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The development of novel diagnostic, theranostic, and therapeutic agents
drastically improved human health, human lifespan, and quality of life. In
2024, 15 of the 50 (30%) new drugs approved by the Food and Drug
Administration (FDA) were developed for the treatment of cancer. Despite
encouraging examples of platinum-based anticancer drugs and many metal-
based diagnostic agents for cancer, only a fewmetal-based drugs have translated
to clinical success. Therapeutic drugs share many properties with diagnostic and
theranostic agents, such as distribution and uptake, but differ in one key aspect:
stability. Stability is key to the action of the potential drug and impact excretion
and metabolism, and these properties illustrate the differences between
diagnostic and therapeutic agents. That is, diagnostics are inherently stable
and not metabolized whereas therapeutics are commonly administered as
pro-drugs where metabolism is a common and often important aspect of
their mode of action. In this perspective, we point to a novel administration
strategy, such as intra-tumoral injections, for which highly reactive compounds,
such as metal-based compounds would be desirable as long as the
decomposition products are non-toxic. Investigations into a class of vanadium
compounds for administration in difficult-to-treat cancers, such as
glioblastomas, are briefly described here.
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Introduction

Modern medicine has been increasingly successful in treating diseases and genetic
disorders, producing a range of pharmaceuticals for various conditions. As a result, pre-
clinical studies demonstrating efficacy is no longer sufficient to reflect the clinical success of
a drug (Seyhan, 2019). Modern drug development must consider toxicity and side effects,
formulation, accessibility and increasingly demanding regulations for a drug to translate to
widespread clinical adoption. In this perspective, we aim to highlight the current landscape
and recent advances in state-of-the-art cancer drug development (Ronconi and Sadler,
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2007; Jomova et al., 2024; Sen et al., 2022; Li et al., 2025; Nidhi et al.,
2025; Zahirović et al., 2024; Abdullah et al., 2024; De Sousa-et al.,
2023; Wang et al., 2023; Skos et al., 2024; Scattolin et al., 2025; Crans
and Kostenkova, 2020; Crans, 2015; Zhang and Sadler, 2017;
Gunaydin et al., 2021; Anthony et al., 2020) and diagnostic
agents (Wu et al., 2025; Kim and Nimse, 2025; Rex et al., 2025;
Stasiuk and Long, 2013; Boswell et al., 2004; Janib et al., 2010;
Terreno et al., 2010; Kostelnik and Orvig, 2019;Wahsner et al., 2019;
Caravan et al., 1999; Hancu et al., 2010) with a focus on metal
complexes used as MRI contrast agents (Janib et al., 2010; Terreno
et al., 2010; Wahsner et al., 2019; Caravan et al., 1999; Hancu et al.,
2010; Na et al., 2009; Jeon et al., 2021; Runge, 2017; Fraum et al.,
2017; Ramalho et al., 2016; Chen et al., 2022; Müssig et al., 2021) and
radiopharmaceuticals (Stasiuk and Long, 2013; Boswell et al., 2004;
Kostelnik and Orvig, 2019; Rathmann et al., 2019; Yang et al., 2024;
Zhang et al., 2025; Holland et al., 2009; Duatti, 2021; Crişan et al.,
2022; Kelkar and Reineke, 2011; Gutfilen et al., 2018; Hennrich and
Benešová, 2020; Zboralski et al., 2022; Kraus et al., 2022;
Krasnovskaya et al., 2023; Kelly et al., 2020). Additionally, we
will describe the properties of a few metal-based therapeutics and
compare them to a new class of vanadium-based Schiff base
catecholate complexes that we have been investigating for
potential use for intratumoral administration (Levina et al., 2020;
Levina et al., 2022; Bates et al., 2025). Finally, we will compare
therapeutic and diagnostic drugs with the aim of gaining a deeper
understanding of the desirable properties of successful and
potential drugs.

In 2024, 50 new small molecule, biologic, and oligonucleotide
therapeutics were approved by the Center for Drug Evaluation and
Research in the United States (FDA) (Mullard, 2025). Figure 1 shows

the distribution of novel drug approvals in the United States in 2024,
indicating cancer therapeutics comprise 30% of newly introduced
drugs. Many of the therapeutic areas show a higher number of new
drugs in 2024 than the 5-year average (Mullard, 2025). Beyond small
molecules, the FDA’s Center for Biologics Evaluation and Research
(CBER) added an additional set of cell and gene therapies, vaccines,
and blood products which received approvals. These substances
provide an alternative approach to cancer treatment which are well
tolerated by the immune system and this class of drugs are called
T-cell receptor therapy and Afamitresgene autoleucel is an example
of a cancer related drug approved in spring of 2025 (Mullard, 2025).

