacterial agents targeting DXPS. To our
knowledge, there are currently no ABPs for DXPS or other
ThDP-dependent enzymes. This study takes a first step toward
development of ABPs for DXPS, drawing on our cumulative
knowledge of DXPS mechanism and previous efforts to develop
selective inhibitors.

In the first step of the reaction catalyzed by DXPS, pyruvate
reacts with the ThDP cofactor to form a C2α-lactylthiamin
diphosphate (LThDP) intermediate (Figure 1). Alkyl
acetylphosphonate (alkylAP) inhibitors were designed as stable
pyruvate mimics to study ThDP-dependent pyruvate
decarboxylase enzymes (O’Brien et al., 1980; Kluger and Pike,
1977; R. Kluger and Tsui, 1986), and they react with ThDP in a
similar manner to form a stable C2α-phosphonolactylthiamin
diphosphate (PLThDP) adduct. We have advanced alkylAP
inhibitor development to target the large DXPS active site and its
gated mechanism requiring ternary complex formation (Smith,
Vierling, and Meyers, 2012; Morris et al., 2013; Sanders et al.,
2017; Bartee and Meyers, 2018a; Coco et al., 2024). Here, we
describe the first activity-based probe for DXPS, ABP 1, based on
first-generation alkylAP inhibitors. Our results demonstrate dose-
dependent labeling of DXPS by 1 via a mechanism involving

FIGURE 1
DXP is positioned at a branchpoint in bacterial metabolism and is required for synthesis of vitamins thiamin diphosphate (ThDP) and pyridoxal
phosphate (PLP), and isoprenoids. DXPS catalyzes formation of DXP from pyruvate and D-GAP via a C2α-lactylThDP (LThDP) intermediate, and is inhibited
by alkylAPs via formation of a stable phosphonolactylThDP (PLThDP) adduct.
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PLThDP formation on active DXPS, and show that labeling is
blocked in a concentration-dependent manner by DXPS
inhibitors of varying potency. ABP 1 also displays selectivity for
DXPS over ThDP-dependent pyruvate dehydrogenase E1 subunit
(PDH) and pyruvate decarboxylase (PDC) in vitro, and detects
active DXPS in a complex proteome. These studies represent an
important advance toward development of tools to probe DXPS
function in different contexts of bacterial infection, and for drug
discovery efforts on this target.

2 Results

2.1 Design and synthesis of an activity-based
probe for DXPS

As a first step to develop ABPs for DXPS, we designed a probe
based on the first-generation alkylAP scaffold (Figure 2). The probe
design incorporates the acetylphosphonate reactive group that
mimics the donor substrate pyruvate, and reacts with the ThDP

cofactor on active DXPS to form the covalent PLThDP adduct. As
PLThDP formation is reversible (Sanders et al., 2017), a
crosslinking group is required to ensure that active DXPS can
be labeled irreversibly. Sterically demanding substituents can be
incorporated into the phosphonyl ester group without significant
loss in inhibitor potency (Morris et al., 2013; Sanders et al., 2017;
Bartee and Meyers, 2018a; Coco et al., 2024), due to the large
active site volume of DXPS, whereas modifications to the reactive
acetyl group are not tolerated (Smith, Vierling, and Meyers,
2012). Based on this, we designed alkylAP-based probe 1
bearing the commonly-used 2-(3-(but-3-yn-1-yl)-3H-diazirin-
3-yl)ethyl moiety (Li et al., 2013), capable of crosslinking to
the DXPS active site and presenting a biorthogonal handle for
introduction of a fluorophore or biotin.

ABP 1 was synthesized from the commercially available 1-
hydroxy-6-heptyn-3-one 2 (Figure 3). Ketone 2 was converted to
diaziridine 3 by sequential treatment with anhydrous ammonia and
hydroxylamine-O-sulfonic acid (HOSA). Oxidation of crude 3 using
iodine afforded diazirine 4 in 60% yield over two steps.
Phosphorylation of 4 via phosphoramidite coupling with

FIGURE 2
Activity-based probe design and workflow. PLThDP forms via a reversible reaction of 1with ThDP in the DXPS active site. Upon irradiation, diazirine
reacts to release N2 leaving behind a reactive carbene which irreversibly crosslinks the DXPS active site. Following crosslinking, DXPS is denatured and
subjected to the CuAAC reaction to introduce a tag, enabling detection of labeled DXPS.

FIGURE 3
Synthesis of 1 from commercially available 1-hydroxy-6-heptyn-3-one 2 in 5 steps. Abbreviations: hydroxylamine-O-sulfonic acid (HOSA);
triethylamine (TEA); acetyl chloride (AcCl).
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dimethyl-N,N-diisopropylphosphoramidite in the presence of
tetrazole gave phosphite 5 in 94% yield. Phosphite 5 was
converted to acetylphosphonate diester 6 by reaction with acetyl
chloride, and 6 was subsequently dealkylated with lithium bromide
to give ABP 1 in 53% yield over two steps. As expected, ABP 1
exhibited an absorbance profile consistent with a diazirine ring (λmax

340 nm) (Supplementary Figure S1).

