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Introduction

The rapid development of experimental structural biology

Knowledge of the three-dimensional (3D) structure of biological macromolecules
(proteins, nucleic acids, and complex macromolecular assemblies) is essential to
understand their function and therefore the metabolic process to which they belong.
Moreover, the structural information of protein targets involved in physio-pathological
processes can be used for structure-based drug design.

Since the first protein structure was determined (the structure of Myoglobin in 1958)
(Kendrew et al., 1958) to date more than 237,317 structures of biological macromolecules
have been deposited in the Protein Data Bank (https://www.rcsb.org) solved with different
techniques (194,898 by X-ray crystallography; 14,438 by NMR; 27,021 by Cryo-Electron
Microscopy). Determining the structure of Myoglobin by X-ray crystallography took more
than 20 years and the methodology of the isomorphous replacement method was used to
solve the phase problem. While in the past solving a protein structure involved years of
research, today, once a diffracting protein crystal is obtained, determining the 3D structure
has become an almost automatic process. It can take just a few hours, including data
collection, data indexing, structure solution, and refinement. The rapid expansion of
structural biology during the 1990s was driven by several key technological advances in
X-ray crystallography, which paved the way for numerous biomolecular structure
determinations: the introduction of cryopreservation techniques, which prevented
radiation damage of protein crystals, allowing the collection of complete diffraction
data sets from single crystals; next-generation X-ray sources provided unprecedentedly
bright X-ray beams; modern X-ray detectors replacing the laborious and time-consuming
use of photographic film for recording diffraction patterns; and phasing methods were
significantly improved through the incorporation of seleno-methionine into proteins,
enabling efficient use of anomalous scattering. Finally, the advent of faster computers
accelerated data processing, while advancements in computer graphics and software
streamlined the construction and refinement of atomic models. Such technological
advancements allowed notably the determination of large protein assemblies or the
structural investigations of more complex but pharmacologically relevant membrane
proteins, adding to the long lists of Nobel prizes, those awarded in Chemistry to Venki
Ramakrishnan, Thomas Arthur Steitz and Ada Yonat (Schluenzen et al., 2000; Ban et al.,
2000; Wimberly et al., 2000); and Robert Lefkowitz and Brian Kobilka (Rasmussen et al.,
2011) respectively for the structure of the ribosome in 2009 and of G protein-coupled
receptors in 2012.
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Meanwhile, the use of NMR to determine the protein structure
allowed the determination of the protein dynamics in solution
(Wüthrich, 2003), athough its application is still limited by
protein size, typically to proteins below 20 kDa. Nevertheless,
NMR allows structural analysis under conditions more similar to
the cellular environment. It is worth noting, however, that the
protein crystals used for X-ray crystallography also contain
between 30% and 80% water.

Starting in 1990 thanks to the so called “resolution revolution”
performed by the technical innovation introduced by Jacques
Dubochet, Joachim Frank and Richard Henderson, who won the
Nobel Prize in Chemistry 2017, electron microscopy become a
technique on par with X-ray crystallography to solve the
structure of protein with a molecular mass higher than 100 kDa
(Egelman, 2016) As of now 27,021 structures determined by Cryo-
EM are available in the protein data bank.

Recently, structural biology has increasingly focused on
membrane proteins, which are crucial for understanding complex
metabolic processes. Despite their importance, their structural
characterization has been limited by challenges in stabilization
and crystallization. While crystallization techniques like Lipidic
Cubic Phase (LCP) have helped overcome some barriers (Landau
and Rosenbusch, 1996), it is primarily cryo-electron microscopy
(Cryo-EM) that has enabled the recent surge in solved membrane
protein structures in the Protein Data Bank.

Conventional structural and chemical biology approaches are
applied to macromolecules extrapolated from their native context.
When this is done, important structural and functional features of
macromolecules, which depend on their native network of
interactions within the cell, may be lost. To overcome this
limitation, in-cell nuclear magnetic resonance (in-cell NMR) has
been used since the early 2000s to analyze macromolecules in living
cells at atomic resolution (Luchinat and Banci, 2016).

The AlphaFold revolution

Our era is particularly stimulating for the field of structural
study of biological macromolecules and their interactions with
molecular partners. The competition between various structural
prediction methods is shown in the 13th and 14th editions of
Critical Assessment of Structure Prediction (CASP 13 and 14)
(Kryshtafovych et al., 2019; Alexander et al., 2021), which
witnessed the extraordinary success of the artificial intelligence
programs AlphaFold and AlphaFold2 (Jumper et al., 2021) into
the protein structure prediction field, and was rewarded by a Nobel
Prize in Chemistry in 2024 to David Baker, Demis Hassabis and
John Jumper. This program, based on machine learning, can predict
with a high degree of accuracy the 3D structure of a biological
macromolecule. Thanks to this program, more than 214 million
protein structures have been predicted (Varadi et al., 2024) giving to
the biologists the unique opportunity to investigate at the molecular
level the metabolic pathways of different organisms.