Traditionally, small molecule drugs are subject to Lipinski’s rule
of five which were developed using computational analysis of
successful small molecule drugs and drug candidates (Lipinski,
2016). These guidelines include the following criteria: a molecular
weight that is less than 500 Da, a maximum level of hydrophobicity
determined by the octanol-water partition coefficient (logP) less
than 5; and the molecule must contain no more than 5 hydrogen
bond donors, and no more than 10 hydrogen bond acceptors. Other
approaches to characterizing drug properties have been reported
focusing on structural features and frequency of false positive and
negative hits in drug screens (Nelson et al., 2017; Sun et al., 2021).
Metal-based therapeutics rarely adhere to Lipinski’s rules because
the metal-based drugs are generally less stable in vivo than organic
drugs, releasing metal ions, which can potentially create reactive
oxygen species when participating in redox chemistry (Dinda et al.,
2025; Aurelia et al., 2023).

Many diagnostic agents have a metal ion as part of their
chromophore enabling their detection via UV-visible,
fluorescence, phosphorescence, or other types of spectroscopic

FIGURE 1
The United States of America FDA approvals by therapeutic areas in 2024 (Mullard, 2025).
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methods. In vivo metal-based diagnostic agents fall into three
categories: X-ray contrast agents (Yu and Watson, 1999; Lusic
and Grinstaff, 2013), MRI contrast agents (Terreno et al., 2010;
Wahsner et al., 2019; Caravan et al., 1999; Hancu et al., 2010; Na
et al., 2009; Jeon et al., 2021), and radiotracers (Kostelnik and Orvig,
2019; Rathmann et al., 2019; Yang et al., 2024; Zhang et al., 2025;
Holland et al., 2009; Duatti, 2021; Crişan et al., 2022). In 1988, the
first metal-based magnetic resonance imaging (MRI) contrast agent
was approved by the FDA for clinical use, gadolinium-based
contrast agent (GBCA) gadopentetate dimeglumine (Gd-DTPA,
Magnevist, Figure 2) (Caravan et al., 1999). Metal-based
diagnostic agents must be very stable under physiological
conditions to prevent metal leaching and potential cytotoxicity.
Furthermore, a new field has emerged combining a diagnostic
(“nostic”) and therapeutic (“thera”) called theranostics where the
agents both diagnose and treat at the same time (Janib et al., 2010;
Kostelnik and Orvig, 2019; Zhang et al., 2025; Crişan et al., 2022;
Kelkar and Reineke, 2011; Gutfilen et al., 2018).

Therapeutic drug processing and drug
formulation

The pharmacological properties of a drug include its
pharmacodynamic and pharmacokinetic properties. The
pharmacodynamic properties of a drug involve “what a drug
does” to a biological system. The potency of a drug is the
amount (dose) of drug required to produce the intended effect
(intensity/maximum). The efficacy of a drug is its capacity
(intensity/maximum) to produce the effect. It is important to
recognize that the success of a drug requires much more than
high potency (low dose) and favorable efficacy. The
pharmacokinetic properties of a drug are the processes which
take place upon drug administration. Pharmacokinetics is defined
by four critical processes: administration, distribution, metabolism,

and excretion, which is abbreviated ADME. Each of these processes
is important to the success of a drug and can be impacted by the
method of administration and its formulation (delivery vehicle).

There are many different administration methods, and the
specific properties of a particular drug must be considered when
choosing the administration method and delivery vehicle (Wen
et al., 2015). For example, if the drug is administered orally, it
must be able to survive the acidic environment in the stomach. Many
anticancer drugs are administered intravenously so they must be
able to survive circulation and metabolism that can take place in
blood. Drug delivery approaches do not change the fundamental
pharmacodynamic properties of a drug, but they can modify its
pharmacokinetic properties, which can impact its
pharmacodynamic performance (Wen et al., 2015; Duan et al.,
2016). For example, the initial formulation of chemotherapy drug
Vincristine resulted in rapid clearance and was ultimately not
approved by the FDA. However, when encapsulated in
sphingomyelin/cholesterol liposomes, Vincristine’s clearance rate
decreased and resulted in increased efficacy against tumor cells. The
modified formulation was approved by the FDA in 2012 (Silverman
and Deitcher, 2013), and Vincristine is still administered with high
survival rates particularly in protocols with other drugs when
treating various leukemias. At this point, few metal-based
pharmaceuticals make it to the clinic. However, as novel
treatment strategies become more common, the potential benefits
of metal-based pharmaceuticals can outweigh the risks, as
exemplified by the dramatic increase in number of clinical trials
involving intratumoral administration and metal-based drugs
(Levina et al., 2022; Bates et al., 2025).