2.2 ABP 1 inhibits E. coli DXPS via formation
of a phosphonolactylThDP adduct

The phosphonolactylThDP (PLThDP) adduct formed via
reaction of an alkylAP with ThDP can be detected by circular
dichroism (CD) on pyruvate decarboxylase enzymes, including
DXPS (Jordan et al., 2003; Nemeria et al., 2009, 2010; Heflin,
2015; Zhou et al., 2017; Coco et al., 2024). ThDP bound to DXPS
exists in the 4′-aminopyrimidine (AP) form (Figure 4A) with a
characteristic negative CD signal at 320 nm (Figure 4B, blue line)
(Patel et al., 2012). Formation of a stable PLThDP adduct is
characterized by disappearance of the negative CD signal and
formation of a broad positive CD signal corresponding to the
1′,4′-iminopyrimidine (IP) form of the new PLThDP adduct
(Figure 4A) (Zhou et al., 2017). As expected, formation of a broad
positive CD signal was observed upon addition of 1 (50 μM) to E. coli
DXPS (EcDXPS, 30 μM) in the presence of ThDP (200 μM),
supporting active site engagement of 1 with DXPS and formation
of the PLThDP adduct (Figure 4B, red line).

Using the DXPS-IspC coupled assay (Coco et al., 2024) to
measure initial velocity of DXP formation (Supplementary Figure
S2), we assessed the ability of ABP 1 to inhibit DXPS-catalyzed
DXP formation. Consistent with the observed formation of
PLThDP, ABP 1 inhibits EcDXPS with a Ki of 1.60 ± 0.22 μM
(Figure 4C), comparable to the observed low micromolar
potencies of other first-generation alkylAPs (Smith et al.,
2014; Sanders et al., 2017). To rule out inhibition of the
coupling system, ABP 1 was assessed as an inhibitor of IspC
and found to be inactive up to 100 μM (Supplementary Figure
S2B). To confirm that the potency of 1 is not due to UV-induced
crosslinking during the DXPS-IspC coupled assay, the Ki of 1 was
determined by measuring initial velocities of DXP formation
after exposing mixtures of 1 and DXPS to 340 nm light for 5 min
(Supplementary Figure S2C). A comparable Ki of 2.60 ± 0.47 μM
was determined, indicating 1 is stable under conditions of the
coupled assay.

2.3 ABP 1 labels E. coli DXPS in a dose-
dependent manner

To evaluate the ability of 1 to label active DXPS, we carried out
the workflow shown in Figure 2 in which EcDXPS and 1 were
incubated on ice for 10 min, then irradiated at 365 nm (180 W) for
3 min at 4°C. Crosslinked DXPS was then denatured, treated with
tetramethylrhodamine (TAMRA)-azide under Cu (I)-catalyzed
azide-alkyne cycloaddition (CuAAC) conditions to install the
fluorophore, and evaluated by SDS-PAGE. Indeed, labeling of
DXPS (3 μM) was observed in the presence of 200 μM 1 and

depended upon photochemical activation of the diazirine as well
as the CuAAC reaction to incorporate TAMRA, as evidenced by a
lack of labeling in the absence of irradiation or Cu (I) catalyst
(Figure 5A). Labeling of DXPS with 1 shows dose-dependence
(Figures 5B, C), with saturation under these conditions evident
at 31.3 μM 1.

2.4 Labeling by 1 depends upon
DXPS activity

ABP 1 is designed to bind within the DXPS active site and
undergo reaction with ThDP to form the PLThDP adduct; thus,

FIGURE 4
ABP 1 inhibits DXPS via PLThDP formation. (A) Reaction scheme
for formation of PLThDP from 1 on DXPS, showing the cofactor in its
AP and IP forms. (B) Representative CD traces showing the
4′aminopyrimidine (AP) form of ThDP on EcDXPS (blue line) and
PLThDP formation (red) upon addition of 1. CD traces shown are the
average of two scans. Experiments were performed in duplicate at
25°C with 50 μM 1 and 30 μM EcDXPS. Replicate data shown in
Supplementary Figure S3. (C) Morrison curve showing inhibition of
DXPS activity by 1. Error bars represent standard deviation determined
from three replicates.
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efficient labeling of DXPS by 1 should be dependent upon the
ability of DXPS to activate ThDP to the reactive ylide. To
demonstrate this, we assessed the ability of 1 to label
denatured wild-type DXPS as well as a catalytically impaired
DXPS variant (EcE370A DXPS) (Brammer, 2013; Querol-Audí
et al., 2014). While secondary structure and stability of EcE370A
DXPS are similar to wild type (Supplementary Figures S6, S7),
this variant lacks the conserved glutamate within hydrogen
bonding distance of the cofactor N1’, required for activation
of ThDP to the reactive ylide during catalysis (Muller et al., 1993;
Wikner et al., 1994; Schellenberger, 1998; Schneider and
Lindqvist, 1998; Berthold et al., 2005; Jordan and Nemeria,
2005; Xiang et al., 2007; Querol-Audí et al., 2014; White et al.,
2016). As expected, labeling of EcE370A DXPS was significantly
diminished at concentrations of 1 that fully label active wild-type
DXPS (>15.6 μM, Figure 6). Likewise, diminished labeling of

denatured EcDXPS was observed relative to active wild-type
DXPS. Weak labeling could be detected at [1] > 7.81 μM,
indicating low-level non-specific interactions between the
probe and inactive DXPS. At [1] > 31.3 μM, more pronounced
non-specific labeling is observed (Supplementary Figure S8).
Together, these results indicate that reversible binding to the
DXPS active site alone is insufficient for productive labeling by 1,
and conversion to the PLThDP adduct via reaction of 1 with
ThDP is required.

