E frontiers ‘ Frontiers in Chemical Biology

’ @ Check for updates

OPEN ACCESS

EDITED BY
Aurelia Falcicchio,
National Research Council (CNR), Italy

REVIEWED BY
Tobilola Akingbade,

University College, North Carolina Central
University, United States

*CORRESPONDENCE
May Lee Low,
lowml@ucsiuniversity.edu.my

RECEIVED 31 August 2025
ACCEPTED 24 September 2025
PUBLISHED 20 October 2025

CITATION

Tan KT, Cheong KW, Wong LC, Bertrand HC,
Abd Karim NH, Chong YK and Low ML (2025)
Metals in medicine: unlocking new avenues for
neurodegenerative disease treatment.

Front. Chem. Biol. 4:1696058.

doi: 10.3389/fchbi.2025.1696058

COPYRIGHT
© 2025 Tan, Cheong, Wong, Bertrand, Abd
Karim, Chong and Low. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Chemical Biology

TYPE Mini Review
PUBLISHED 20 October 2025
Dol 10.3389/fchbi.2025.1696058

Metals in medicine: unlocking
new avenues for
neurodegenerative disease
treatment

Kuan Teng Tan?, Kok Whye Cheong?, Lai Chun Wong?,
Héléne C. Bertrand?, Nurul Huda Abd Karim?, Yie Kie Chong® and
May Lee Low'*

'Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala
Lumpur, Malaysia, °Department of Pharmaceutical Chemistry, School of Pharmacy, IMU University, Kuala
Lumpur, Malaysia, *Laboratoire Chimie Physique et Chimie du Vivant, CPCV UMR8228, Département de
Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France,
“Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
(UKM), Bangi, Selangor, Malaysia, *School of Foundation Studies, Xiamen University Malaysia, Sepang,
Selangor, Malaysia

Neurodegenerative diseases (NDD) such as Alzheimer's disease (AD),
Huntington's disease (HD), Parkinson's disease (PD), and amyotrophic
lateral sclerosis (ALS) urgently demand novel therapeutics beyond
symptomatic relief. Increasing evidence implicates dysregulation of metal
ion homeostasis (e.g., iron, copper, zinc) in the pathogenesis of these
diseases, contributing to oxidative stress and protein aggregation.
Conventional therapies face limitations including poor brain bioavailability
and inability to halt disease progression. In response, metal-based strategies
are emerging as promising interventions. This mini-review highlights how
restoring metal ion balance and leveraging inorganic chemistry can counter
neurodegeneration. We discuss recent advances in metal complexes that
target pathogenic pathways, metal-organic frameworks (MOFs) as
sophisticated drug delivery scaffolds, and metallic nanoparticles
engineered to cross the blood-brain barrier (BBB). These approaches offer
unique capabilities to modulate disease processes and deliver multi-
functional treatments. By exploring the roles of metal ions in
neurobiology and surveying cutting-edge metal-containing therapeutics,
we underscore the potential of metals in medicine to unlock new avenues
for treating NDD.

KEYWORDS

neurodegenerative diseases, metal complexes, metal organic framework, metallic
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1 NDD and metal ions: a molecular connection
between disease progression and therapy

NDD are a group of disorders characterized by gradual deterioration of nerve cells,
leading to degenerative cognitive functions and motor impairments. Some of the main
types of NDD include AD (Pantiya et al., 2020; Mittal and Agrawal, 2024; Wei et al,,
2025), PD (Pantiya et al., 2020; Mittal and Agrawal, 2024; Wei et al., 2025), HD (Pantiya
et al., 2020; Joshi et al., 2025), and ALS (Mittal and Agrawal, 2024; Wei et al., 2025). A
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rising body of evidence have suggested that these diseases are
often caused by abnormal protein accumulation (Sweeney et al.,
2017), oxidative stress (Houldsworth, 2023), mitochondrial
dysfunction (Joshi et al,
(Ogonowski et al., 2024).
memory loss, movement impairments, and behavioral changes.

2025), and genetic mutations
Symptoms commonly include

The incidence of NDD is projected to increase in parallel with
rising life expectancy, imposing a substantial economic burden
on public healthcare systems. In 2019, the worldwide cost of
dementia (including AD) was estimated at approximately USD
1.3 trillion, equivalent to roughly 1.5% of the world’s GDP (Wimo
etal., 2023). In 2022, the economic burden of AD in Malaysia was
estimated at USD 1.9 billion, accounting for approximately 0.47%
of the nation’s GDP (Ong et al., 2025) These enormous figure
highlights the substantial economic impact of AD on societies
globally and locally.

