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Exact analytical and closed-form solutions to the transient diffusion in bi-layer composites
with external mass transfer resistance are reported. Expressions for the concentrations
and the mass permeated are derived in both the Laplace and time domains through the
use of the Laplace transform Inversion Theorem. The lead and lag times, which are often of
importance in the characterization of membranes and arise from the analysis of the
asymptotic behavior of the mass permeated through the bi-layer composite, were also
derived. The presented solutions are also compared to previously derived limiting cases of
the diffusion in a bi-layer with an impermeable wall and constant concentrations at the
upstream and downstream boundaries. Analysis of the time lag shows that this membrane
property is independent of the direction of flow. Finally, an outline is provided of how these
transient solutions in response to a step function increase in concentration can be used to
derive more complex input conditions. The importance of adequately handling boundary
layer effects has a wide array of applications such as the study of bi-layers undergoing
phenomena of heat convection, gas film resistance, and absorption/desorption.
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1. INTRODUCTION

The mathematical description of the transient behavior of a composite membrane and, in particular,
bi-layer composite membranes, has important implications in drug release devices from planar
matrix devices (Cabrera et al., 2006; Cabrera and Grau, 2007), in drug delivery through the skin
(Ghanem et al., 1987; Couto et al., 2014), in the study of the cornea (Cooper and Kasting, 1987; Couto
et al., 2014), studying the role of membranes in keeping compounds from contaminating the
surroundings (Kalbe et al., 2002; Edil, 2003), in vacuum insulation panels that creates high
performance thermal insulation (Garnier et al., 2011), mass diffusion of neutral species in the
fabrication of multi-layer thin-film (Goldner et al., 1992), metallic thermal protection system (Gu
et al., 2016), semiconductor composite in bi-layer organic solar cells (Hatton et al., 2007),
biodegradable bi-layer film barrier using gelatin and chitosan (Rivero et al., 2009), gas transport
in inorganic/organic hybrid structures (Jang and Han, 2009), and gas barrier of organic-inorganic
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hybrid coatings (Minelli et al., 2010), When modeling the
phenomena of heat conduction or gas permeation, the
exchange of heat or chemical at the surfaces contacting with
the medium are often assumed to occur “infinitely” fast.
Mathematically, this translates into the assumption that the
temperature (for heat conduction) or concentration (for mass
transfer) of the bi-layer at the surface equates that of the
contacting medium, simplifying greatly the calculations
necessary to find an analytical solution. The contacting
medium is generally considered to be maintained at a constant
temperature or concentration. To account for boundary effects as
shown in Figure 1A, whether this means heat convection,
diffusion-limited reaction at the surface or mass transfer
resistance, the constant boundary condition can be altered to:

dC
dt

� B(C − C∞) (1)

with C∞ being the concentration of the solution and assuming
that the volume of the contacting solution is of large enough
volume that its concentration is invariant. For example, in fuel
resistance of rubber where phenomena of absorption of the fluid
on the exposed side of the rubber membrane and desorption on
the other side play important roles the transient behavior of this
membrane (Forte and Leblanc, 1992). Frisch showed the benefits
of a boundary-layer resistance in the form of a protective film layer
on top of polymer membranes (Frisch et al., 1984). Boundary
effects are seen in food packaging with polymer films to reduce the
permeation of oxygen or water (Smith and Peppa, 1991; Laoubi
and Vergnaud, 1996). A film barrier can also form during
dispersed-drug release from planar matrices (Zhou and Wu,
2002) that, without adequate accounting of these boundary
effects, leads to an underestimation of the drug amount
released into the medium. Another important implication of
boundary layers appear in the context of rotating disc
electrodes (Levich, 1962; Gough and Leypoldt, 1980).

There have been considerable efforts in developing solutions
to bi-layer systems involving the mass-transfer limited boundary
conditions (Equation 1). Ramkrishna and Amundson
(Ramkrishna and Amundson, 1974), as well as (Mikhailov
et al., 1983), have proposed solution schemes based on solving
the eigenvalues and eigenfunctions of a Sturm-Louiville type
system to study the transient heat conduction behavior of
composites undergoing convection type boundary conditions.
Antonopoulos and Tzivanidis (Antonopoulos and Tzivanidis,
1996) outlined a procedure to evaluate transient heat
conduction in n-layer composites with a convection type of
boundary condition combining the separation of variables
technique with an orthogonal expansion of the functions. Yet,
the analytical, as opposed to numerical, evaluation of the
eigenvalues, eigenfunctions, and the integral relationships
arising from these approaches generally remains challenging
for a bi-layer composite undergoing convective effects. This
technique was further developed to investigate the
approximate behavior of heat conduction with combined
radiative and convective boundary conditions (Miller and
Weaver, 2003) through a linearization of the radiative effects.
An ‘analytical’ method of this problem was also developed by de
Monte (de Monte, 2000; de Monte, 2002) based on Vodicka’s
approach and applied to one-dimensional media to study
unsteady heat conduction and extending to n-layers. We also
note related works by Goldner et al. (1992) who obtained the
analytical equations to a bi-layer diffusion system subjected to an
impenetrable wall boundary using the Inversion theorem of
Laplace transforms. Subramanian and White (Subramanian
and White, 2001) derived an exact solution to a bi-layer
composite undergoing galvanostatic boundary conditions using
a modified separation of variables method.