FIGURE 5
ABP 1 labels EcDXPS in a dose-dependent manner. (A) Labeling
of DXPS (3 μM) by 1 (200 μM) requires the presence of 1, UV irradiation
(3 min, 365 nm) and Cu (I) catalyst. Labeling experiments were
performed in triplicate; experimental replicates as full gel images
are shown in Supplementary Figure S4. (B) Representative in-gel
fluorescence showing dose-dependent labeling of EcDXPS at low
micromolar concentrations of 1; replicates as full gel images are
shown in Supplementary Figure S5. (C) Normalized fluorescence
quantified from SDS-PAGE gels (n = 3) showing EcDXPS (3 µM) is fully
labeled at 31.3 µM 1 (samples were irradiated with 365 nm light for
3 min at 4°C). Error bars represent standard deviation. MW = protein
molecular weight marker (kDa).

FIGURE 6
Diminished labeling of catalytically impaired EcE370A DXPS and
denatured wild-type DXPS by 1. (A) Representative in-gel
fluorescence experiments conducted with wild-type (WT) DXPS (top,
data from Figure 5 included for reference (full gel images for
Figure 5 data are shown in Supplementary Figure S5), EcE370ADXPS
(middle), and denatured wild-type DXPS (bottom) after exposure to
labeling conditions with 1. Gel images were prepared and quantified
using ImageJ. MW = protein molecular weight marker. Experimental
replicates as full gel images are shown in Supplementary Figure S8. (B)
Quantified normalized fluorescence (experimental) from in-gel
fluorescence and Coomassie gel images. Error bars represent as
standard deviation.
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2.5 DXPS inhibitors compete with 1

To gain additional evidence that ABP 1 engages the DXPS
active site, we conducted competition experiments using
previously studied pyruvate-competitive alkylAP-based
inhibitors known to act via PLThDP formation on DXPS.
Three inhibitors with varying potencies were selected
(Figure 7A), including butylacetylphosphonate (BAP, 7),
methylacetylphosphonate (MAP, 8), and dibenzylglycine
triazole acetylphosphonate (DBGlyTrAP, 9) (Smith,
Vierling, and Meyers, 2012; Sanders et al., 2017; Coco et al.,
2024). BAP (7) and MAP (8) are first-generation alkylAPs that
display low micromolar and submicromolar potencies,
respectively, against DXPS enzymes. DBGlyTrAP (9) is a
recently-discovered time-dependent bisubstrate analog
inhibitor displaying low nanomolar potency against EcDXPS
(Coco et al., 2024). EcDXPS (3 μM) was incubated with each
inhibitor for 10 min prior to the addition of 1 (Figure 7B).
Following a 10 min incubation with 1, mixtures were irradiated
for 3 min at 4°C, subjected to CuAAC reaction conditions to
install the TAMRA fluorophore, and analyzed by SDS-PAGE,
as described above. As expected, the concentration of
inhibitor required to block DXPS labeling by 1 decreases
with increasing inhibitor potency (Figures 7C, D); BAP (7)
is unable to compete effectively with 1 up to 30 μM, whereas
MAP (8) and DBGlyTrAP (9) block labeling by 1 in a dose-
dependent manner consistent with their relative potencies.
These results offer further strong evidence that ABP 1 is
acting at the DXPS active site, and demonstrate the utility of
1 for identifying and characterizing inhibitor potency in DXPS
inhibitor development.

2.6 ABP 1 displays selectivity for DXPS

As noted, alkylAPs bearing sterically demanding phosphonate
ester substituents have the potential to selectively target the large
active site of DXPS (Smith, Vierling, and Meyers, 2012; Morris et al.,
2013; Sanders et al., 2017). To gain preliminary insights into the
selectivity of 1 for DXPS, labeling experiments were performed on
porcine pyruvate dehydrogenase (PDH) and Saccharomyces
cerevisiae pyruvate decarboxylase (PDC), ThDP-dependent
enzymes that also catalyze pyruvate decarboxylation. Weak
labeling of PDH by 1 relative to DXPS was observed (Figures 8A,
B). In agreement with this, 1 displayed weak inhibitory activity
against PDH (Figure 8C; Supplementary Table S1). Interestingly,
PDC appeared to have intrinsic fluorescence in the absence of 1
(Figures 8A, B). In contrast to PDH, increasing the concentration of
1 in labeling experiments did not lead to an increase in fluorescent
labeling of PDC, nor was there evidence of PDC inhibition by 1 up to
1 mM (Figure 8C; Supplementary Table S1). Taken together, these
results indicate 1 displays selectivity for DXPS over other ThDP-
dependent pyruvate decarboxylase enzymes.