Metal-based therapeutic drugs

Cis-diamminedichlorido-platinum (II) (cisplatin, Figure 2) has
been used in the clinic for >40 years, far beyond the 20-year original

FIGURE 2
Selected structures of therapeutic anticancer drugs.
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patent lifetime. Platinum (Pt)-based drugs are among the most
frequently used cancer therapeutic agents (Rottenberg et al.,
2020). Pt-based drugs form adducts with DNA, preventing DNA
repair enzymes from removing Pt and preventing mitosis (Kartalou
and Essigmann, 2001). Cisplatin can form monoadducts,
intrastrand, or interstrand cross-links with both single and
double-stranded DNA, although research has demonstrated that
Pt-compounds engage in multiple other mechanisms of action
which result in their antiproliferative properties (Liu et al., 2024;
Manioudakis et al., 2019). The 1,2-intrastrand crosslinks with DNA
double helices are particularly devastating for cells (Kartalou and
Essigmann, 2001), but other mechanisms also cause multiple side
effects such as vomiting, nephrotoxicity, and neurotoxicity in
patients (Liu et al., 2024; Manioudakis et al., 2019). However,
newer Pt-drugs, such as cis-[(1R,2R)-1,2-cyclohexanediamine-
N,N’][oxalato (2-)-O,O’] platinum (oxaliplatin, Figure 2), have
been developed with increased solubility, improved efficacy, and
decreased toxicity compared to cisplatin and both drugs are still used
in the clinic. Co-administering cisplatin with lipids reduces its
toxicity, and many novel formulations of Pt-drugs are currently
being investigated in clinical trials (Duan et al., 2016; Doucette
et al., 2016).

Many metal compounds are effective antiproliferative agents
and excellent reviews have been written on this topic including
coordination complexes with ruthenium, gold, copper, iridium and
osmium (Wang et al., 2023; Skos et al., 2024; Scattolin et al., 2025;
Anthony et al., 2020; Kozieł et al., 2024), a few representative
compounds are shown in Figure 2. Metal ions such as rhodium,
rhenium, cobalt, manganese, and vanadium have also been explored
and selected vanadium complexes are also shown in Figure 2. We
refer the readers to reviews for additional details on these classes of
drugs (Ronconi and Sadler, 2007; Jomova et al., 2024; Sen et al., 2022;
Li et al., 2025; Nidhi et al., 2025; Zahirović et al., 2024; Abdullah
et al., 2024; De Sousa-et al., 2023; Crans and Kostenkova, 2020;
Crans, 2015; Zhang and Sadler, 2017; Anthony et al., 2020;
Rottenberg et al., 2020; Thota et al., 2018). Suffice to say that two
Ru-compounds (KP1019 and TLD1433), shown in Figure 2, are
currently in clinical trials (Thota et al., 2018). Both these drugs have
activity against Pt-resistant cells and act through a different
mechanism than Pt-drugs. In addition, Au-complexes such as
Auranofin (Celegato et al., 2015), and other metal-based
complexes including Ir-ptb-Bpa (Wang et al., 2023) are being
investigated in pre-clinical studies (Figure 2). The success of
these compounds supports the current and continued future
interest in metal-based anticancer drugs. In the following sections
we will describe diagnostic and theranostic agents and conclude this
perspective with potential therapeutic vanadium anticancer agents
designed for intratumoral injections.

Metal-based diagnostics

Metal complexes have been important tools in the diagnosis of
disease for over a century. Metal-based diagnostics share many
similarities with therapeutics in that they are designed for imaging a
particular target tissue, have sufficient biological half-life, be
minimally disruptive to biological processes, show low toxicity,
and be excreted or metabolized after imaging is complete.

However, there is one major difference from the therapeutics,
particularly with metal-based MRI contrast agents and
radiopharmaceuticals, they are typically designed to NOT be
metabolized. The structures for selected MRI contrast agents and
radiopharmaceuticals are shown in Figure 3.