At present, there is no known cure for NDD, however, available
treatments primarily focus on symptom management and decelerating
disease progression. Ion imbalance plays a critical role in linking
oxidative stress, cellular apoptosis, aging, and the pathogenesis of
major health diseases. In addition, the homeostasis of metals, such
as iron, copper, zinc and calcium for maintaining normal
neurophysiological activity has been well established. As disruptions
or dysfunctions in ion channel activity contribute to the disease
progression, metal ion homeostasis-related signaling pathways have
emerged as potential therapeutic targets for various neurological
disorders (Xu et al., 2022; Zhang Y. Y. et al, 2023). Reviews have
shown a potential risk of dyshomeostasis of calcium ion could heighten
the risk of PD simply by disrupting interactions between subcellular
organelles (e.g., endoplasmic reticulum, mitochondria, and lysosomes)
(Xu et al,, 2022). In addition, dysregulated iron homeostasis leading to
abnormal iron accumulation in the brain regions has been correlated
with the progression and severity of various NDD such as PD and AD
(Maass et al,, 2021; Wu D. et al, 2023). Conversely, exposure to
cadmium and lead has been linked to an elevated risk of developing
ALS (Peters et al,, 2021).

Despite current treatment

progress in approaches,

significant challenges persist, including limited efficacy,

adverse side effects, and the inability to halt disease
progression. Growing evidence suggests that metal ions hold
promise as therapeutic agents, offering innovative strategies to
restore metal homeostasis and counteract disease pathology.
Addressing these challenges demands ongoing research and
innovation to refine metal-based therapeutics, enhance
targeted delivery, and improve clinical translation, ultimately
paving the way for more effective treatments and improved
patient outcomes. This review next examines how metal
dysregulation contributes to disease pathology and why
current treatments fall short, in order to contextualize new

metal-based therapeutic strategies.

2 Unraveling therapeutic pathways:
mechanisms of action and the hurdles
of current treatments

NDD are driven by complex, multifactorial mechanisms,

including  oxidative stress, protein misfolding, and
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neuroinflammation (Wilson et al, 2023). Among these
factors, metal dysregulation has emerged as a significant
contributor to disease progression, affecting both oxidative
balance and protein aggregation in the brain (Pamphlett and
Bishop, 2023).

One key consequence of metal dysregulation is the
accumulation of metals such as iron, copper, and zinc in
specific brain regions, exacerbating neuronal damage. Meta-
analyses have linked elevated iron and iron-related proteins to
an increased risk of AD (Gong et al., 2023), while similar findings
indicate a strong connection between iron accumulation and
neurodegeneration (Vellingiri et al., 2022). The pathological
effects of excess metal ions are largely mediated by oxidative
stress (Chen et al.,, 2025). Redox-active metals such as iron
contribute to the Fenton reaction, producing highly reactive
hydroxyl radicals that ultimately result in neuronal death.

Recent studies suggest that both iron and copper
dysregulation contribute to PD by promoting a-synuclein
aggregation  through  oxidative = mechanisms, further

accelerating neurodegeneration (Behl et al., 2022).

Beyond oxidative stress, disruptions in metal ion
homeostasis influence key proteins involved in NDD. In AD,
the toxic aggregation of Amyloid-beta (AP) and tau proteins
has been linked to abnormal metal binding (Das et al., 2021).
The function of metals such as zinc, copper and iron
in promoting AP aggregation was initially identified in
early studies (Zatta et al, 2009) and later confirmed in
2023).

have

subsequent investigations (Doroszkiewicz et al.,

Recent nuclear  magnetic  resonance  studies
offered detailed insights into the structures and dynamics of
metal-Af shedding further light on their
involvement in bulk protein aggregation (Abelein et al., 2022;
Abelein, 2023).

While

consequence

complexes,

neuroinflammation is often considered a

of neurodegeneration, emerging evidence
suggests it plays a crucial role in disease progression (Zhang
W. et al, 2023). indicate that

protein misfolding and aggregation may occur independently

However, recent studies

of neuroinflammation, suggesting that anti-inflammatory

therapies alone may not be sufficient to halt
disease progression (Matarazzo et al, 2024). This
complexity underscores the need for multi-targeted

therapeutic strategies.

Although significant research efforts have been made,
NDD
remains challenging. Existing treatments alleviate symptoms
but do not prevent disease advancement, resulting in ongoing
neurological deterioration (Akhtar et al., 2021). While
numerous drug candidates have entered clinical trials, most

finding effective disease-modifying therapies for

fail due to issues with efficacy, safety, or drug delivery challenges
(Zhang et al., 2024). For example, dalzanemdor, which was
investigated for PD, AD, and HD, was discontinued in
2024 after failing to demonstrate significant benefits over
placebo (Sage Therapeutics, 2024).