In addition, several other proteins unrelated to ThDP-
dependent enzymes were subjected to labeling conditions for
preliminary assessments of non-specific labeling by 1. These
included reductoisomerase IspC, the coupling enzyme used to
measure DXP forming activity of DXPS (Supplementary Figure
S2), glyceraldehyde 3-phosphate dehydrogenase (GADPH), alcohol
dehydrogenase (ADH) and bovine serum albumin (BSA). In all
cases, negligible labeling was observed up to 31.3 μM 1
(Supplementary Figure S11), conditions under which purified
EcDXPS is fully labeled (Figure 5). The absence of IspC labeling
by 1 is also consistent with the lack of inhibitory activity of 1 against

FIGURE 7
DXPS inhibitors block labeling by 1. (A) Structures and potencies of alkylAP-based DXPS inhibitors. (B) Workflow for competitive labeling of DXPS
activity. (C) Representative in-gel fluorescence (TAMRA) of DXPS (3 μM) labeling by 1 (50 μM) in the presence of 7, 8 or 9 at varying concentrations. (D)
Quantified normalized fluorescence was quantified in ImageJ. Error bars represent standard deviation of three replicates. *p < 0.05, **p < 0.01, ***p <
0.001, ns = not significant. Experiment replicates as full gel images are shown in Supplementary Figure S9.
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IspC (Supplementary Figure S2). These results suggest minimal
non-specific interactions of 1 under these conditions.

2.7 ABP 1 labels DXPS in complex
bacterial lysate

As a first step to evaluate 1 as a probe of DXPS activity in a complex
proteome, we assessed labeling of DXPS by 1 in lysate from DXPS-
overexpressing E. coli. Bacterial lysates were prepared from E. coli BL21
(DE3) cells harboring the dxs-pET37b expression construct for
inducible expression of DXPS, the strain used for production and
purification of recombinant DXPS (Brammer and Meyers, 2009). In
lysate prepared from isopropyl β-D-1-thiogalactopyranoside (IPTG)-
induced cultures, DXPS overexpression was observed, and labeling of
DXPS by 1 is evident (Figure 9A, lane 3), compared to a lack of
overexpression and DXPS labeling in lysate prepared from uninduced
cultures (Figure 9A, lane 1). Further, incubation with 9 led to a
reduction in labeling by 1 (Figure 9A, lane 4; Figure 9B). Taken
together, these results suggest a potential utility of 1 to probe DXPS
activity in complex proteomes and as a tool for DXPS inhibitor
discovery and development.

3 Discussion

Previous studies of DXPS have shown how DXPS activity and
mechanism are distinct within the ThDP-dependent enzyme family,

providing avenues for selective inhibition and offering a molecular
basis for potential multifunctionality of this enzyme. Our discovery
of a DXPS function in adaptation, and finding that a pathogen can be
uniquely sensitized to DXPS inhibition in different environments,
suggest DXPS activity and/or function may be distinct in different
contexts of infection. At present, this is minimally understood, and
tools to probe the various ways pathogens exploit DXPS activity
during infection are lacking.

This study sought to take initial steps toward development of
activity-based probes that can be used to study DXPS biology and
aid in drug discovery efforts. AlkylAP-based inhibitors developed
previously in our lab proved an excellent starting point for the
design of ABPs capable of detecting DXPS activity. Given that
alkyAPs act by reversible PLThDP formation on DXPS, we designed
a probe that incorporates a commonly-used alkyne bearing a diazirine
crosslinking group for irreversible labeling. ABP 1, synthesized in 5 steps
from readily available starting materials, was found to act as an inhibitor
of DXPS via formation of the corresponding PLThDP adduct, as
expected for an alkylAP. Notably, dose-dependent labeling by 1 was
observed only for active DXPS at concentrations of 1 up to 31.3 μM; the
inactive EcE370A variant was inaccessible to labeling under these
conditions, despite having similar secondary structure to wild-type
DXPS. This is consistent with prior results showing overexpression of
the EcE370A variant does not suppress cellular activity of 7 (Sanders
et al., 2017), and indicates conversion of 1 to the PLThDP adduct is
necessary to achieve the affinity required for efficient crosslinking.
Labeling of active DXPS was partially or fully blocked by alkylAPs
displaying enzyme inhibitory activity in the low micromolar to low

FIGURE 8
Assessment of off-target effects of 1 on ThDP-dependent pyruvate decarboxylases PDH and PDC. (A) Representative in-gel fluorescence analysis
(TAMRA) of PDH (3 μM) and PDC (3 μM) labeling by 1. Data for DXPS labeling from Figure 5 are included for reference (full gel images for Figure 5 data are
shown in Supplementary Figure S5). (B) Quantification of normalized fluorescence using ImageJ. Error bars represent standard deviation from three
replicates. (C) Inhibitory activity of 1 against E. coli DXPS, porcine PDH and S. cerevisiae PDC. Data for DXPS inhibition by ABP 1 from Figure 4C are
included here, and presented as % DXPS activity, for comparison. Kinetic experiments were performed in triplicate. Initial velocities used to calculate %
enzyme activity are summarized in Supplementary Table S1. Pyruvate dehydrogenase (PDH, porcine heart); pyruvate decarboxylase (PDC,
Saccharomyces cerevisiae). Labeling experiments were performed in triplicate. Experiment replicates as full gel images are shown in Supplementary
Figure S10.
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nanomolar range; concentration-dependent reduction in labeling
correlated with inhibitor potencies. Together these results provided
additional strong evidence that ABP 1 engages the DXPS active site
and effectively reports on DXPS activity. Additionally, the observed
potent competition by 9 supports the use of ABP 1 as a tool for inhibitor
discovery and suggests the bisubstrate scaffold as a promising starting
point for second-generation ABPs for DXPS.