In addition to the importance of modeling the transient
response in a permeation process, especially for slowly
diffusing processes, the “integral permeation” method has

FIGURE 1 | (A) Schematic of a bi-layer composite with mass transfer resistance and (B) representative examples of the mass permeated or, equivalently, the
integrals of the upstream and downstream fluxes J (shown in red and blue, respectively).
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played a key role in the determination of the physical properties
of a membrane, and in particular, its constitutive diffusion
coefficients and permeability constants (Rutherford and Do,
1997). By dividing the permeation process into its transient
and steady-state components as shown in Figure 1B, one can
represent the transient component by a “time lag” parameter.
This concept was introduced in the work of Daynes (1920) and
Barrer and Rideal (1939). These findings outlined the now widely
used relationship of the time lag (tlag) for a single layer with
assumptions of constant concentrations maintained on either
side of a single-layer material:

tlag � L2

6D
(2)

with L being the thickness and D being the diffusion coefficient of
the material. Also in Figure 1B, the steady-state components of
the upstream and downstream mass permeated are extended
using the dashed lines and their x-axis intercepts represent the
lead time t+ and the time lag tL. The forward mean first passage
time is provided by t+ � tL − t+. The time lag technique has since
been expanded to permeation with non Fickian diffusion,
polymer membranes, reaction, metallic solids, through catalyst
particles among other things (Rutherford andDo, 1997). Notably,
there has been an extended amount of work on the
characterization of composite membranes using the time lag
approach (Jaeger, 1950; Frisch, 1957, 1958; Frisch, 1959;
Pollack and Frisch, 1959; Ash et al., 1963, 1965; Siegel, 1991;
Liang and Siegel, 2006; Al-Qasas et al., 2014).

In this work, the closed-form and exact transient solutions to a
single-layer material and a bi-layer composite undergoing mass
transfer resistance at its outside boundaries are derived using the
Laplace Inversion Theorem (Jaeger, 1950). The time lag and
steady-state components of the transient response to an input
step function are also derived. This work aims to support the
characterization of bi-layer composites that have significant
boundary layer effects. The presented solutions are also shown
to be a generalization to various existing solutions in the literature.
In addition to the similarities between diffusion and heat
conduction, we also show how the solution forms presented in
this work can be used to study the transient responses of bi-layer
composites to inputs more complex than the usual step function.

2. THEORETICAL ANALYSIS

A schematic of the problem is shown in Figure 1A. For both the
single-layer and bi-layer derivation, the flowwithin the composite
is assumed to follow Fick’s second law with mass transfer
resistance occurring at the external boundaries. The assumed
direction of the flow is from left to right.

2.1. Diffusion in a Single-Layer with Transfer
Resistance
Let us note that the following derivation of the single-layer is
equivalent to that of Ash (2001). The key differences with that
work are the use of different constant definitions and the

application of the nondimensionalization of the parameters.
This subsection was written in an effort to provide results
that are consistent between the previously derived single-layer
and the newly derived bi-layer solutions as well as making
comparisons with other results in the literature under one set
of notations.

2.1.1. Single-Layer Diffusion with Upstream and
Downstream Transfer Resistance
The phenomenon of diffusion is modeled using “Fick’s 2nd Law,”
i.e., Crank (1979):

zC
z t

� D
z2C
z x2

(3)

subject to the boundary and initial conditions:

C(x, 0) � 0, 0≤ x ≤ L, (4)

zC
zx

(0, t) � B1(C(0, t) − C0), (5)

and

zC
zx

(L, t) � −B2C(L, t). (6)

[B1 � k1
D1

,B2 � k2
D2

] (7)

The conventionC(x,t) is used throughout the paper. B1 and B2 are the
Biot numbers for systems with heat conduction undergoing heat
convection at the outside boundaries, the mass transfer Biot numbers
in mass diffusion processes or the reaction constant for a first-order
reaction. The Biot number is a quantity that relates the inner diffusion
to the mass transfer resistance at the surface. Let’s note that when
both B1 and B2 →∞, these conditions reduce the problem to that
with the analytical solution derived by Daynes (1920).