Traditional therapies also offer limited long-term benefits. For
instance, levodopa, the gold standard treatment for PD, loses
efficacy over time due to disease progression and the

development of peripheral resistance (Beckers et al, 2022).
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TABLE 1 Current treatment for neurodegenerative diseases and their limitations (Borovac, 2016; Hill et al., 2019; Parkinson’s UK, 2025; Medscape, 2025).

Medication

Amantadine

Anticholinergics

Neurodegenerative diseases

Parkinson’s disease, Chorea of Huntington’s
disease, Lewy body dementia

Parkinson’s disease

Frequent adverse effects

1-10%: Headache, dizziness, drowsiness,
fatigue, confusion, abnormal dreams,
agitation, irritability, anxiety, nervousness,
insomnia, ataxia, delirium, hallucinations,
and depression

>10%: Dry mouth, dry skin, dental
problems, constipation, blurred vision,
hyperpyrexia (overheating), confusion,
sedation, and dementia-like symptoms
(especially with long-term use)

Special caution

o The benefits of treatment in Parkinson’s disease
tend to diminish over time, typically within
several months. However, the
abrupt discontinuation of the drug is strongly
advised against, as it may lead to neuroleptic
malignant syndrome (NMS)

o Side effects are more pronounced in the elderly
population and may increase the risk of falls and
injury

o Increases the cumulative risk of cognitive
impairment and mortality, especially in the
elderly

Catechol-O-Methyl
Transferase
Inhibitors

Cholinesterase
Inhibitors

Dopamine Agonists

Dopamine Precursors

Memantine

Riluzole

Parkinson’s disease

Alzheimer’s disease and other dementias,
rivastigmine is FDA-approved for Parkinson’s
disease dementia

Parkinson’s disease

Parkinson’s disease

Alzheimer’s disease

FDA-approved for amyotrophic lateral sclerosis

Diarrhea, elevated liver transaminases,
discoloration of urine, and rhabdomyolysis

>10%: Nausea, vomiting, diarrhea, loss of
appetite, tired feeling, or sleep problems

Nausea, vomiting, orthostatic hypotension,
headache, dizziness, and cardiac arrhythmia

>10%: Dyskinesias and involuntary
movements, orthostatic hypotension,
syncope, hypotension, dizziness, headache,
gastric distress, depression with suicidal
ideations, insomnia, anxiety, confusion,
abnormal dreams and nightmares, and
polyneuropathy

1-10%: Dizziness, headache, confusion,
constipation, cough, hypertension,
backache, pain, somnolence, syncope,
vomiting, dyspnea, fatigue

>10%: Oral hypoesthesia, asthenia,
nausea (16%)

o Because of the risk of liver disease, treatment
with tolcapone should be discontinued
within 3 weeks of initiation if no clinical benefit
is seen

o When used with levodopa/carbidopa,
dyskinesias may occur

o Risk for seizures and impaired cardiac
conduction

o Certain older dopamine agonists, known as
‘ergot’ derivatives, have been associated with an
increased risk of heart and lung complications.
Examples include bromocriptine, pergolide,
and cabergoline

o Motor fluctuations develop over time, with an
estimated 10% annual risk associated with
levodopa use. However, they can also appear as
early as 5-6 months into therapy

o Abrupt discontinuation of levodopa-
containing medications is strongly discouraged
to prevent the risk of NMS.

o Caution is advised when using this medication
in patients with pre-existing cardiovascular
conditions (e.g., angina, bradycardia), as well as
those with renal or hepatic impairment and
seizure disorders

o Use with extreme caution in patients with a
known hypersensitivity to memantine or allergy
to any of its derivatives

o Severe neutropenia (absolute neutrophil
count <500/mm?) has been reported within the
first 2 months of treatment

o Cases of interstitial lung disease, including
hypersensitivity pneumonitis,
have 2been reported in patients undergoing
treatment

Tetrabenazine

FDA-approved to treat chorea associated with
Huntington disease

>10%: Sedation/somnolence, depression,
anxiety, insomnia, akathisia (agitation and
restlessness), fatigue, and nausea

o Tetrabenazine possesses a black box warning for
increasing the risk compared with placebo of
suicidal thinking and depression in patients
with Huntington’s disease

Additionally, many available treatments cause adverse effects
(Table 1). For instance, over 50% of patients receiving levodopa
develop motor complications within 4 years of starting treatment
(Warren Olanow et al., 2013).

One of the greatest obstacles in NDD treatment is the
BBB, a highly selective membrane that restricts the entry
of most therapeutic molecules into the central nervous
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system (CNS) (Zlokovic, 2008; Wu D. et al, 2023). Since
NDD
treatments

involve progressive brain deterioration, effective
the BBB to
However, poor bioavailability in the CNS remains a critical
limitation in delivering successful treatments (Akhtar et al,
2021). The such  metal-based

therapeutic avenues.

must cross reach target sites.

next section explores
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3 Translating metal-based
therapeutics: applications across
preclinical and clinical studies

3.1 Metal complexes in neurodegeneration:
therapeutic roles in AD and PD

In light of the above challenges, researchers are exploring
various metal-based compounds that target common pathological
features like protein aggregation and metal ion imbalance.