Weak labeling and inhibition of ThDP-dependent pyruvate
dehydrogenase by 1 was observed, consistent with our finding
that increasing alkyl chain length beyond four carbons modestly
increases alkylAP potency against PDH (Sanders et al., 2017). In
contrast, 1 did not efficiently label or inhibit the related pyruvate
decarboxylase or other mechanistically unrelated enzymes. This
suggested some level of specificity of ABP 1 for DXPS, which is
expected to help mitigate inefficient DXPS labeling in more complex
environments. Importantly, preliminary evaluation of 1 as a probe of
DXPS activity in a complex proteome showed that DXPS could be
labeled in bacterial lysate from DXPS-overexpressing E. coli, and the
most potent alkylAP (DBGlyTrAP 9) was capable of blocking DXPS
labeling to some extent in this condition. Inhibitor 9 did not fully
outcompete 1 in this condition, despite its 600-fold higher potency
against DXPS relative to 1. This points to non-specific labeling in the
presence of 1 mM 1, which is plausible based on the non-specific
labeling of purified protein observed in the presence of [1] > 31.3 μM
(Supplementary Figure S8). Nevertheless, these results indicate
DXPS is active in this condition and susceptible to inhibition by
9. Further optimization of lysate preparation and ABP
concentration is required to evaluate the ability of 1 to detect
native DXPS activity in complex lysates generated under varying
growth conditions. The altered alkylAP antimicrobial activity
observed in different growth conditions (Sanders et al., 2017,
2018; E. C. Chen and Freel Meyers, 2023) could reflect changes
in inhibitor permeability and access to DXPS. These differences
could also signify remodeling of the metabolic or regulatory
networks controlling DXPS activity and/or DXPS-inhibitor
affinity. Overall, the results of this work represent a promising
step toward using alkylAP-based ABPs to interrogate DXPS
biology and to evaluate new DXPS inhibitors in different contexts.

4 Materials and methods

4.1 General

Chemicals were purchased from Millipore Sigma (Sigma-Aldrich)
and used as received, unless otherwise stated. TAMRA-azide (CCT-
AZ109) was purchased from Vector Laboratories (Click Chemistry
Tools). E. coli DXPS and IspC were overexpressed, purified using an
AKTA-GO fast protein liquid-chromatography (FPLC) system, and
characterized as previously reported (Coco et al., 2024). Bovine
serum album (BSA), glyceraldehyde 3-phosphate (GAPDH, rabbit
muscle), alcohol dehydrogenase (ADH, S. cerevisiae), pyruvate
dehydrogenase (PDH, porcine heart) and pyruvate decarboxylase
(PDC, S. cerevisiae) were purchased from Millipore Sigma (Sigma-
Aldrich). The E. coli BL21 (DE3) cell line harboring the dxs-pET37b
plasmid (Brammer and Meyers, 2009), for inducible DXPS
overexpression, was used in experiments to investigate labeling of
DXPS by 1 in complex lysate. DXPS inhibitors 7–9 were prepared as
previously described (Smith, Vierling, and Meyers, 2012; Sanders et al.,
2017; Coco et al., 2024). A BioTek Epoch 2microplate reader was used at
25°C for aerobic spectrophotometric analyses. A Li-COR Odyssey CLx
was used for imaging Coomassie-stained SDS-PAGE gels. Fluorescent
gels were scanned using an Amersham Typhoon (Cytiva) biomolecular
imager (excitation 554 nm; emission 566 nm). Circular dichroism (CD)
experiments were performed on an Applied Photophysics Chirascan
V100 CD spectrometer (Surrey, United Kingdom). A Spectroline Model
FC-100 lamp with longwave ultraviolet light (365 nm, 180W) was used
for crosslinking studies. Protostain Blue (colloidal Coomassie Blue G-
250) was used to stain proteins in SDS-PAGE analysis.

4.2 Circular dichroism (CD) to detect
PLThDP formation from 1 on DXPS

DXPS (30 μM)was diluted to a final volume of 1.5 mL in enzyme
buffer (1 mMMgCl2, 100 mMNaCl, 200 μMThDP, 50 mMHEPES
pH 8) on ice in a conical tube. Immediately prior to CD experiments,
protein solutions were equilibrated at 25°C for 10 min. Sample was

FIGURE 9
ABP 1 labels active DXPS in bacterial lysate. (A) DXPS labeling by 1 (1 mM) observed in bacterial lysate from DXPS-overexpressing E. coli BL21 (DE3)
cells (induced with IPTG, lane 3). No labeling is observed in the absence of IPTG induction (lanes 1 and 2). Incubation of 9 (1 mM) with lysate from IPTG-
induced cells blocks labeling by 1 to some extent (lane 4). Replicate data as full gel images shown in Supplementary Figure S12. (B)Quantification of in-gel
fluorescence of labeled DXPS in the presence or absence of 9 (1 mM), normalized to Coomassie-stained DXPS, shows a statistically significant
reduction in DXPS labeling by 1 in the present of 9; n = 3, *p < 0.05.
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then transferred from the conical tube to a 1 cm quartz cuvette and a
CD scan was recorded at 25°C from 280–400 nm with a 2 nm step
and 0.5 s averaging time. ABP 1was added to a final concentration of
50 μM (3 μL of 25 mM stock), the cuvette was inverted gently
3 times to mix, and a second CD scan was recorded on the
mixture at 25°C using the same parameters as the initial scan.
Experiments were performed in duplicate.