Dimensionless variables for the concentration, time, and
position are introduced:

c � C
C0
, τ � Dt

L2
, y � x

L
. (8)

The dimensionless quantity τ is also known as the mass Fourier
number, which can be thought as the ratio between the diffusive
transport rate and the storage rate. By using the introduced
dimensionless variables and transforming Equation 3 into the
Laplace domain, the relation with time is transformed into a
dependence on the complex variable s:

d2ĉ
dy2

� sĉ . (9)

The solution for ĉ, the Laplace-domain concentration, assumes
the form (q � �

s
√ ):

ĉ � a1e
qy + a2e

−qy (10)

and is subjected to the transformed boundary and initial
conditions:

dĉ
dy

(0) � B1(ĉ(0) − 1
s
), (11)
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and

dĉ
dy

(1) � −B2ĉ(1). (12)

Solving for ĉ yields the exact Laplace domain solution:

ĉ � B1q cosh[q(y − 1)] − B1B2 sinh[q(y − 1)]
s[(B2 + B1) q cosh(q) + (B1B2 + s) sinh(q)]. (13)

The mass permeated can be calculated as follow:

M � −D∫
0

t
dC
dx

dt (14)

and the corresponding dimensionless mass permeated is
provided by:

m ≡
M
C0L

� −∫τ

0

dc
dy

dτ. (15)

The dimensionless mass permeated expressions for the upstream

and downstream fluxes, m̂up[ � −1
s

d̂c
dy (0)] and

m̂down[ � −1
s

d̂c
dy (1)], are derived:

m̂up � B1[B2 cosh(q) + q sinh(q)]
sq[(B2 + B1) q cosh(q) + (B1B2 + s) sinh(q)] (16)

and

m̂down � B1B2

sq[(B2 + B1) q cosh(q) + (B1B2 + s) sinh(q)]. (17)

Applying the Inversion Theorem for Laplace transforms (Jaeger
and Carslaw, 1959), we find that the eigenvalues of the time-
domain solution are given by the roots of:

λn(B2 cos(λn) − λn sin(λn)) + B1(B2 sin(λn) + λn cos(λn)) � 0

(18)

and the time-domain solutions provided by Equations 19–21.

c � B1( − B2y + 1 + B2)
B1 + B1B2 + B2

−∑∞
n�1

2B1

λn

· [λn cos(λn(y − 1)) − B2 sin(λn(y − 1))]e−λn2τ
λn sin(λn)(B1 + B2 + 2) − cos(λn)(B1B2 + B1 + B2 − λ2n)

(19)

mup � B1B2τ

B1 + B1B2 + B2
−∑∞

n�1

2B1

λ2n

· [B2 cos(λn) − λn sin(λn)](1 − e− λ
2
nτ)

λn sin(λn)(B1 + B2 + 2) − cos(λn)(B1B2 + B1 + B2 − λ2n)
(20)

mdown � B1B2τ

B1 +B1B2 +B2
−∑∞

n�1

2B1

λ2n

· B2(1− e−λ2nτ)
λn sin(λn)(B1 +B2 +2)− cos(λn)(B1B2 +B1 +B2 −λ2n)

(21)

The time lag as described by Siegel (1991) for the single-layer
problem was given by:

τL � [DtL
L2

] � 1
6
⎛⎝3 − 2 − 6

B1B2

1 + 1
B1
+ 1

B2

⎞⎠. (22)

Using the work in Siegel (1991), the lead time was also derived:

τ+ � [Dt+
L2

] � 2 − 6
B1B2

1 + 1
B1
+ 1

B2

− 1
B2
. (23)

2.1.2. Single-Layer Diffusion With Constant Upstream
and Downstream Concentrations
By letting B1 →∞ and B2 →∞, the boundary conditions
simplify to c(0) � 1 and c(1) � 0. We show that one can
rederive the expressions found by Daynes (1920) with the
equations for the eigenvalues:

sin λn � 0→ λn � nπ, n ∈ Z, (24)

concentration:

c � 1 − y − 2∑∞
n�1

sin(λn(y − 1))e−λn2τ
λncos(λn)

� 1 − y − 2∑∞
n�1

sin(nπy) e−n2π2τ
nπ

, (25)

and downstream mass permeated:

mdown � τ + 2∑∞
n�1

(1 − e−λ
2
nτ)

n2π2cos(nπ) � τ − 1
6
− 2∑∞

n�1

(−1)ne−n2π2τ
n2π2

. (26)

Noting that letting τ→∞ and mdown � 0, one gets that τ � 1
6 or,

equivalently, that t � L2
6D.

