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This study explores an enhancement to a cell-penetrating peptide (CPP), specifically
cyclic deca arginine (cR10), by modifying it with boronic acid to improve the delivery
efficiency of ubiquitin (Ub), an essential protein that plays various roles in cellular
functions. The hypothesis is that adding boronic acid could boost cellular uptake
through glycan-boronic acid interactions. This research assesses how the boronic
acid-modified cR10 compares to TAT, a natural CPP derived from the HIV-1
transactivator of transcription, in delivering Ub into cells. Experiments with U2OS
cells indicated that the boronic acid-linked cR10Ub cargo achieved a fourfold
increase in cellular uptake compared to the TAT-Ub conjugate. The findings from
this study could contribute to developing new approaches for enhancing protein
delivery methods relevant to biomedical research and therapeutic applications.
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Introduction

The plasma membrane plays essential roles in selective permeability, maintaining osmotic
balance, compartmentalization, and facilitating cellular uptake (Dias andNylandsted, 2021). Small
polar molecules, such as ions, amino acids, and sugars, enter cells through specific carriers and
channels found in the membrane. Conversely, larger macromolecules like proteins, DNA, and
RNA generally cannot enter using this method (Deprey et al., 2019). Consequently, various
delivery tools have been devised to improve the cellular uptake of large molecules for essential
research and biomedical uses (Fu et al., 2014). Techniques used include mechanical and electrical
transfection, chemical and biochemicalmethods,membrane fusion using synthetic lipids, peptides
or proteins, dendrimers, adenovirus-associated viral vectors, and lentiviral vectors. Certain
techniques are appropriate for either in vitro or in vivo applications, while others can work
for both. Additionally, these delivery methods may utilize viral or nonviral carrier systems (Wang
et al., 2023). Nonviral systems have advantages over viral ones, including easier assembly, greater
flexibility, lower toxicity, and reduced immunogenicity and insertional risks mutagenesis.

Cell-penetrating peptides (CPPs) have quickly gained popularity in non-viral delivery
methods (Jones and Sayers, 2012). The first CPPs were discovered by two independent research
teams, featuring a protein transduction domain (PTD) derived from the transactivator of
transcription (Tat) linked to HIV-1 (Frankel and Pabo, 1988; Green and Loewenstein, 1988).
This domain, consisting of eleven amino acids (YGRKKRRQRRR), allows TAT and its cargo to
penetrate cellular membranes. Since then, numerous CPPs have been developed from natural,
chimeric, and synthetic sources, typically rich in arginine or lysine, which bestow a positive
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charge or amphipathicity (Reissmann, 2021). Although widely utilized,
the well-known TAT CPP does not always ensure the effective delivery
of the desired protein (LaRochelle et al., 2015). In this context, in
addition to natural CPP like TAT, cyclic deca arginine (cR10) has been
developed to facilitate the delivery of various proteins or other cargos of
interest. The utilization of a CPP alone may not suffice in certain
situations, prompting the evolution of alternative strategies. For
instance, the incorporation of a CPP or a unique peptide co-
incubated with the target protein can enhance direct cellular
transduction or promote endo-lysosomal escape, as elucidated in the
research conducted by the Schneider et al. (2021) and Akishiba et al.
(2017) groups. In an alternative approach, the Brik group modified the
CPP backbone with specialized molecules, such as an additive, which
subsequently enhanced the efficacy of cellular delivery for the protein of
interest (Mandal et al., 2021).

In this regard, the Raines et al and the author demonstrated that
boronic acid, or its derivative, acts as an effective modification, having
been shown to increase the delivery efficacy of CPPs and proteins
(Ghosh, 2024; Ghosh and Seitz, 2025). In this instance, the glycan-
boronic acid interaction plays a critical role in the internalization
process of the CPPs. The advantage of employing boronic acid lies
in its capacity to facilitate the formation of next-generation CPPs, as it is
susceptible to nucleophilic attack, followed by rapid hydrolysis resulting
in alcohol and boric acid. Additionally, boric acid is not genotoxic, and
long-term analyses conducted on mice revealed no significant increase
in tumor formation. According to the U.S. Environmental Protection
Agency, boric acid is characterized by low toxicity, with an oral LD50 of
3,450 mg/kg for male rats and 4,080 mg/kg for female rats. Further
potential properties for the discrete role of this boronic moiety have yet
to be established. This study aims to modify an artificial CPP, such as
cR10, with boronic acid and compare its efficacy in delivering a protein

alongside a natural CPP, like TAT (Ghosh, 2024). This endeavor aims
to yield the following information: (a) the utility of boronic acid as an
additive for protein delivery and (b) the role of natural CPPs in protein
delivery (Mandal and Brik, 2022). Such insights may facilitate the
exploration of new avenues in this field, ultimately contributing to
advancements in the future. In this work, Ubiquitin (Ub) is a protein of
considerable interest, representing a globular structure composed of
76 amino acids and displaying evolutionary conservation across all
eukaryotic organisms. The covalent attachment of Ub to other proteins,
referred to as ubiquitination, constitutes the second most significant
form of post-translational modification (PTM) for proteins, thereby
regulating essential cellular functions. Notably, ubiquitination is a
reversible process; the dysregulation of both ubiquitination and
deubiquitination mechanisms has been implicated in various
diseases, including cancer and neurodegenerative disorders.
Therefore, the efficient delivery of this protein (Ub) is of paramount
importance in elucidating this intricate mechanism of action
in real time.