Magnetic Resonance Imaging (MRI)
Contrast Agents

Today, about 40% of all MRI scans utilize Gadolinium-based
Contrast Agents (GBCA) and they remain one of the most
successful examples of inorganic drugs, particularly for detecting
cancer (Wahsner et al., 2019). While other lanthanides have larger
magnetic moments, Gd3+ has the maximum number of unpaired
electrons (f7) of any stable ion, making it ideal for use as a
paramagnetic MRI contrast agent. Coordinated water ligands must
be able to rapidly exchange with the cellular environment to shorten
T1 relaxation time, providing contrast. As such, there has been some
effort made to increase the number of water ligands coordinated to Gd
(increasing contrast), but there is significant cost associated with the
stability of the complex (Wahsner et al., 2019), another important factor
for the success of a GBCA MRI contrast agent.

GBCAs typically belong to two general classes depending on
whether they contain linear or macrocyclic ligands. Macrocyclic
ligands form significantly more stable metal complexes than the
linear complexes as evidenced from the leakage that the latter
complexes exhibited in retrospective studies (Grobner, 2006).
Additional studies have reported that linear and neutral
complexes are less stable under physiological conditions
compared to macrocyclic and ionic complexes (Runge, 2017;
Fraum et al., 2017). These studies showed that repeated
administration of linear GBCAs such as Gd-DTPA led to Gd(III)
deposition in the central nervous system (CNS). Gd(III) deposition
is associated with nephrogenic systemic fibrosis (NSF), particularly
in patients with renal impairment (Ramalho et al., 2016). This
discovery has led to macrocyclic GBCAs largely supplanting their
linear counterparts in the clinic.

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) and
their manganese-based counterparts are composed of a metal
oxide core surrounded by a biocompatible surface polymer.
While superparamagnetism can lead to a decrease in both T1 and
T2 relaxation times, SPIONs have primarily been used as T2 contrast
agents (Chen et al., 2022). In SPIONs, smaller core size increases
specific surface area, allowing for increased interactions with water
protons, increasing longitudinal relaxivity (r1) while decreasing
magnetization and transverse relaxivity (r2). Larger r1 values and
a smaller r2/r1 ratio results in a better T1 contrast agent (Chen et al.,
2022). Careful balancing of core size, polymer coating,
hydrodynamic diameter, and several other factors (Jeon et al.,
2021) could produce an ultrasmall SPION (<5 nm) that could
compete commercially with GBCAs used for T1 contrast or even
produce a switchable T1/T2 contrast agent through reversible
agglomeration (Chen et al., 2022; Müssig et al., 2021). While
SPIONs have primarily been investigated as diagnostics and iron
replacement therapeutics, there is significant interest in their
development as theranostic agents for cancer therapy, exploiting
a variety of cell death mechanisms (Vangijzegem et al., 2023).
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Positron Emission Tomography (PET) and
Single-Photon Emission Computed
Tomography (SPECT) Diagnostics

The general radiotracer 18FDG (fluorodeoxyglucose) is the most
prevalent agent used in PET due to increased glucose metabolism in
the tumor microenvironment. More specialized, targeted 68Ga
tracers are the leading application of radiometals in PET
(Kostelnik and Orvig, 2019). SPECT requires a γ-emitting
radionuclide while PET requires a β+-emitting (positron)
radionuclide. It is generally accepted PET provides better spatial
resolution and sensitivity than SPECT, but utilization of 99mTc in
SPECT still surpasses all PET radiotracers for the detection of cancer
(Duatti, 2021). This can primarily be attributed to comparatively low
costs associated with SPECT, an abundance of FDA-approved
radiopharmaceuticals targeting a large variety of biological
systems, and the accessibility of 99mTc radionuclide production
due to convenient 99Mo/99mTc generators (Rathmann et al.,
2019). Choice of radionuclide is extremely important for the
success of a radiopharmaceutical. Without accessible and
affordable cyclotron targets or generators for a radionuclide, a
radiopharmaceutical does not have a chance at widespread
clinical adoption.

99mTc is a nearly perfect radionuclide for nuclear medicine. It is a
γ-emitter with a moderate half-life (t1/2 = 6 h) with the potential to
be produced off-site. Many 99mTc radiopharmaceuticals are available
in convenient freeze-dried formulation kits which reduce the
production burden for administration of Technetium-based
radiopharmaceuticals. Success of 68Ga-based radiopharmaceuticals
in the diagnosis of neuroendocrine tumors (NETs) and prostate
tumors has renewed interest in the use of 99mTc for similar
applications (Duatti, 2021; Crişan et al., 2022). When factoring in
recent advancements in SPECT technology (Duatti, 2021), 99mTc still
has a key role to play in nuclear medicine.