2.1.3. Single-Layer Diffusion With Downstream
Transfer Resistance
Finally, letting B1 →∞, the following expressions are obtained:

c �1 + B2(1 − y)
B2 + 1

− 2

×∑∞
n�1

[λn cos(λn(1 − y)) + B2 sin(λn(1 − y))]e−λ2τ
λn[λnsin(λn) − (B2 + 1) cos(λn)] ,

(27)

mdown � B2τ

B2 + 1
− 2∑∞

n�1

B2(1 − e−λ
2
nτ)

λ2n[λnsin(λn) − (B2 + 1)cos(λn)], (28)

and

B2 sin(λn) + λn cos(λn) � 0. (29)

These expressions are equivalent to the solutions presented in
Gough and Leypoldt (1980).
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2.2. Diffusion in a Bi-layer With Transfer
Resistance
2.2.1. Bi-layer Diffusion With Upstream and
Downstream Transfer Resistance
The governing equations of the bi-layer system shown in
Figure 1A are provided by the Fick’s 2nd law:

Di
z2Ci

z x2i
� zCi

z t

Ci(xi, 0) � 0

⎫⎪⎪⎬⎪⎪⎭i � 1, 2 (30)

subject to the external boundary conditions:

zC1

z x1
(−L1, t) � k1

D1
[C1(−L1, t) − C0] (31)

zC2

z x2
(L2, t) � −k2C2

D2
(L2, t) (32)

and the interface boundary conditions:

D1
zC1

z x1
(0, t) � D2

zC2

z x2
(0, t) (33)

C2(0, t) � KC1(0, t). (34)

The upstream interface is set at x1 � L1 and the downstream
interface is located at x2 � L2. Equation 32 does not contain a
second term on the right-hand side (assumes that C∞ � 0) due to
C0 accounting for the difference between the upstream (left) and
downstream (right) side concentrations of the contacting medium,
as only the gradient makes up the driving force of the permeation
process. One can then simply shift the solutions by the value of the
downstream medium concentration. The interface boundary
condition in Equation 34 also allows for a mismatch between
the concentrations between the first and second layers of the bi-
layer through the constant parameter K. The following
nondimensional variables and parameters are introduced:

c1 � C1

C0
, c2 � C2

KC0
, y1 �

x1
L1
, y2 �

x2
L2
, τ � D1t

L21
(35)

κ � KL1D2

D1L2
, ρ �

���
D1

D2

√
L2
L1
,B1 � k1L1

D1
,B2 � k2L2

D2
. (36)

Noting that q � �
s

√
, with the complex variable s in the Laplace

domain, equivalent expressions are derived:

d2ĉ1
d y21

� q2ĉ1 (37)

d2ĉ2
d y22

� ρ2q2ĉ2 (38)

with the transformed boundary conditions:

d ĉ2
d y2

(1) � −B2ĉ2(1) (39)

d ĉ1
d y2

(−1) � B1[ĉ1(−1) − 1
s
] (40)

dc1
d y1

(0) � κ
d c2
dy2

(0) (41)

ĉ1(0) � ĉ2(0). (42)

The constant ρ2 results from the nondimensionalization of
Fick’s second law for the second layer using the
dimensionless time introduced in the nondimensionalization
of the first layer. This constant is also the ratio between the mass
Fourier number of the first layer and that of the second layer. κ
arises from the nondimensionalization of the flux at the
interface between the first and second layer. It relates to the
ratio between the Biot numbers of the two layers with the
assumption that the convective term is the same for both
layers. Thus, ρ and κ are dimensionless quantities that
quantify how the two layers relate to one another. The
thickness of each layer is normalized such that the
dimensionless thickness is 1. By solving the equations for
the variables c1 and c2, the exact solutions in the Laplace
domain are obtained by Equations 43 and 44.