Because of the critical roles of copper, zinc and iron
accumulation in NDD, metal chelators have received considerable
attention. For more detail on this approach, readers are referred to
recent reviews (Sales et al., 2019; Vilella et al., 2020; Fasae et al., 2021;
Du et al,, 2024; Liu et al., 2024). Chelators, through binding to metal
ions, prevent them from generating oxidative stress and from
interacting with amyloid proteins, in turn inhibiting aggregation.
In the context of NDD, a new class of chelators, characterized by a
weaker affinity, named metal protein attenuating compounds
(MPACs) are developed. MPACs are designed to cross the BBB
and to remove excess accumulated metal ions (Zn** and Cu®)
without disrupting bulk metal coordination and normal functioning
of metalloenzymes and related biological processes. Following
promising outcomes from preclinical studies in AD and PD
models respectively, the 8-hydroxyquinoline derivatives PBT2
(Faux et al, 2010; Huntington Study Group Reach2HD
Investigators, 2015; Villemagne et al., 2017) and PBT434 (Stamler
et al., 2020; Levi and Volonté, 2023) have reached clinical trials
(phase Il in AD and HD patients and phase I respectively) (Figure 1).
Similarly, Desferrioxamine (DFO), a chelator for trivalent ions
(Figure 1) successfully entered AD phase II clinical trials, and,
however, was discontinued due to the poor BBB penetration and
systemic toxicity at high dosages.

Lithium-based treatments, which have long been used to treat
psychiatric disorders (Cade, 1949), have been proposed to provide
neuroprotection in neurodegenerative contexts (AD and PD, for
example,) in in vivo studies (Lovestone et al., 1999; Alvarez et al.,
2002; Su et al., 2004; Noble et al., 2005; Engel et al., 2006; Engel et al.,
2008; Macdonald et al., 2008; Fiorentini et al., 2010; Leroy et al.,
2010; Quiroz et al.,, 2010; Zhang et al.,, 2011; Forlenza et al., 2014;
Lazzara and Kim, 2015; Gao et al., 2022) and were evaluated in a few
clinical trials (Hampel et al., 2009; Forlenza et al.,, 2011).

Metallodrugs are also actively developed for the treatment of
NDD, with diverse modes of action (MOA). The latest
developments are described in several recent reviews (Liu et al.,
2024; Florio et al., 2025). Most of those studied so far target AP
species with the aim of inhibiting aggregation by interfering with the
protein-metal ions interactions. Their interaction with such species,
which can include coordination of protein side chains, can alter
amyloid protein structures and aggregation states or stabilize non-
toxic conformations. Antioxidant properties or inhibition of
acetylcholinesterase are alternative modes of action.

Metal complexes evaluated in this context comprise platinum,
ruthenium, iridium, gold, cobalt, vanadium, manganese/iron,
copper and zinc complexes along with homo- and hetero-
bimetallic species (Table 2). Promising results were obtained
few have been

in vitro and in cellular models. However,

evaluated in vivo, often due to BBB crossing challenges.
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A Pt (II) complex of a functionalized 8-BQ ligand (8-(1H-
benzoimidazol-2-yl)-quinoline), 1, was  developed and
demonstrated a reduction of AP toxicity in primary mouse
cortical neuronal cell cultures (Kenche et al., 2013). The Pt (IV)
corresponding prodrug, 2, showed higher Pt levels in the brain of
wild type mice compared to the Pt (II) complex (Figure 1). In a
mouse model of AD (APP/PS1), a reduction in AP42 levels and in
plaque number was observed in the Pt (IV) treated group (Kenche
et al,, 2013). More recently, Co(III)-salnaph complexes showing AP
aggregation inhibition properties (3-4), were delivered across BBB in
mice (C57BL/6] and transgenic 5xFAD mice as AD model) by use of
focused ultrasound and was shown to be well-tolerated (Figure 1)
(Chan et al, 2021). Zinc complexes such as pine peptide-zinc
chelates (Zhang Z. et al, 2023) and Zn(II)-based amide
carboxylate (Waseem et al., 2022) were shown to have potential
in AD treatment with improvements in memory and learning in AD
murine models through reduction in acetylcholinesterase levels and

others. Finally, the
Cu(II) CuL5
(Figure 1) demonstrated cognitive benefits despite increasing

antioxidant ~ properties =~ among

thiosemicarbazone-pyridylhydrazone complex
amyloid plaques in treated in 5xFAD mice (Choo et al., 2022).