68Ga is a β+-emitter with a relatively short half-life (t1/2 =
68 min). The widespread use of 68Ga is largely attributed to
accessibility of 68Ge/68Ga generators and the success of the first
68Ga radiotracers 68Ga-DOTA-TATE and 68Ga-DOTA-TOC
(Figure 3) (Hennrich and Benešová, 2020). Like GBCAs, most
radiometals necessitate the use of chelators, particularly
macrocyclic chelators like DOTA, to maintain required biological
stability. 68Ga-DOTA-TATE and 68Ga-DOTA-TOC are peptide-
based somatostatin analogs and bind to somatostatin receptors
which are highly expressed in NETs. Prostate-specific membrane
antigen (PSMA) is expressed on the surface of prostate tumors and
68Ga-PSMA-11 is one of the most successful PSMA imaging agents
(Kostelnik and Orvig, 2019). The small molecule drug 68Ga-FAPI
(and its derivatives) and the macrocyclic analogue, 68Ga-FAP-
2286 are peptide-based radiotracers targeting fibroblast activation
protein-α (FAP), which is upregulated in the tumor
microenvironment. FAPI and FAP-2286 are promising
radioligands due to selective expression of FAP in healthy cells.
Additionally, FAPI and FAP-2286 radiotracers outperformed 18FDG
in some pre-clinical studies (Zboralski et al., 2022). 68Ga-DOTA-
CPCR4-2 (Pentixafor) is a peptide-based radiotracer targeting
C-X-C chemokine receptor 4 (CXCR4) which is overexpressed in
more than 30 different types of cancer and can be particularly
effective for diagnosing various types of blood cancer (Kraus et al.,
2022). Though these (FAPI, FAP-2286, and Pentixafor)
radiopharmaceuticals are not approved by the FDA, they remain
promising and active research areas (Zhang et al., 2025).

64Cu-DOTA-TATE is one of only two copper radiotracers
currently approved by the FDA. Studies have shown that 64Cu-
DOTA-TATE enables detection of more cancerous lesions
(Krasnovskaya et al., 2023) than 68Ga-DOTA-TOC and 64Cu has
a significantly longer half-life (t1/2 = 12.7 h) compared to 68Ga. 64Cu
radiotracers can be better options for hospitals that do not have
cyclotron production facilities and/or transport of radionuclides is

FIGURE 3
Selected structures of Gadolinium-based MRI contrast agents, a technetium (Tc) radiopharmaceutical and a Cu-radiotheranostic agent.
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necessary (Holland et al., 2009), particularly if a hospital is not
located in a major city with third party radionuclide production
facilities. Additionally, 64Cu as a radionuclide is appealing for
radioimmunodiagnostic applications because the
pharmacokinetics tend to be slower (Yang et al., 2024).

89Zr is a kinetically inert isotope with a long half-life (t1/2 =
78.4 h) and has primarily been used as a radiotracer upon
conjugation with monoclonal antibodies (mAbs). Trastuzumab
was the first FDA-approved companion drug mAb to utilize 89Zr.
89Zr-trastuzumab targets human epidermal growth factor
receptor 2 (HER2) which is upregulated in some tumors,
particularly breast cancer (Zhang et al., 2025). 89Zr-based mAb
radiotracers have also been used to target cluster of
differentiation proteins 3, 4, 8, 20, and 30 to diagnose a wide
variety of cancers (Zhang et al., 2025). Differentiation proteins
are specific for different types of cells, allowing for the design of
versatile mAb radiopharmaceuticals. Application of mAb PET
radiopharmaceuticals is one of the fastest growing areas in both
radiodiagnostics and radiotherapeutics.

Radiotheranostics

Radiotheranostics is a field in which a radiodiagnostic is
combined with a radiotherapeutic. While 90Y has been used
extensively in radioconjugates with mAbs, 177Lu to-date is the
overwhelmingly preferred radiometal for targeted radiotherapy,
particularly in terms of pre-clinical studies. 177Lu is a β—-emitter
with a long half-life (t1/2 = 6.7 days). 177Lu-DOTA-TATE has
been approved by the FDA for use in conjunction with
radiotracers such as 68Ga-DOTA-TOC, DOTA-TATE, and
64Cu-DOTA-TATE for the treatment of neuroendocrine
tumors. 177Lu-PSMA-617 was approved by the FDA for use in
conjunction with radiotracers such as 68Ga-PSMA for the
treatment of prostate cancer. Since these approvals, 177Lu-
based therapeutics have exploded in popularity and
therapeutic complements can be found for many of the 68Ga-
based (and 18F) radiotracers currently in development.