ĉ1 � 1
s
B1[cosh(qy1)(B2 sinh(ρq) + ρq cosh(ρq)) − κρ sinh(qy1)(B2 cosh(ρq) + ρq sinh(ρq))][ sinh(q) cosh(ρq)(B1B2κρ + ρs) + cosh(q) sinh(ρq)(B1B2 + κρ2s)

+sinh(q) sinh(ρq)(B1κρ
2q + B2q) + cosh(q) cosh(ρq)(B1qρ + B2κρq) ]

(43)

ĉ2 � 1
s

B1[B2 sinh(ρq(1 − y2)) + ρq cosh(ρq(1 − y2))][ sinh(q) cosh(ρq)(B1B2κρ + ρs) + cosh(q) sinh(ρq)(B1B2 + κρ2s)
+sinh(q) sinh(ρq)(B1κρ

2q + B2q) + cosh(q) cosh(ρq)(B1qρ + B2κρq) ].
(44)

One can further calculate the dimensionless upstream and
downstream mass permeation expressions (as illustrated in
Figure 1B):

m̂up � 1
sq

B1[sinh(q)(B2 sinh(ρq) + ρq cosh(ρq)) + κρ cosh(q)(B2 cosh(ρq) + ρq sinh(ρq))][ sinh(q) cosh(ρq)(B1B2κρ + ρs) + cosh(q) sinh(ρq)(B1B2 + κρ2s)
+sinh(q) sinh(ρq)(B1κρ

2q + B2q) + cosh(q) cosh(ρq)(B1qρ + B2κρq) ]
(45)

and

m̂down � 1
sq

κρB1B2[ sinh(q) cosh(ρq)(B1B2κρ + ρs) + cosh(q) sinh(ρq)(B1B2 + κρ2s)
+sinh(q) sinh(ρq)(B1κρ

2q + B2q) + cosh(q) cosh(ρq)(B1qρ + B2κρq) ].
(46)

with the definitions:

mup ≡
Mup

C0L1
� −∫τ

0

dc1
dy1

(−1)dτ (47)

and

mdown ≡
Mdown

C0L1
� −κ∫τ

0

dc2
dy2

(1)dτ, (48)

respectively.
Applying the Inversion theorem, the eigenvalue relationship is

given by Equation 49 and the exact solutions for the
dimensionless concentrations by Equations 50 and 51. The
upstream and downstream mass permeated expressions are
provided by Equation 52. The denominator expression, D, is
provided by Equation 54.

sin(λn) cos(ρλn)(B1B2κρ − ρλ2n) + cos(λn) sin(ρλn)(B1B2

− κρ2λ2n) − sin(λn) sin(ρλn)(B1κρ
2λn + B2λn)

+ cos(λn) cos(ρλn)(B1ρλn + B2κρλn)
� 0 (49)
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c1 � −κB1B2y1 + B1(B2 + 1)
B1+ κB2 + B1B2(1+ κ)

−∑∞
n�1

2B1

λn

[ cos(y1λn)(B2 sin(ρλn)+ ρλn cos(ρλn))
−κρ sin(y1λn)(B2 cos(ρλn)− ρλn sin(ρλn))]e−λ2nτ

D

(50)

c2 � −B1B2y2 + B1(B2 + 1)
B1 + κB2 + B1B2(1 + κ)
−∑∞

n�1

2B1

λn

[B2sin(ρλn(1 − y2)) + ρλncos(ρλn(1 − y2))]e−λ2nτ
D

(51)

mup� κB1B2τ

B1+κB2+B1B2(1+κ)

−∑∞
n�1

2B1

λ2n

[ −sin(λn)(B2sin(ρλn)+ρλncos(ρλn))
+κρcos(λn)(B2cos(ρλn)+ρλnsin(ρλn))](1−e−λ2nτ)

D

(52)

mdown � κB1B2τ

B1 + κB2 + B1B2(1 + κ) −∑∞
n�1

2κρB1B2

λ2n

(1 − e−λ
2
nτ)

D
(53)

D � sin(λn) sin(ρλn)(B1B2(κρ2 + 1) + B1κρ
2 + B2 − ρ2λ2n(1 + κ))

−ρ cos(λn) cos(ρλn)(B1B2(κ + 1) + B1 + B2κ − λ2n(1 + κρ2))
+ρλn sin(λn) cos(ρλn)(B1(κρ2 + 1) + B2(1 + κ) + 2)

+λn sin(ρλn) cos(λn)(B1ρ
2(κ + 1) + B2(1 + κρ2) + 2κρ2)

(54)

Two representative examples of the transient concentration
expressions, c1 and c2, are presented in Figures 2A,B. The
first notable distinction between the two examples is that (a)
settles more quickly to its steady-state value. The primary
reason for this is that (b) has a stronger mass transfer
resistance occurring at the downstream boundary, acting
almost like an impermeable wall that limits the flux through
the bi-layer. Additionally, in (b), due to κ being of value 1, there
is no sharp difference in concentration behavior at the interface
between the two layers. In the case of (a), the value of 0.1 for κ
leads to a sharp contrast in the slope of the concentrations
between the two layers. Finally, the major contrast between
accounting for mass transfer resistance or not, lays in the fact
that the dimensionless concentrations at the upstream boundary
is not 1 nor is it 0 at the downstream boundary when the values
of B1 and B2 are finite values.