4.3 Determination of Ki of 1 with wild-
type DXPS

The DXPS-IspC coupled assay (Coco et al., 2024) was used to
measure the rate of DXPS-catalyzed DXP formation in the presence
or absence of 1. DXPS (100 nM) and IspC (2 μM) were pre-
incubated with 1 (0–100 μM) in buffer (2 mM MgCl2, 5 mM
NaCl, 1 mM ThDP, 100 mM HEPES pH 8, 200 μM NADPH) at
25°C for 10 min. Enzyme reactions were initiated by the addition of
substrates (50 μM pyruvate and 500 μM D-GAP). The change in
absorbance of NADPH at 340 nm was monitored at 25°C and used
to calculate the initial velocity of DXP formation. Initial velocities
were plotted as a function of [1]. Data were fit to the Morrison
equation (Morrison, 1969) (Eq. 1) to calculate Ki. Non-linear
regression analysis was performed using GraphPad Prism version
10. Error bars represent standard deviation. Standard deviation was
calculated from three replicate Ki determinations (Ki ± SD).

vi
v0

� 1 − E[ ]T + I[ ]T + Ki( ) − ��������������������������
E[ ]T + I[ ]T + Ki( )2 − 4 E[ ]T I[ ]T

√
2 E[ ]T

(1)

4.4 General protocol for DXPS labeling by 1

ABP 1 was incubated with purified protein (3 μM) in buffer
(2 mMMgCl2, 5 mMNaCl, 1 mMThDP, 100 mMHEPES pH 8) for
10 min on ice. The solutions were then irradiated (365 nm, 180 W)
for 3 min in a cold room (4°C). The mixture (10 μL) was subjected to
denaturing conditions by addition to 10% sodium dodecyl-sulfate
(SDS, 10 μL) following by vortexing and heating (5 min at 95°C).
Solutions were cooled to ambient temperature, and a 7.5× CuAAC
reaction stock (4 μL, prepared immediately prior to addition) was
added to achieve final concentrations of 1 mM tris ((1-benzyl-4-
triazolyl)methyl)amine (TBTA), 10 mM CuSO4, and 10 mM tris(2-
carboxyethyl)phosphine (TCEP). TAMRA-azide (6 μL of 5 mM
stock in DMSO) was then added to initiate the reaction. The
reaction mixture was incubated for 1 h at ambient temperature,
covered by foil. SDS-PAGE loading dye (10 μL of 4× solution
containing 200 μM Tris-HCl, 400 μM dithiothreitol, 277 mM
SDS, 6 mM bromophenol blue, and 4.3 M glycerol) was added,
the mixture was vortexed, heated (5 min at 95°C), and a 15 μL
aliquot was analyzed by SDS-PAGE (10% acrylamide). Gels were
first scanned to detect in-gel fluorescence and then stained with
Protostain blue (colloidal Coomassie Blue G-250) to visualize total
protein. Gel images were generated and quantified using ImageJ. For
experiments in which labeled enzyme was quantified, pixel densities
of fluorescently labeled protein were determined using

ImageJ. Briefly, the HiLo threshold command in ImageJ was
employed, and contrast was adjusted such that no part of the
image exceeded the maximum threshold. Vertical rectangular
boxes were drawn to encompass each protein band, and pixel
density across the band within the box was plotted. Pixel density
was determined by integrating the plotted signal. Fluorescently
labeled protein was then normalized to Coomassie-stained
protein (Eq. 2).

Normalized f luorescence � pixel densityTAMRAgel band

pixel densityCoomassie gel band

(2)

4.4.1 Labeling control experiments
The general protocol for labeling by 1 was employed with minor

adjustments. All samples contained 200 μM 1, with the exception of
the (−) probe control. All samples were subjected to UV irradiation
with the exception of the (−) UV control reaction which was
protected from light under foil. All samples contained Cu (I)
(from CuSO4 under reducing conditions), with the exception of
the (−) Cu (I) control for the attachment of the TAMRA-azide. The
positive control contained all components and was carried through
all steps. Experiments were performed in triplicate.

4.4.2 Dose-dependent labeling of DXPS by 1
The general protocol for labeling by 1 was employed. DXPS was

maintained at 3 μM in buffer (2 mM MgCl2, 5 mM NaCl, 1 mM
ThDP, 100 mM HEPES pH 8). The DXPS-containing solution
(90 μL) was mixed with 1 (10 μL of 10× solutions to achieve final
concentrations of 1 between 0–31.3 μM). Mixtures were incubated
for 10 min on ice prior to irradiation. Experiments were performed
in triplicate and pixel density of fluorescently labeled protein was
quantified by ImageJ and normalized to Coomassie-stained DXPS as
described above.