Despite extensive research, few metal chelators or metal-based
drugs have been evaluated in vivo so far. Further efforts are needed
to translate promising in vitro results into preclinical and clinical
evaluations to confirm their potential in reducing neurotoxicity in
the treatment of NDD. To this aim, key chemical properties of the
drug candidates such as pharmacokinetics require optimisation to
limit toxicity and enhance BBB crossing ability.

3.2 Therapeutic potentials of MOFs:
controlled drug release and metal ion
homeostasis

Latterly, MOFs have garnered remarkable attention in
biomedical applications. These materials composed of metals ions
extensively coordinated with organic ligands are characterized with
high crystallinity, porosity, and versatility for structural
modification. Examples of well-established MOFs include MIL-
100(Fe), ML-101(Cr), UiO-66, ZIF-8 etc. (Abanades Lézaro et al.,
2024; Wang et al., 2024). Henceforth, MOFs have been prevalently
investigated for their potential in drug delivery and metal ion
regulation.

Harnessing MOFs as drug delivery system (DDS) generates
merits including enhanced biocompatibility, controlled-release,
stability, and targeting effect (Wang et al, 2024). Recently,
encapsulation of hydrophobic quercetin  within  zeolitic
imidazolate MOFs with Prussian blue coating (ZIF-8@PB-QCT)
was designed for PD therapy. Intriguingly, functionalization with PB
permits heat-stimulated release of QCT upon photoirradiation in
near infrared region, improving penetration across BBB, hence
uptake by neuronal cells. Ultimately, non-invasive delivery of
ZIF-8@PB-QCT exerted protective effects against neurotoxins
and mitochondrial damage, subsequently ameliorated locomotive
ability of impaired mice (Liu et al., 2021). Likewise, ZIF-8 framework
loaded with Kaempferol and bearing polydopamine coating was
synthesized for Postoperative Neurocognitive Disorder treatment.
Evidently, anti-inflammatory and anti-oxidative effects were
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TABLE 2 Metal complexes assessed for neurodegenerative diseases.
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Types of metal complexes References

Platinum complexes

Florio et al. (2019a), Florio et al. (2019b), Manna et al. (2021), La Manna et al. (2022)

Ruthenium complexes

Iridium complexes Kang et al. (2019)

Batchelor et al. (2019), Gomes et al. (2019), Florio et al. (2020), Huffman et al. (2020), Kladnik et al. (2020), Liu et al. (2020),
Almeida et al. (2021), Wall et al. (2021), Yawson et al. (2021), 2022; Cuccioloni et al. (2022), Singh et al. (2023), Wu C. Y. et al.
(2023), Chen et al. (2024), Ehlbeck et al. (2024), La Manna et al. (2024b)

Gold complexes Huang et al. (2019)

Cobalt complexes

Gorantla et al. (2019), Iscen et al. (2019), Roberts et al. (2020)

Vanadium complexes

Manganese/iron complexes Zhang et al. (2022)

Dong et al. (2019), He et al. (2020), 2021; Rambaran et al. (2020), Drzezdzon et al. (2021), Yao et al. (2023)

Copper complexes

Zinc complexes

Choo et al. (2022), Zhang et al. (2021), Pyun et al. (2022), Pyun et al. (2023)

da Silva et al. (2021), Zafar et al. (2021b), Zafar et al. (2021a), Jahan et al. (2023), Sheikh et al. (2024)

Homo- and hetero- bimetallic species

prominent during in vivo studies, with improvement in
hippocampal neuron viability and cognitive function (Huang
et al., 2024). Furthermore, a cyclodextrin-based MOFs modified
with stigmasterol and lactoferrin was formulated for huperzine A
delivery in AD treatment. The framework was dispersed in a
hyaluronic  acid/gelatin-tannic ~ acid  microneedle  patch,

subsequently delivered via nasal route. Inclusion of lactoferrin

Frontiers in Chemical Biology 05

Teran et al. (2023), La Manna et al. (2024a)

improved targeting for intracerebral uptake while modified patch

reduced aqueous degradation and toxicity. Impressively,
microneedle-assisted MOFs delivery enhanced BBB penetration
and accumulation of huperzine A, concurrently reducing
clearance by nasal cilia. Overall, inhibition of neuronal oxidative
damage and restoration of impaired mice’s neurological function

was achieved (Ruan et al., 2024).
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Intriguingly, biodegradation of MOFs has been optimized to
stimulate controlled release of metal ions to cure deficiency. An
investigation on MOF-74(Cu)
kinetics, shedding light on potential treatment against copper
deficient including ALS and PD.
Remarkably, zero-order controlled release of copper promoted

elucidated the copper-release

neurological ~ diseases
brain accumulation, simultaneously minimizing liver intoxication
for replenishment of body essential elements (Aguila-Rosas et al.,
2024). Another study focused on alleviation of spinal cord injury
(SCI) via exploiting ZIF-8 framework to induce neurodifferentiation
of dental pulp stem cells (DPSCs), replenish Zn** levels, and trigger
angiogenesis. Distinctly, combinatorial treatment with ZIF-8-
DPSCs healed impaired neurons and rectified the locomotive
ability of rats with SCI (Zhou et al., 2023).