2.2.2. Bi-Layer Diffusion With An Impermeable Wall at
One End
There are a number of exact solutions that were previously
derived for both the single-layer and bi-layer materials.

The simplified solutions assuming B1 → +∞ and B2 → 0 are
given by:

c1�1

−∑∞
n�1

2(cos(ρλn) cos(y1λn)+κρsin(ρλn) sin(y1λn))e−λ2nτ[λn(κρ2+1) sin(λn) cos(ρλn)+ρ(κ+1)λnsin(ρλn)cos(λn)+κρsin(λn) sin(ρλn)−cos(λn)cos(ρλn) ]
(55)

and

c2�1−2

×∑∞
n�1

ρλncos(ρλn(1−y2))e−λ2nτ[λn(κρ2+1) sin(λn) cos(ρλn)+ρ(κ+1)λnsin(ρλn) cos(λn)+κρsin(λn) sin(ρλn)−cos(λn) cos(ρλn) ]
(56)

subject to the eigenvalues of:

−κρ sin(λn) sin(ρλn) + cos(λn)cos(ρλn) � 0. (57)

Let’s note that the denominator of the large fraction in both
concentration expressions can be further reduced to:

c1�1−∑∞
n�1

2(cos(ρλn)cos(y1λn)+κρsin(ρλn)sin(y1λn))e−λ2nτ
λn[(κρ2+1)sin(λn)cos(ρλn)+ρ(κ+1)sin(ρλn)cos(λn)]

(58)

and

c2�1−∑∞
n�1

2ρλncos(ρλn(1−y2))e−λ2nτ
λn[(κρ2+1)sin(λn)cos(ρλn)+ρ(κ+1)sin(ρλn)cos(λn)].

(59)

This solution not only assumes no flux at the downstream
boundary but also that the transfer at the upstream boundary
happens so quickly that the concentration there is essentially
constant. We note here that, when compared with the previous
work on this solution by Goldner et al. (1992), the eigenvalue
expression (Equation 57) looks slightly different. In the attempt
by the authors to simplify Equation 57 and divide the eigenvalue
expression by cos(λn)cos(ρλn), the authors omitted the possibility
that, in some cases, the eigenvalues can lead to term containing
the cosines to be 0, and thus leading to the tangent to be +∞.
However, this is only problematic in the scenario that such
eigenvalue would also make sin(λn) or sin(ρλn) to be 0.

A representative example of this type of bi-layer is shown in
Figure 2C. Most notably, the concentration is uniform across the
bi-layer at steady-state. If B1 is a finite value, then this steady-state
concentration would be less than 1. The κ value of 5 here makes it
such that the slope of the concentration in the first layer is sharper
than the second layer. This difference, however, fades over time as
the solution converges to steady-state.

2.2.3. Bi-Layer Diffusion With Constant
Concentrations on Either Side
This derivation was previously presented in the work of Jaeger
(1950). We simply show that by assuming that B1 → +∞ and
B2 → +∞, equivalent expressions can be derived through
simplifying the generalized bi-layer solutions:

Frontiers in Chemical Engineering | www.frontiersin.org January 2021 | Volume 2 | Article 6051976

Tran et al. Diffusion in Bi-Layer Composites

www.frontiersin.org
www.frontiersin.org
www.frontiersin.org


c1 �−κy1 +1
κ+1

−∑∞
n�1

2
λn

(sin(ρλn)cos(y1λn)−κρcos(ρλn)sin(y1λn))e−λ2nτ(κρ2 +1)sin(λn)sin(ρλn)−ρ(κ+1)cos(λn)cos(ρλn)
(60)

and

c2 �−y2 +1
κ+1
−∑∞

n�1

2
λn

sin(ρλn(1− y2))e−λ2nτ(κρ2 +1)sin(λn)sin(ρλn)−ρ(κ+1)cos(λn)cos(ρλn)
(61)

with the eigenvalues provided by the roots of:

κρ sin(λn)cos(ρλn) + cos(λn)sin(ρλn) � 0. (62)

An example of this well-known case is shown in Figure 2D. The
main characteristics are that the upstream concentration is always
1, the downstream concentration is always 0.

2.2.4. Extension of the Step Response Solutions to
Other Types of Input Responses
Using the Laplace expressions for both the single-layer and bi-
layer systems, the derivation of other types of input (e.g.,
oscillatory, exponential decay, etc.) can be found trivially by
factoring out 1s from the expressions in Equations 19,20,43, and

FIGURE 2 | Examples of transient diffusion in a bi-layer with or without external mass transfer resistance. In (E) and (F), the input responses are time-varying and the
properties of the composite are B1 � 50, B2 � 5, κ � 0.2, and ρ � 0.2.
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44 and replacing it with the Laplace s-domain function
representing the input of choice. Numerically inverting
Laplace solutions into the time-domain can be done through
various methods, some of which are outlined in Abate and
Whitt (2006).