4.4.3 Labeling of wild-type DXPS, heat-inactivated,
and E370A DXPS

The general protocol for labeling by 1 was employed. To
denature wild-type DXPS, a 50 μL of DXPS (113 μM stock) was
vortexed for 20 min at ambient temperature, followed by incubation
at 75°C for 30 min, after which insoluble aggregate was visible.
Denatured DXPS was then diluted 2-fold with 10% SDS to solubilize
the aggregate, and left overnight at ambient temperature. E370A
generated by previously reported methods was found to retain only
0.12% DXP forming activity relative to wild-type DXPS (Brammer,
2013; Querol-Audí et al., 2014). Labeling experiments were
conducted as described above. The EcE370A variant and
denatured wild-type DXPS were subjected to labeling by 1 at
varying concentrations (0–125 μM) as described above and
compared to the dose-dependent labeling of wild-type DXPS
above. Labeling of E370A and denatured wild-type DXPS were
conducted in duplicate. Pixel density of fluorescently labeled
protein was quantified by ImageJ and normalized to Coomassie-
stained DXPS as described above.

4.4.4 Competition with alkylAPs
AlkylAP inhibitor (10 μL of 10× solution of 7, 8 or 9) was added

to a solution of DXPS in buffer (80 μL, 2 mM MgCl2, 5 mM NaCl,
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1 mM ThDP, 100 mM HEPES pH 8) to achieve final concentrations
of 0, 0.3, 3, and 30 μM inhibitor. The mixture was incubated for
10 min at ambient temperature. Then, the general protocol for
labeling by 1 was employed. Briefly, 1 (10 μL of 10× solution)
was added to the DXPS-inhibitor mixture to a final
concentration of 50 μM, and the mixture was incubated for an
additional 10 min at ambient temperature, under foil. Samples were
then irradiated (365 nm, 3 min, 4°C) and analyzed by SDS-PAGE as
described in the general protocol for labeling 1 above. Experiments
were performed in triplicate and pixel density of fluorescently
labeled protein was quantified by ImageJ and normalized to
Coomassie-stained DXPS as described above.

4.4.5 Labeling of PDH and PDC by 1
The general protocol for labeling by 1 was employed with the

following adjustments. PDH (porcine heart, 3 μM) was subjected to
labeling by 1 (0–31.3 μM) in buffer containing 2 mM MgCl2, 1 mM
ThDP, 0.3 mM TCEP, and 100 mM HEPES pH 8. PDC (S.
cerevisiae, 3 μM) was subjected to labeling by 1 (0–31.3 μM) in
buffer containing 100 mM 2-(N-morpholino)ethanesulfonic acid
(MES) pH 6, 2 mM MgCl2, and 1 mM ThDP. Experiments were
performed in triplicate and pixel density of fluorescently labeled
protein was quantified by ImageJ and normalized to Coomassie-
stained DXPS as described above.

4.4.6 Labeling of BSA, GAPDH, ADH and IspC by 1
The general protocol for labeling by 1 was employed with the

following adjustments. Proteins were subjected to labeling by 1
over the concentration range 0–31.3 μM. Labeling of BSA was
conducted in buffer containing 2 mM MgCl2, 5 mM NaCl, 1 mM
ThDP, and 100 mM HEPES pH 8. Labeling of GAPDH was
conducted in buffer containing 1 mM MgCl2, 100 mM NaCl,
and 30 mM GlyGly pH 8. Labeling of ADH was conducted in
buffer containing 2 mMMgCl2, 100 mM NaCl, 1 mM ThDP, and
100 mM HEPES pH 8. Labeling of IspC was conducted in buffer
containing 2 mM MgCl2 and 100 mM HEPES pH 8. Experiments
were performed in duplicate. Pixel density of fluorescently
labeled protein was quantified by ImageJ and normalized to
Coomassie-stained DXPS as described above.

4.5 Determination of inhibitory activity of 1
against PDH and PDC

PDH (0.01 U/mL) was preincubated with 1 (0–1,000 μM) for
10 min at 25°C in buffer containing 100 mM HEPES pH 8, 2 mM
MgCl2, 5 mM L-cysteine, 1 mM ThDP, 0.3 mM TCEP, 2.5 mM
NAD+, and 100 μM Coenzyme A. The enzyme reaction was
initiated by addition of pyruvate (60 μM) at 25°C. Initial velocity
was determined by measuring NADH formation at 340 nm, and
normalized to initial velocity in the absence of 1 to calculate %
activity which was plotted as a function of [1] using GraphPad
Prism. Error bars represent standard deviation of the fit from three
replicates.

Inhibitory activity of 1 against PDCwas determined as described
above with the following modifications. PDC (0.05 U/mL) activity
was assayed in buffer containing 100 mM 2-(N-morpholino)
ethanesulfonic acid (MES) pH 6, 5 mM MgCl2, 5 mM ThDP,

0.17 mM NADH, and 16 U/mL alcohol dehydrogenase as the
coupling enzyme to detect formation of acetaldehyde product.
The enzyme reaction was initiated by the addition of pyruvate
(1 mM). Initial velocity was determined by measuring NADH
depletion at 340 nm.