In contrast, excessive accumulation of metal ions promotes the
conformational change of AP peptides into aggregates, resulting in
deterioration of neurological function and triggering the onset of
AD (Abelein, 2023). In efforts to ameliorate AD, varying porphyrin-
modified MOFs (PMOFs) were formulated to facilitate the removal
of excessive copper (II) ions to restrict AP aggregation and
PMOFs
demonstrated significant copper (II) chelation and singlet oxygen

neurotoxicity. ~ In  particular, ~ Hafnium-based
generation capacity upon photoirradiation at 450 nm. Evidently,
treatment of Hf-PMOFs on AD transgenic roundworms rectified the
locomotive ability, diminished paralysis and prolonged the lifespan

(Yu et al., 2019).

3.3 Crossing the barrier: metallic
nanoparticles in targeted CNS drug delivery

The treatment of NDD presents significant therapeutic
challenges, primarily due to the formidable BBB. BBB is a highly
selective semipermeable border of endothelial cells that protects the
brain from harmful substances. It also simultaneously limits the
entry of many potential therapeutics to the CNS, thus hindering its
drug delivery effectiveness (Teleanu et al., 2018; Niu et al., 2019).
Since the BBB restricts systemically administered compounds’
access to the brain, large drug doses are required every time,
unfortunately toxic  effects
et al., 2014).

Recent advancements in nanotechnology have introduced

causing (Gonzélez-Dominguez

metal nanoparticles (MNPs) as promising vehicles for targeted
drug delivery across the BBB, offering new avenues for NDD
treatment (Sintov et al., 2016; Furtado et al., 2018; Abidi et al.,,
2023). The latest advances are thoroughly discussed in several
recent reviews. These nanoparticles, including gold (Chang et al.,
2021), silver (Qin et al., 2025), and iron oxide, exhibit unique
physicochemical properties such as small size and large surface
area. The desirable feature of metallic nanoparticles also includes
the ability to be functionalized for a specific target. The ability to
deliver drugs directly to the brain is enhanced, it improves
bioavailability, and reduces side effects (Li et al., 2021; Scarpa
et al., 2023).

Altering the size, shape, and surface chemistry of these
nanoparticles can impact their participation in various
transport mechanisms, such as receptor-mediated transcytosis
and adsorptive-mediated transcytosis, in turn helping them cross
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the BBB. Due to their nontoxic features, gold nanoparticles have
been highlighted for their multifunctional capabilities, including
the ability to undergo surface modifications and target specific
brain regions (Chang et al., 2021; Silveira et al., 2021; Puranik
et al,, 2023; McLoughlin et al., 2024; Roghani et al., 2024). To
improve drug delivery efficiency, these modifications can include
functionalization with targeting ligands (Zhao et al., 2022;
Roghani et al, 2024). For example, insulin-targeted gold
(INS-GNPs)
effectively cross the BBB, resulting in significant accumulation
in the brain. Such results show the potential of INS-GNP as a
delivery system for NDD treatments (Shilo et al., 2014; Betzer
etal., 2019). INS-GNP demonstrated an accumulation exceeding

nanoparticles have been demonstrated to

five times that of untargeted gold nanoparticles by targeting
insulin receptors.

The precision of drug delivery in AD and PD has also been
proved by the functionalization of AuNP to specifically target
pathological proteins such as Tau and a-synuclein (Tapia-
Arellano et al, 2024). Silver nanoparticles (AgNPs) have been
shown to enhance BBB permeability (Li et al, 2021). The
interaction with endothelial cells modulates the expression of
proteins that relate to oxidative stress and neurodegeneration
(Lopez-Espinosa et al., 2024). They have been shown to

upregulate the proteins associated neurodisorders and
downregulates  those  that sustain  brain  homeostasis.
Consequently, AgNPs may facilitate drug delivery while

potentially inducing neurotoxicity (Khan et al, 2019). Despite
these concerns, their antimicrobial and anticancer properties
make them promising for neurogenesis disease theragnostic
(combining therapeutic and diagnostic capabilities) (Teixeira
et al,, 2025). Similar to AuNPs, AgNPs can also be designed to
target specific molecular pathways involved in neurodegeneration
(Ribeiro et al., 2022). The general goal is to improve their therapeutic
potential while reducing adverse effects (Mistretta et al., 2023;
Lépez-Espinosa et al., 2024; Qin et al., 2025).