However, it must never be forgotten that AlphaFold still
provides a prediction, even if an accurate one, of the protein
structure, the model may contain regions predicted with low
confidence or poor accuracy, and it has been proposed that by
implicitly including experimental information on the protein

target, such as a density map, the protein model would
additionally improve (Terwilliger et al., 2022). Moreover, the
currently available experimentally determined structures of
complexes among biological macromolecules or between protein
targets and their ligands, are not numerous enough to allow even
the most advanced artificial intelligence methods to accurately
predict the interactions between macromolecule and their
interactors.

New challenges of structural biology

The integrating structural biology to disclose
cell function

Looking forward, the synergy between experimental and
computational approaches is expected to greatly expand the
structural knowledge of biological systems and their interactions.
There’s a growing awareness that the most meaningful
understanding of molecular machines emerges when they are
examined within the context of intact cells, where their functions
can be observed in a native, complex environment. Reaching this
goal will depend on an integrative structural biology strategy, one
that not only refines and diversifies structural datasets to support
more accurate predictions, but also brings together information
from complementary methods.

The further development of cryo-electron tomography will
make it possible to obtain the structure of proteins within the cell.

Another challenge lies in understanding the function of
intrinsically disordered regions of proteins, which make up
30%-40% of the proteome in eukaryotes and are often critically
important for cellular metabolism (such as cell division, DNA
transcription, translation, and signaling) (Holehouse and
Kragelund, 2024). The fact that these regions can adopt different
structures upon binding to different partners, and can undergo rapid
conformational changes, makes it necessary to introduce the
variable of time in order to study the structure–function
relationship in these proteins. Integrative structural biology, time-
resolved experimental techniques, molecular dynamics and deep
learning-based approaches, such as AlphaFold2, will be of
fundamental importance in this field.

Structure-based drug design

In the early 1990s, the first drugs designed using structure-based
drug design (SBDD) entered the market. One example of these
successes is indinavir, an HIV protease inhibitor (Dorsey et al.,
1994). Today, structural biology is widely used in pharmaceutical
chemistry to design new lead compounds. High-throughput
screening on protein targets, as well as virtual screening, make it
possible to identify hit compounds that can then be optimized
through the resolution of the protein–inhibitor complex
structure. The growing number of protein–ligand/inhibitor
complex structures in the Protein Data Bank will enable the
application of artificial intelligence and machine learning to
better predict interactions between small molecules and biological
macromolecules.
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Moreover, the development of new and more sophisticated
techniques as the fragment screening at the synchrotron light
radiation facilities allowed the identification of sub-pocket in the
catalytic cavity of the protein target that can be exploited to
synthetize more efficient, more specific and less toxic
lead compounds.

Conclusion and perspectives

In recent years, structural biology has demonstrated an
increasingly direct impact on society, not only through the
development of innovative drugs and more targeted therapeutic
approaches, but also within the broader context of the United
Nations Sustainable Development Goals (SDGs). The ability to
predict and model protein structures, enhanced by the use of
artificial intelligence algorithms such as AlphaFold, has enabled
more effective responses to global health challenges. These advances
contribute tangibly to achieving Goal 3 (Good Health and Well-
being), by facilitating the discovery of new therapies for complex and
rare diseases, and Goal 9 (Industry, Innovation and Infrastructure),
by fostering collaborations between research centers, universities,
and the pharmaceutical industry. Moreover, the integration of omics
approaches, such as proteomics and metabolomics and chemical
biology enables a deeper understanding of biomolecular networks,
paving the way for personalized medicine based on the identification
of specific targets and the selection of optimized treatments for each
patient. This multidisciplinary and integrated approach, in addition
to strengthening the link between basic research and clinical
applications, contributes to promoting a more equitable and
sustainable global health.

Together, these advances highlight a future where structural
biology, empowered by technological innovation and
multidisciplinary collaboration, will continue to bridge the gap
between fundamental molecular understanding and real-world
applications, contributing not only to scientific progress, but also
to a healthier, more sustainable, and more equitable world.

In this dynamic and rapidly evolving landscape, the Theoretical
Modelling, Structure, Prediction & Design section of Frontiers in
Chemical Biology aims to serve as a multidisciplinary platform for
advancing our understanding of macromolecular
structure–function relationships. The section will welcome
original research articles and comprehensive reviews that
contribute to both foundational and applied aspects of structural
and computational biology, with a particular focus on the chemical
dimensions of these investigations.

The scope includes, but is not limited to, experimental and
theoretical studies on molecular structures, folding mechanisms,
protein and nucleic acid design, evolutionary pathways, and
biomolecular interactions. A central emphasis will be placed on
structure-based drug design, encompassing both small-molecule
discovery and the development of innovative strategies for
modulating biological targets.

The integration of structural data with computational modeling,
machine learning, and time-resolved experimental techniques offers
unprecedented opportunities to explore biomolecular complexity at
multiple scales. As structural databases expand and methodologies

become more sophisticated, we foresee a future where predictive
modeling will not only complement experimental approaches but
will also guide hypothesis generation, drug development, and
functional annotation of unknown proteins.

By fostering interdisciplinary collaboration among
chemists, biologists, physicists, and computational scientists,
this section aspires to contribute to the next generation of
discoveries in chemical biology, where structure truly meets
function, and where molecular insight translates into
therapeutic innovation.
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