Alternatively, one can apply the truncated time domain
convolution:

(f p g)(t) � ∫t
0

f (τ) g(t − τ)dτ

for f , g : [0,∞)→ IR.

(63)

While the time-domain expressions may be convoluted in nature,
the time-dependent elements of the solutions are relatively
simple. Thus, the convolution can be straightforwardly
calculated for many cases such as sine, cosine, or exponential
inputs.

Two representative examples are shown in Figures 2E,F. In
the first case (e) with u(t) � e−0.1τ , the exponential decay function
starts at a high value, leading to an increase in concentration
throughout the bi-layer. As the driving force of the input decays
over time toward 0, the concentrations fall from high values
around τ � 1.69 and eventually approaches 0 across the two
layers. In the second case scenario with u(t) � 1 + cos(2τ), the
behavior of the bi-alyer for a more complex input made up of a
step function component and an oscillatory component is shown.
This shows that the step function solutions can be easily adapted
to handle more complex behaviors of the upstream “input” to the
system.

2.2.5. Time Lag Analysis
The steady-state portion of m can be obtained from the steady-
state portion of its transform, lims→ 0m̂(s) as shown in Jaeger
(1950). However, in this case, it remains quite challenging to
derive for the bi-layer problem using that technique. Instead, the
method outlined in Siegel (1991) is applied that makes analogies
to the concepts in electrical engineering treating layers in a
composite material like resistances in series. By assuming that
the upstream and downstream boundaries are treated as layers
of no thickness, the permeability P of the first and second layers
take the following forms:

1
P(01) � 1 + 1

B1
,

1
P(23) �

1
κ
(1 + 1

B2
), (64)

with (01) representing the first layer and (23) representing the
second layer. Using previous results that were obtained in the
work of Siegel (1991), the time lags of the uncombined two layers
are provided by:

τ(01)L � 1
6
(1 + 2

1 + B1
), τ(23)L � ρ2

6
(1 + 2

1 + B2
). (65)

Let’s note that the time lags are nondimensionalized such that
τ � D1t

L21
. The following expressions of forward mean first passage

time of the second layer τ(23)+ (defined as τ+ � τL − τ+, with τ+
being the lead time)

τ(01)+ � 1
2
, (66)

τ(23)+ � ρ2(1
2
+ 1
B2
), (67)

as well as the backward mean first passage time of the first layer
τ(01)− (defined as τ− � τL − τ−, with τ− being the backward lead
time)

τ(01)− � 1
2
+ 1
B1

(68)

are also introduced to derive the time lag of the bi-layer.
Applying the time lag (τL) expression for a series composite

Siegel (1991),

τL �
τ(01)L +τ(23)+

P(01) + τ(23)L +τ(01)−
P(23)

1
P01 + 1

P23
, (69)

the following expression for τL is obtained:

τL �
(1+ 1

B1)(16(1+ 2
1+B1)+ρ2(12+ 1

B2
))+ 1

κ(1+ 1
B2
)(16 ρ2(1+ 2

1+B2)+ 1
2+ 1

B1
)

1+ 1
B1
+ 1

κ(1+ 1
B2
) .

(70)

Similarly, the relationship in Siegel (1991) for the mean
passage time in a bi-layer composite is provided by:

τ+ � τ(01)+ + τ(23)+ + P(01)

P(23) [τ(01)+ + τ(01)− ] (71)

and

τ+ � 1
2
+ ρ2(1

2
+ 1
B2
) + 1

κ
(1 + 1

B2
). (72)

The lead time τ+ is then simply given by:

τ+ � τL − τ+. (73)

Figure 3 shows the time lags for both the single-layer and bi-layer
cases. In the single-layer case (a), which only depends on
dimensionless parameters B1 and B2, an axis of symmetry
(shown as a dotted white line) can be drawn across the
heatmap. It indicates that the time lag for the single-layer
system is independent as to whether the flow from the left to
right or right to left. A similar observation to the invariance of the
time lag with respect to flow direction can bemade for the bi-layer
system and is shown in (c) and (d). However, since the quantities
κ, ρ, and τL are all dependent on how the layers are ordered.
Given that ρ and κ are simply ratios between the first and second
layer, one simply needs to take the reciprocal of these values to
reverse the flow direction. For τL, one needs to transform from
the Fourier number of the first layer to that of the second layer,
which can be simply done through dividing τL by ρ2 or τ′L as in
Figure 3D.