4.6 Detection of DXPS in complex
bacterial lysate

4.6.1 Preparation of lysate from DXPS-
overexpressing BL21 (DE3) E. coli

Sterile lysogeny broth (LB) (3 mL containing 50 μg/mL
kanamycin) was inoculated with BL21 (DE3) E. coli harboring
the DXPS-overexpression plasmid dxs-pET37b, from a glycerol
stock. The culture was incubated overnight at 37°C with shaking.
The saturated overnight culture (300 μL) was added to two
separate culture tubes each containing fresh LB broth (20 mL
containing 50 μg/mL kanamycin) and the resulting culture was
incubated at 37°C with shaking until an OD600 of ~0.7 was
reached. To one culture, isopropyl β-D-1-thiogalactopyranoside
(98.5 μM IPTG, 2 μL of 1 M stock in water) was added to induce
DXPS expression (induced). To the second culture, water (2 μL) was
added (uninduced). Both cultures were incubated with shaking for an
additional 4 h at 37°C, then centrifuged at 4,000 × g for 10 min at 4°C.
The culture medium was decanted, and the remaining cell pellet was
stored at −80°C overnight. The following day, the pellet was thawed
and washed to remove remaining LBmedium by resuspension in 5 mL
lysis buffer containing 400 mM NaCl, 50 mM Tris pH 8, 20 mM
MgCl2, 10% v/v glycerol, 1 mM phenylmethylsulfonyl fluoride
(PMSF), 6 μL/40 mL DNase, and 1× protease inhibitor cocktail
(PIC, Millipore Sigma P8849); resulting suspensions were
centrifuged (4,000 × g, 10 min at 4°C), and the supernatant was
decanted. The resulting cell pellet was resuspended in 2 mL lysis
buffer. Cells were lysed by sonication and the resulting crude lysate
was centrifuged to remove insoluble material (4,000 × g at 4°C). The
supernatant was collected and used for labeling experiments. Bacterial
lysate was prepared by this protocol in triplicate, from 3 separate
cultures grown from the glycerol stock of E. coli BL21 (DE3) cells
harboring dxs-pET37b.

4.6.2 Labeling of DXPS by 1 in lysate
Lysate (80 μL) from IPTG-induced or uninduced cells, prepared

as described above, was transferred to a 96-well plate (2 wells
containing lysate from induced cells, and 2 wells containing lysate
from uninduced cells). Water (10 μL) or 9 (10 μL of 10 mM stock in
water) was added to lysate, and the mixtures were incubated for
20 min at 25°C. ABP 1 (10 μL of a 10 mM stock in water) was then
added (both 9 and 1 present at a final concentration of 1 mM), and the
mixture was incubated for an additional 20 min at 25°C, under foil.
Mixtures were irradiated (365 nm) for 3 min at 4°C. An aliquot of the
crosslinked mixture (10 μL) was added to 10% SDS (10 μL). Samples
were vortexed and heated (5 min at 95°C). A 7.5× CuAAC reaction
stock (1 mMTBTA, 10 mMCuSO4, and 10 mMTCEP) was prepared
and 4 μL was added to each sample followed by addition of TAMRA-
azide (6 μL of a 5 mM stock in DMSO). The CuAAC reaction
proceeded for 1 h at ambient temperature under foil. Loading dye
(10 μL of a 4× stock) was added to each CuAAC reactionmixture, and
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15 μL of the resulting mixture was analyzed by SDS-PAGE (10%
acrylamide). Gels were first scanned to detect fluorescent labeling and
then stained with Protostain blue (colloidal Coomassie Blue G-250) to
visualize total protein. Gel images were generated using
ImageJ. Experiments were performed on lysate preparation triplicates.
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Nomenclature

DXPS 1-deoxy-D-xylulose 5-phosphate synthase

ThDP thiamin diphosphate

D-GAP D-glyceraldehyde 3-phosphate

PLP pyridoxal phosphate

MEP methylerythritol phosphate

UPEC uropathogenic E. coli

ABP activity-based probe

LThDP C2α-lactylthiamin diphosphate

AlkylAP alkyl acetylphosphonate

PLThDP phosphonolactylthiamin diphosphate

PDH pyruvate dehydrogenase

PDC pyruvate decarboxylase

CD circular dichroism

AP 4′-aminopyrimidine tautomer of ThDP

IP 1′,4′-iminopyrimidine tautomer of ThDP

IspC 1-deoxy-D-xylulose 5-phosphate reductoisomerase

CuAAC Cu(I)-catalyzed azide-alkyne cycloaddition

BAP butyl acetylphosphonate

MAP methyl acetylphosphonate

DBGlyTrAP dibenzylglycine triazole acetylphosphonate

GAPDH glyceraldehyde 3-phosphate dehydrogenase

ADH alcohol dehydrogenase

BSA bovine serum albumin

IPTG isopropyl β-D-1-thiogalactopyranoside

HEPES 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

NADPH nicotinamide adenine dinucleotide phosphate

TBTA tris ((1-benzyl-4-triazolyl)methyl)amine

TCEP tris (2-carboxyethyl)phosphine

MES 2-(N-morpholino)ethanesulfonic acid

NAD+ nicotinamide adenine dinucleotide

NADH reduced form of NAD+
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