Two isotopes of copper, 64Cu and 67Cu, have generated some
interest as radiotheranostic agents. While 64Cu has primarily
been used in PET as a radiotracer, it also emits β- radiation,
enabling theranostic applications (Gutfilen et al., 2018). On
19 February 2025 the FDA approved with a fast-track
designation a new radiotheranostic combo 64/67Cu-SAR-
bisPSMA for the diagnosis and treatment of prostate cancer.
The diagnostic and antineoplastic activity of 64/67Cu-SAR-
bisPSMA is achieved through a sarcophagine (SAR)-based
chelator bound to either 64Cu for the diagnostic or the β--
emitting radioisotope 67Cu which is linked to two PSMA-
binding motifs. Cu(II) complexes can be unstable in vivo with
some chelators, such as DOTA, but forms more stable complexes
with SAR (Kelly et al., 2020). Additionally, 64/67Cu-SAR-bisPSMA
contains two PSMA-motifs which increases affinity for the
receptor. Even though the combination of 64/67Cu provides
many opportunities for the development of versatile
radiotheranostic agents due to a single ligand framework for
both radionuclides, this is only the third copper
radiopharmaceutical approved by the FDA.

Vanadium compounds for use in
intratumoral administration

Intratumoral administration is an example of a currently less
commonly used method for therapeutic administration. This
method avoids circulation of the drug in the blood and any
metabolism or degradation that could take place before the drug
reaches its target. We have recently been investigating vanadium(V)
Schiff base catecholate complexes and their antiproliferative
properties to be used for intratumoral administration in difficult-
to-treat cancers such as brain cancers (specifically glioblastoma
(Levina et al., 2020)) and several other cancers (Levina et al.,
2022; Crans et al., 2019). There are multiple classes of vanadium
compounds that have been reported to have antiproliferative effects
in various types of cancerous cells. Specifically, we are referring to
reports describing a range of different classes of vanadium
compounds with anticancer activities including dipicolinate
oxovanadium(IV) (Choroba et al., 2023), 3-hydroxy-4(1H)-
pyridinonate oxovanadium(IV) complexes (Kostenkova et al.,
2023), vanadium(III)-L-cysteine (Basu et al., 2017), vanadocene
dichloride (Rozzo et al., 2017), acetylacetonateoxydiacetato-
oxidovanadium(IV) Complexes coordinated to N-containing
aromatic compounds (Chmur et al., 2025), non-oxido
vanadium(IV) complexes featuring tridentate ONS chelating
S-alkyl/aryl-substituted dithiocarbazate ligands (Banerjee et al.,
2023), dioxidovanadium(V) Schiff base complexes ([VVO2(HL)]
where HL2 is an ONO Schiff base ligand) (Rana et al., 2025);
oxidovanadium(V) complexes, (HNEt3)[VVO2L] and [(VVOL)2-
O], with tridentate Schiff base ligandH2L [H2L = 4-((E)-(2-hydroxy-
5-nitrophenylimino)-methyl)benzene-1,3-diol] (Sahu et al., 2021);
and a review of describing V-complexes with ligands existing in the
biosphere (Bera et al., 2025). Unlike most of these vanadium
compounds with reported anticancer activity, the vanadium in
our complexes is in oxidation V. However, the two vanadium(V)
Schiff base complexes listed above show effects on the human
cervical cancer cell line HeLa and are significantly more stable
than the very reactive non-innocent vanadium Schiff base
catecholate complexes that we have been designing for
intratumoral administration (Levina et al., 2020; Levina et al., 2022).