Results and discussions

A comparative analysis has been undertaken between the
boronic acid CPP) and the well-established Transactivator of
Transcription (TAT) CPP to further substantiate their efficacy.
Previous studies have indicated that the covalent attachment of
the TAT peptide enhances the cellular delivery of various proteins,
including both expressed proteins such as Enhanced Green
Fluorescent Protein (EGFP), β-galactosidase, RNAse-A, along
with synthetic proteins, H2B-associated peptides (Fawell et al.,
1994; Hameed et al., 2018; David et al., 2015). The efficacy of
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boronic acid cyclic deca arginine was compared with its pristine
version (Ghosh, 2024; Ghosh and Seitz, 2025). Consequently, the
disparity persists in the comparison of the efficacy of natural Cell-
Penetrating Peptides (CPPs), such as TAT, with that of cR10B2. This
analysis will furnish a comprehensive perspective on the

effectiveness of boronic acid-based CPPs and broaden their
applicability as delivery vehicles.

The linear TAT peptide (see Table 1) on a Rink amide solid
support was manually prepared, employing the standard Fmoc-
SPPS technique. Two PEG linkers were coupled as [2-[2-(Fmoc-

TABLE 1 The amino acid sequence of the CPPs and protein (Ub).

Peptide/Protein Sequence

CPP: TAT C-Peg-Peg-Y-G-R-K-K-R-R-Q-R-R-R (linear)

CPP: CR10B2

Protein: Ub TAMRA-C-Peg-M→Nle-Q-I-F-V-K-T-L-T-G-K-T-I-T-L-E-V-E-P-S-D-T-I-E- N-V-K-A-K-I-Q-D-K-E-G-I-P-P-D-Q-Q-R-L-I-
F-A-G-K-Q-L-E-D-G-R-T-L-S-D-Y-N-I-Q-K-E-S-T-L-H-L-V-L-R-L-R-G-G

FIGURE 1
Synthetic schemes for CPPs: (A) TAT, (B) cR10B2, conjugates: (C) Ub-TAT, (D) Ub-cR10B2.
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amino)ethoxy]-ethoxy] acetic acid after the TAT peptide sequence
and terminated with Boc-Cys(trt)-OH coupling (Figure 1A). A
subsequent resin cleavage and global deprotection followed by
purification gave a ~30% isolated yield of the Cys-TAT peptide.
The N-terminus Cys residue was added to the sequence to facilitate
the disulfide-linked conjugation with our protein of interest. After
purification, the Cys moiety of the synthesized TAT peptide was
activated via 5,5′-dithiol-bis-[2-nitropyridine], DTNP. The
synthesis of the boronic acid-linked CPP (cR10B2, see Table 1
for the amino acid sequence) was carried out as shown in the

schematic in Figure 1B. Briefly, the synthesis was done manually on
a Rink amide resin using standard Fmoc-SPPS as per the sequence (r
represents D-Arg). To accommodate different functionalities on the
sequence, three orthogonally protected amino acid residues were used:
Fmoc-Lys(Alloc)-OH, Fmoc-Glu(Oallyl)-OH and Fmoc-Lys(Mtt)-
OH. As the sequence was terminated with Boc-Cys(trt)-OH,
Pd(PPh3)4/PhSiH3 mediated Alloc and Oallyl group removal
followed by lactamization with PyAOP, HOBt, DIEA (1:1:2) for
90 min yielded the cyclized peptide on resin. Upon Mtt group
removal with mild TFA/DCM cleavage mixture (2%), the free Lys-

FIGURE 2
Live cell delivery of the probes; (A) Representative images for the delivery of Ub-TAT in live U2OS cells where (i) Hoechst, (ii) TAMRA, (iii) bright field
and TAMRA channels merged; (B) Representative images for the delivery of Ub-cR10B2 in live U2OS cells where (iv) Hoechst, (v) TAMRA, (vi) bright field
and TAMRA channels merged; (C) Quantifying nuclear TAMRA intensity for both probes from the four sets of experiments; (D) Fold change in the
intracellular delivery of Ub-TAT compared to Ub-cR10B2; (E) flow cytometry data with TAMRA fluorescence for untreated cells (red), Ub-TAT
(orange) and Ub-cR10B2 (cyan).
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side chains were coupled with 4-bromomethyl phenylboronic acid.
After that, the resulting peptide was cleaved from the resin, globally
deprotected, and purified in ~13% isolated yield. Like the TAT peptide,
cR10B2 contains an N-terminal Cys for further modifications.