Other metal nanoparticles, such as those based on iron,
copper or zinc (Jaragh-Alhadad and Falahati, 2022), have been
investigated for their magnetic characteristics. The presence of an
external magnetic field makes it possible to guide the magnetic
nanoparticles to specific brain areas (McLoughlin et al., 2024;
Toader et al., 2024). These nanoparticles can be designed to be
able to release drugs in a controlled manner (Kalaiselvi et al.,
2020; Mendake et al., 2024).
nanoparticles in addressing treatment challenges associated
with AD has also been explored (Hanzha et al., 2023). The
brain-targeted nanoparticle, Ce/Zr-MOF@Cur-Lf, has been
synthesized and described to improve drug transport across
the BBB. Curcumin-loaded Ce/Zr-MOF@Cur-Lf can mitigate
oxidative stress, a significant contributor to NDD (Yang
et al., 2024).

Despite these advantages, the requirement for thorough

The potential of cerium

safety and the scalability of the metallic nanoparticles
production for clinical application need to be addressed
(Rafati 2024; Rehman et al., 2024). Overall, the

integration of nanotechnology in NDD treatment holds

et al,
significant promise since it offers innovative solutions to

overcome the limitations posed by the BBB (Riccardi et al,
2021; Mistretta et al., 2023).
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3.4 Exploring protein aggregation and metal
imbalance in NDD using metallopeptides

Metallopeptides have been widely used to study and
understand the underlying molecular mechanism that govern
protein misfolding and metal homeostasis in the CNS. Studies
have shown that the presence of metal ions tends to block the
enzymes that break down AP and creates harmful free radicals
which induce peptide conformation changes and lead to AP
aggregation (Lovell et al., 1998; Dong et al., 2003; Miller et al.,
2006; Tamano and Takeda, 2015). A recent NMR study revealed
that metal-AP complexes inhibit fibril formation at low metal ion
concentrations but promote amorphous aggregation at higher
concentrations (Abelein, 2023). Several studies focus on using
metal chelators, such as the amino-terminal copper and nickel
binding site (ATCUN) to remove excess metal ions and regulate
metal homeostasis to prevent AP aggregation, as illustrated in
Figure 2a. Mital et al. examined how copper and zinc bind to the
ATCUN motif that derived from AP(12-16) to better understand
its coordination with metal ions (Mital et al., 2020). This study
demonstrated that the 3N copper-peptide complex (Figure 2b)
formed at low pH to a more stable 4N complex (Figure 2c) at
pH above pH 6 monitored using UV-Vis and CD spectroscopy.
Most of the copper-peptide complex formed at pH 7.4. Besides,
Lefévre et al. has also studied the sequence of ATCUN peptide in
relation to its reactive oxygen species (ROS) activity in AD and
found that all the eight synthesized ATCUN peptides formed the
same thermodynamic complex with Cu(II) (Lefevre et al., 2022).
The addition of histidine at position 1 or 2 improved copper
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uptake kinetics and the ability to prevent ROS formation,
especially with motifs HWHG and HGHW.

In addition, Pandini et al. revealed that the addition of copper and
zinc to nerve growth factor (NGF) and NGF (1-14) enhanced the
phosphorylation of CREB, Akt and ERK, which are important
signaling molecules involved in cell growth, survival and
differentiation, but acetylated NGF (1-14) have no significant
effect due to lower copper binding stability compared to NGF
(1-14), highlighting the potential of metallopeptide in
neurodisorder (Pandini et al, 2016). Russo et al. studied the
neurotrophic activity of synthetic peptides based on the first
12 amino acids of BDNF N-terminal (HSDPARRGELSV, m-bdnf)
and its dimer linked by a disulphide bridge (HSDPARRGELSVC-
CVSLEGRRAPDSH, d-bdnf), focusing on zinc ion modulation
(Russo et al.,, 2022). D-bdnf was found to have activity like BDNF
but loses effectiveness in promoting neuron growth when bound to
zinc. Under acidic conditions, zinc binding decreases due to histidine
protonation. A zinc preference for binding to the terminal histidine
residues was also found. Besides, both d-bdnf and m-bdnf coordinated
with only one Zn** ion despite having two histidine residues might be
due to the higher flexibility compared to m-bdnf.

Tachykinins, a family of neuropeptides involved in various
physiological and pathological processes, have been shown to
possess excellent metal chelation properties with high binding
affinity (Steinhoff et al., 2014). Metals such as Cu, Ag, Ni, and
Zn have been studied for their binding to tachykinins and
neuropeptides, including NKA, NKB, SP, NPG, and NPY (Pettit
et al, 1991; Harford and Sarkar, 1997; Pietruszka et al., 2011;
Russino et al., 2013; Grosas et al., 2014; Ye et al., 2018; Ben-
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Shushan et al., 2020; Ben-Shushan and Miller, 2021a; Ben-Shushan
and Miller, 2021b). These studies revealed that these tachykinins are
potential metal chelators with high metal binding affinity. However,
the experimental investigation into their role as metal chelators
remains scarce. Recently, molecular modelling studies confirmed
that three tachykinins can bind Cu** and Zn*" ions, shedding light
on their potential in metal ion interactions (Ben-Shushan
et al., 2020).