In addition to the invariance to flow direction, it is also
interesting to point out that the time lag is greatly affected by
the values of B1 and B2. If both of these values are low, the time lag
can be extremely large which coincides with the expected
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behavior that having large mass transfer resistance at the surfaces
is not good for reaching steady-state permeation. This also shows
that, depending on the values of κ and ρ in the bi-layer case, it
may be easier to bring down the time lag by increasing one of the
Biot number rather than the other. This can be seen in Figure 3C,

for which it is easier to bring the time-lag down by increasing B2.
At the other end of the spectrum, high values for both B1 and B2
yield low time lag values.

In Figure 4, the steady-state and transient solutions for the
dimensionless mass permeation expressions are combined for

FIGURE 3 | Heat maps of the dimensionless time lag τL for (A) the single-layer and (B,C) bi-layer membranes with changing B1 and B2 values. The effect of
opposite direction for the permeate flux is shown in (D) for the same material properties described in (C).

FIGURE 4 | Examples of the time-dependent dimensionless mass permeated at the upstream (mup, in red) and downstream (mdown, in blue) boundaries for three
different bi-layer membranes.
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three different set of parameter values. The slopes of the
asymptotes are provided by the time-domain concentration
expressions in Equations 52 and 53. The lag time is provided
by Equation 70 and the lead time is calculated using Equation 73
applied to Equation 71 and Equation 72. Evidently, the slope of
the upstream and downstream steady-state solutions are the same
since the flux coming into the membrane needs to exit at an equal
rate or there would be accumulation within the bi-layer. This type
of graph is important because, oftentimes, it is easier in practice to
measure the mass permeated rather than the concentration value
at a fixed location. Given time series data of the mass permeated,
one can use the steady-state and transient solutions provided in
this work to calculate missing membrane property values of the
materials. In presented examples, it can be seen that the solution
that reaches steady-state has high values of both B1 and B2, an
observation that can also be seen in Figure 3. One can also use the
slopes of the steady-state solutions to find missing values by
noting, for example, that the steady-state slopes of the mass
permeated expressions do not depend on κ and proceed through
process of elimination.

3. CONCLUSION

There has been a large body of literature treating the problem of
diffusion in n-layer composites. Yet, the derivation of closed-form
solutions remain seldom and often limited to single-layer or bi-
layer systems due to the difficult and tedious nature of finding
such solutions. In this work, we presented analytical solutions to
the phenomena of diffusion in a bi-layer with mass transfer
resistance at the external boundaries for each of the layers as well
as the corresponding expressions for the asymptotes of the
upstream and downstream mass permeated. We showed how
these relates to previously derived solutions of diffusion in a bi-
layer with an impermeable wall as well as diffusion in a bi-layer
with constant concentrations on either side. The step response
solutions are also extended to time-varying inputs such as
exponentially decaying and oscillating inputs. Notably, both
the time-domain and Laplace domain solutions to the bi-layer
can be used through numerical inversion of the Laplace solution
or by applying a convolution on the provided time-domain
solutions.

Also, the mean first passage time that is the difference between
the lead and lag times does not depend on B1. Since the lead time is
dependent on the time lag, however, it is also dependent on all the
four dimensionless quantities B1, B2, κ, and ρ. It was also shown
that flipping the membrane materials around of the system has no
bearing on the time lag for the single-layer and the bi-layer.

When comparing the generalized solutions with the simplified
equations with constant concentrations on either side of the bi-
layer membrane, there are notably two additional parameters in
B1 and B2. It is likely that, in the absence of prior knowledge about
the system, one cannot easily fit all the parameters at once from
experimental data, especially when accounting for measurement
errors. Knowledge about B1 and B2 can be derived most easily
from studying the transient mass permeation in single-layer
experiments of each of the components of the bi-layer. This is
possible because the nondimensionalized lag time and the slope of
the mass permeation in a single-layer membrane only depend on B1
and B2. Using experimental data from the bi-layer, one can, for
example, use the fact that the slope of themass permeation expressions
are both independent of ρ. In this scenario, one can then use the lag
time τL of the bi-layer to find κ. Real quantities of thickness, L1 and L2,
are usually available or can be measured. Finally, the transient
behavior that is provided by the derived equations of the
generalized solutions to the bi-layer can be used to fit missing
parameters. The objective of this work is to bring more insights as
to how to characterize the permeation through bi-layers having non-
negligible mass transfer resistances at its external boundaries by
providing both the transient and steady-state analytical solutions.
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