Our main design criterion for a desirable antiproliferative
complex to be administered intratumorally is that they must
quickly decompose (Crans et al., 2004) and the decomposition
products are less toxic once they have reacted and killed the
tumor tissue in the cancer cells (Figure 4A) (Bates et al., 2025).
We have found that the intact vanadium(V) Schiff base catecholate
complex [VO(HSHED)(DTB)] is 12 times more potent than
cisplatin in the T98G cell lines (glioblastoma, Figure 4B) (Levina
et al., 2020). In addition, the data showed that the complex was also
more toxic than in non-cancer and normal human cell lines such as
HFF-1 (Figure 4B) (Levina et al., 2020). However, as shown in
Figure 4B these complexes show antiproliferative effects against
several other cancer cell lines including breast (MDA-MB-231),
pancreatic (PANC-1) and lung (A549) cancers. Previously, the
proliferative effects of this complex were reported in bone cancer
cells (human chrondronsarcoma, SW11353 cells) (Levina et al.,
2020). The aged ligands and vanadate had a weaker effect than
the intact complex. Comparing fresh solutions with aged solutions
was used to compare the intact complex and free ligands/vanadate
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and potential reaction products after the hydrolysis and redox
chemistry that take place under the assay conditions. In
Figure 4C, the V-uptake in cells was more after treatment by
fresh [VO(HSHED)(DTB)] compared to treatment with
decomposed and aged [VO(HSHED)(DTB)], which documented
that the intact complex is much more effective in entering the cell.
Measuring aged solutions in addition to measure the components of
the complex it also measure products that forms in the assay during
the hydrolysis.

We have used the structure-activity relationship to develop
more stable and potent antiproliferative complexes, all of which
contained sterically hindered catecholates (Kostenkova et al.,
2023; Murakami et al., 2022; Haase et al., 2024). Similarly,
with structural modification of the Schiff base framework, we
have been able to develop complexes with increased stability,
resulting in additional potent antiproliferative agents (Bates
et al., 2025). When compounds in this class of complexes
hydrolyze rapidly, they show similar activity to vanadate
(Kostenkova et al., 2023; Murakami et al., 2022; Haase et al.,
2024). Importantly, other vanadium compounds have
antiproliferative activity against glioblastoma T98G cells, as
demonstrated by the hydroxyquinoline vanadium complexes,
which are also active against Trypanosoma cruzi

(Levina et al., 2024). These compounds do not react quickly
with the tumors and form more toxic side products, so although
they are antiproliferative agents, they are not well suited for
intratumoral administration.

Serum albumin has been reported to enhance other drugs’
efficacies and has even been included in some formulations of
drugs in the clinic (Kratz and Elsadek, 2012; Stukan et al., 2025;
Gao et al., 2024). The presence of serum albumin in the media when
treating triple-negative human breast cancer (MDAMB-231) cells
with [VO(HSHED)(cat)] did not change the complex’s
antiproliferative effects (Levina et al., 2023). These observations
are consistent with the expectation that when the vanadium(V)
Schiff base catecholate complex hydrolyzes to form vanadate, such
as reported for [VO(HSHED)(cat)], the vanadium complex does not
interact with serum albumin (Levina et al., 2023). In contrast, more
stable and effective vanadium(V) Schiff base catecholate complexes,
which contained sterically hindered substituents on the catechol
such as two t-butyl groups or three i-propyl groups, were found to
form an adduct with serum albumin (Levina et al., 2023). These
observations were supported by UV-vis spectroscopy,
demonstrating that a new species was formed in the presence of
[VO(HSHED)(DTB)] but not in the presence of
[VO(HSHED)(cat)].

FIGURE 4
(A) Illustration of the intratumoral drug administration and decomposition into components; (B) the effects of fresh intact complex
[VO(HSHED)(DTB)] (red; referred to a 1 in 4B and 4C), the effects of aged [VO(HSHED)(DTB)] hydrolyzed into vanadate, and ligands (coral blue); the effect
of aged vanadate (turquis); aged Schiff base and catechol (purple); fresh cisPt abbreviation for cisplatin (black) and aged cisPt (grey); (C)mmol of V per mg
of protein and (D) proposed action of the [VO(HSHED)(DTB)]; the complex binds to serum albumin extending its life-time before decomposition; the
complex hydrolyzes to form vanadate, ligands, and the proposed [V(DTB)3]

-; finally transferrin binds the vanadate that is formed upon hydrolysis.
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Finally, Figure 4D shows proposed pathways which the
[VO(HSHED)(DTB)] complex engage in when treating cancer
cells under cell culture conditions based on the experiments
reported. It shows the superior cellular uptake of the intact
complex, and its interaction with serum alhumin that result in
stabilization of the complex. The figure also illustrates that upon
decomposition the components formed are less toxic, and that the
V-atom is bound to transferrin as well as forming a new complex
[V(DTB)3]