Ubiquitination, is the second most significant post-
translational modification (PTM), regulating essential cellular
functions. Understanding this complex mechanism requires
efficient delivery of Ub. Therefore, fluorescently labelled Ub
(sequence in Table 1) was synthesized manually with an
N-terminal Cys to act as the point of CPP attachment on a
Rink amide resin, which gave the final isolated yield
of TAMRA-C-PEG-Ub ~23% (Ghosh, 2024; Ghosh and
Seitz, 2025).

For preparing Ub-TAT conjugate, DTNP-activated Cys-TAT
was reacted with TAMRA-Cys-PEG-Ub dissolved in guanidinium
phosphate buffer (pH~ 7.2) at 37°C for 5−7 min, which generated
the hetero disulfide-linked fluorescently labelled Ub-TAT
(Figure 1C). For the synthesis of Ub-cR10B2, dithio-bis-[2-
nitrobenzoicacid], DTNB-activated Ub was reacted with
cR10B2 overnight at 37°C to yield the corresponding conjugate
(Figure 1D). The relevant HPLC-MS analysis of CPP-SS-Ub
conjugates is available in the SI section.

With the disulfide-linked Ub-TAT and Ub-cR10B2
synthesized, their efficacy in live cell delivery was assessed
within U2OS cells, an established osteosarcoma cell line
(obtained from ATCC). A cellular uptake analysis of the
probes (Ub-TAT and Ub-cR10B2) was conducted at a
concentration of 2 μM in a serum-free medium, involving
1 hour of co-incubation at 37°C. Initially, U2OS cells were
treated with the probes for 1 hour, followed by washing
exclusively with PBS and a heparan sulfate solution in PBS. As
the CPPs are positively charged, they can reside on the cell
membrane during the co-incubation process, hampering the
analysis. Washing with negatively charged heparan sulfate
helps in releasing any possible membrane-bound peptides.
Subsequently, the cells were rinsed with PBS, culminating in
Hoechst staining to visualize viable cell nuclei. Live cell confocal
laser scanning microscopy (CLSM) was performed on the treated
cells to analyze the delivery outcomes. The CLSM images from
Ub-cR10B2 treated cells showed a homogeneous distribution
throughout the cytosol and extension towards the nucleus. On
the contrary, a negligible delivery was observed for the TAT
peptide, where the Ub-TAT probe exhibited mostly punctuate-
like distribution within the cytosol (most likely trapped inside
endo-lysosomal compartments) (Figures 2A–D). Flow Cytometry
data further confirmed that Ub-cR10B2 interacts more strongly
with cells compared to Ub-TAT (Figure 2E).

After crossing the plasma membrane, small proteins (smaller
than 50–60 kDa) can diffuse freely through the nuclear
compartments (Borlido et al., 2009; Luther et al., 2021). The
nuclear accumulation/localization of the probes was calculated to
explore the efficacy. Notably, the experiment was repeated four
times in independent sets and quantified using a Hoechst
masking algorithm in ImageJ (FiJi) software (~300 cells per
probe). The quantification shows that the fluorescence
intensity for probe Ub-cR10B2 appeared to be four-fold higher
than the Ub-TAT probe, which can be visually attributed to the
film-like delivery of Ub-cR10B2 conjugate inside live cells.

Conclusion

Utilizing CPPs for protein delivery presents significant opportunities
for the targeted delivery of therapeutics directly within cells. Among the
various strategies to enhance the efficacy of CPPs, additive-mediated
pathways emerge as particularly advantageous. The incorporation of a
small molecule into the CPP has the potential to improve efficacy
significantly. In this context, boronic acid is an appealing additive due
to its susceptibility to nucleophilic attack, followed by rapid hydrolysis
resulting in the formation of boric acid, which is non-genotoxic, as
extensive studies in mice revealed no significant tumor development. In
this study, boronic acid-mediated cyclic deca arginine was employed as a
representative of boronic acid-derived CPPs, and its efficacy was evaluated
in comparison to well-established CPPs, such as TAT. Due to its broad
utility within the human body, Ubiquitin was selected as the target protein
of interest for delivery. The delivery efficacy of the Ub-cR10B2 conjugate
was observed to be four times greater than that of the Ub-TAT conjugate,
as demonstrated by confocal microscopy analysis corroborated by flow
cytometry at lowmicromolar concentrations (specifically, 2 µMof the final
protein-CPP conjugate). These findings underscore the potential of boron-
based CPPs as a promising class for further exploration into the
mechanistic insights surrounding therapeutic proteins in target cells.
Future investigations will focus on utilizing various proteins and new
classes of CPPs derived from boronic acid or its derivatives.
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