4 Challenges and future perspectives

Metal-based therapies offer several compelling advantages
over conventional approaches. Specificity can be heightened by
designing complexes, MOFs or nanocarriers that target
pathological hallmarks (for example, stimuli-responsive metal

nanoparticles enable target-specific drug release in diseased

neurons) (Behera et al., 2023). Such systems are often
multifunctional, capable of concurrent therapeutic and
diagnostic (theragnostic) roles or combined actions. In

addition, pairing metal nanoparticles with chelators or other
metal complexes can yield synergistic, multi-pronged effects
(Behera et al., 2023). Furthermore, incorporating drugs into
metal complexes or nanoscale metal frameworks can improve
bioavailability and delivery to the brain.

Nanosystems have been shown to ferry drugs across the BBB
more effectively than free small molecules (Mistretta et al., 2023),
addressing a major limitation in neurodegenerative treatment.
Customizing the surface properties of metallic nanoparticles
further
demonstrated with gold nanoparticles

enhances their specificity and biocompatibility, as

achieving targeted,
prolonged action with minimal immune response (Chiang
et al., 2024).

Despite these advantages, significant challenges remain
before metal-based therapeutics can fully realize their
potential. Toxicity is a foremost concern with many metal
compounds that can induce off-target effects or oxidative
damage if not carefully controlled. For instance, certain
tend to
or aggregate in vivo, which may trigger neuroinflammation
toxicity  (Shahalaei et al, 2024).
stability of these agents physiological

conditions is crucial; premature degradation or uncontrolled

metal nanoparticles release free metal ions
and  neuronal
Ensuring under
metal release can not only reduce efficacy but also heighten
side effects.

BBB penetration represents another double-edged sword. While
innovative nanoformulations are being designed to cross the BBB, it
is challenging to achieve sufficient brain uptake without disrupting
the BBB’s integrity or causing systemic issues (Shahalaei et al., 2024).
Careful engineering is required so that delivery vehicles transit into
the brain parenchyma efficiently yet safely. Moreover, the clinical
translation of metal-based drugs is impeded by gaps in
understanding their long-term behavior in the brain. For
instance, nanoparticles accumulating in neural tissue might have
unknown chronic effects (Shahalaei et al., 2024). Rigorous in vivo
studies and safety assessments are needed to address these

uncertainties.
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Looking ahead, research is actively focused on overcoming these
hurdles and enhancing the therapeutic promise of metal-based
interventions. One key direction is improving biocompatibility:
by using biologically friendly coatings or green synthesis
methods, scientists aim to produce metal nanoparticles that
evade immune detection and minimize toxicity (Chiang et al,
2024). Such surface modifications can also bolster particle
stability and circulation time, ensuring the therapeutic payload
reaches its target (Tan et al., 2025).

Another future avenue is personalized medicine. Given the
patient-to-patient variability in metal metabolism and disease
progression, tailoring treatments (for example, dosing of metal
chelators or selecting specific metal-based agents) to an
individual’s genetic and biochemical profile could maximize
efficacy and safety. In parallel, researchers are developing hybrid
nanoplatforms that combine metal components with organic or
biological molecules to harness the best attributes of each. These
hybrids such as metal-polyphenol networks or metal-loaded
exosome mimics offer the flexibility to integrate targeting ligands,
responsive release mechanisms, and multi-drug payloads in one
system, addressing multiple disease pathways simultaneously
(Shahalaei et al., 2024).

Finally, the integration of artificial intelligence (AI) is poised to
accelerate progress in this field. AI-driven drug discovery platforms
can rapidly screen and optimize metal-based compounds, predicting
properties like BBB permeability and toxicity before clinical testing
(Nehmeh et al., 2024). By expediting the identification of promising
metal complexes or nanomaterials and guiding rational design,
machine learning tools shorten  the

may significantly

development cycle for next generation neurotherapeutics.

5 Conclusion

In conclusion, metal-centered strategies are expanding the
therapeutic toolkit for NDD, offering hope for more effective
their
diligently addressing

treatments. By capitalizing on specificity and

multifunctionality while safety and
delivery challenges, future research will pave the way for
that

uniting chemists,

metal-based medicines can modify disease course.

Interdisciplinary efforts neuroscientists,
clinicians, and data scientists will be essential to translate
these innovative approaches from bench to bedside, ultimately
unlocking new avenues to combat disorders like AD, PD,

HD and ALS.
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