-.
Although intratumoral injections (ITI) are mainly used for

palliative care at this time, clinical trials involving intratumoral
injections with cisplatin, oxaliplatin, and carboplatin have (Levina
et al., 2022) increased by a factor of 5 since 2022 (Bates et al.,
2025). In addition, the FDA has approved the use of an oncolytic
virus (T-VEC), administered by intratumoral injection to treat
unresectable metastatic melanoma (Hamid et al., 2020).
Furthermore, similar techniques have been successfully utilized such
as convection enhanced delivery (CED), which are intracranial
injections of drugs designed to bypass the blood brain barrier, and
has been used for the treatment of malignant gliomas (D’Amico et al.,
2021; Nwagwu et al., 2021; Kang and Desjardins, 2022). Pressurized
intraperitoneal aerosolized chemotherapy (PIPAC) is another
administration method under development for treatment of
metastatic cancers of the digestive system (Alyami et al., 2019; De
Jong et al., 2021). These reports underline the fact that while currently
intratumoral procedures are not routine, this method is likely to be
muchmore accessible for cancer treatment in the future. Therefore, it is
important to recognize that while novel administration strategies may
differ from those more commonly used at the present time they should
not be disregarded but further developed for future use. In summary,
these results suggest that drugs delivered by intratumoral injections
could be effective if they were reactive and immediately destroy tumor
cells forming non-toxic compounds in the process and leaving healthy
cells unharmed.

Summary

Currently there are only a few metal-based therapeutics approved
for and used in the clinic, whereas there are many metal-based
diagnostics. Therapeutic and diagnostic drugs share many
similarities regarding their pharmacokinetic properties, as upon
administration they both must be distributed, taken up into the
cells, and excreted properly. However, diagnostic agents and
therapeutics differ drastically in their metabolism and their
excretion. In vivo diagnostic drugs have been developed to be stable
and undergo minimal metabolism, whereas therapeutic agents are
designed with a particular target and often are administered as
prodrugs, where some metabolism is required for action. In the case
of intratumoral agents this is particularly important because they must
react immediately with the tumor and upon killing the cancer cells,
form non-toxic products. Metal-based radiotheranostic agents are
particularly interesting because they, similarly to diagnostic agents,
must be exceedingly stable and resist metabolism. This is contrary to
typical therapeutics, which are administered as prodrugs and are
metabolized in the cell, whereupon they interact with the target
potential proteins and other targets. Indeed, as an example, 64/67Cu-
SAR-bisPSMA contains both the stable metal radiotracer complex as

well as the peptide ligand associated with the target receptor. However,
successful development of such agents involves more elaborate ligand
design as evidenced by the structure of 64/67Cu-SAR-bisPSMA shown in
Figure 3. Importantly, these agents do not comply with the guidelines
for traditional drugs as defined by Lipinski, re-emphasizing that such
compliance is not a requirement for successful future drugs such as in
theranostic agents and drugs designed for unconventional
administration strategies such as intratumoral injections.
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Glossary
ADME Administration, Distribution, Metabolism, Excretion

Au Gold

cat Catecholate

CED Convection Enhanced Delivery

CNS Central Nervous System

Cu Copper

CXCR4 C-X-C Chemokine Receptor 4

Da Daltons

DNA Deoxyribonucleic Acid

DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)

DTB Di-tert-butyl

DTPA Diethylenetriamine Pentaacetate

FAP Fibroblast Activation Protein-α

FAPI Fibroblast Activation Protein-α Inhibitor

FDA Federal Drug Administration

FDG Fluorodeoxyglucose

Ga Gallium

GBCA Gadolinium-based Contrast Agent

Gd Gadolinium

ITI intratumoral injection

Lu Lutetium

mAb Monoclonal Antibody

Mo Molybdenum

MRI Magnetic Resonance Imaging

NET Neuroendocrine Tumor

NSF Nephrogenic Systemic Fibrosis

PET Positron Emission Tomography

PIPAC Pressurized Intraperitoneal Aerosolized Chemotherapy

PSMA Prostate-Specific Membrane Antigen

Pt Platinum

r1 Longitudinal Relaxivity

r2 Transverse Relaxivity

Ru Ruthenium

SAR Sarcophagine

SPECT Single-Photon Emission Computed Tomography

SPION Superparamagnetic Iron Oxide Nanoparticle

T1 Longitudinal Relaxation Time

T2 Transverse Relaxation Time

Tc Technetium

UV-vis Ultraviolet-visible

V Vanadium

Y Yttrium

Zr Zirconium
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