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Uncertainties are widespread in the optimization of process systems, such as uncertainties
in process technologies, prices, and customer demands. In this paper, we review the basic
concepts and recent advances of a risk-neutral mathematical framework called
“stochastic programming” and its applications in solving process systems engineering
problems under uncertainty. This review intends to provide both a tutorial for beginners
without prior experience and a high-level overview of the current state-of-the-art
developments for experts in process systems engineering and stochastic
programming. The mathematical formulations and algorithms for two-stage and
multistage stochastic programming are reviewed with illustrative examples from
process industries. The differences between stochastic programming under
exogenous uncertainty and endogenous uncertainties are discussed. The concepts
and several data-driven methods for generating scenario trees are also reviewed.
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1 INTRODUCTION

Stochastic programming, also known as stochastic optimization (Birge and Louveaux, 2011), is a
mathematical framework to model decision-making under uncertainty. The origin of stochastic
programming dates back to the 1950s when George B. Dantzig, recognized as the father of the
simplex algorithm for linear programming, wrote the pioneer paper “Linear Programming under
Uncertainty” (Dantzig, 1955). In this pioneering paper, Dantzig described one of the motivations of
developing the stochastic programming modeling framework as “to include the case of uncertain
demands for the problem of optimal allocation of a carrier fleet to airline routes to meet an
anticipated demand distribution”. Another early work on stochastic programming can be found in
Beale (1955). From then on, stochastic programming has evolved into amajor area of research for the
mathematical programming and operations research community. A significant number of
theoretical and algorithmic developments have been made by the mathematicians, which are
summarized in the classical textbooks (Birge and Louveaux, 2011; Shapiro et al., 2014). With the
increase in the maturity of algorithmic and computational methods, stochastic programming has
been applied to a broad spectrum of problems (Wallace and Ziemba, 2005) including financial
planning, electricity generation, supply chain management, mitigation of climate change, and
pollution control, among many others.

Process systems engineering (PSE) is an area of chemical engineering that focuses on the
development and application of modeling and computational methods to simulate, design,
control, and optimize processes (Sargent, 2005). Uncertainties are prevalent in the optimization
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of process systems, such as prices and purity of raw materials,
customer demands, yields of pilot reactors, etc. The marriage of
stochastic programming with PSE seems to be a natural alliance.
However, the first application of stochastic programming in PSE
took place a decade after Dantzig wrote his first paper. The
earliest paper that we can find is the paper by Kittrell andWatson
(1966) where the authors applied stochastic programming to the
optimal design of proces equipment under uncertain parameters.
The reason that prohibited researchers in PSE to apply stochastic
programming is that computational resources were limited in the
early days and stochastic programming models are much more

difficult to solve than their deterministic counterparts. After the
1990s, with the improvement of commercial mathematical
programming software, e.g., solvers like CPLEX (Lima, 2010),
and computer hardware, there is an increasing interest to apply
stochastic programming to process systems applications. In
Figure 1, we survey the number of papers with stochastic
programming as the main topic published in four mainstream
PSE journals and conferences, Computers and Chemical
Engineering, Computer Aided Chemical Engineering,
Industrial and Engineering Chemistry Research, and AIChE
Journal, from 1990 to September 1st, 2020. There is a

FIGURE 1 | The number of papers published in journals including Computers and Chemical Engineering, Computer Aided Chemical Engineering, Industrial and
Engineering Chemistry Research, and AIChE Journal from 1990 to September 1st, 2020 (Data obtained from Web of Science).

TABLE 1 | Summary of representative works that use stochastic programming for PSE applications.

Work Application Sources of uncertainty

Gupta and Maranas (2003) Supply chain planning Demand
Kim et al. (2011) Biomass supply chain network Supply, demands, prices, processing technologies
Guillén-Gosálbez and Grossmann (2009) Chemical supply chain Life cycle inventory
Gebreslassie et al. (2012) Hydrocarbon biorefinery supply chains Supply, demand
Liu and Sahinidis (1996) Process planning Supply, demand
Pistikopoulos and Ierapetritou (1995) Process design Supply, demand
Acevedo and Pistikopoulos (1998) Process synthesis Supply, demand
Goel and Grossmann (2004) Offshore gas field developments Gas reserves
Zeballos et al. (2014) Design and planning of supply chain Supply, demand
Levis and Papageorgiou (2004) Capacity planning in pharmaceutical industry Clinical trial outcomes
Karuppiah and Grossmann (2008) Synthesis of water networks Contaminants concentration, removal efficiency
Colvin and Maravelias (2008) Clinical trial planning Clinical trial outcomes
Li et al. (2011a) Natural gas production network design and operation Quality of natural gas
Sand and Engell (2004) Real-time scheduling of batch plant Processing time, yields, capacity, demand
Liu et al. (2010) Polygeneration energy systems design Price, demand
Paules IV and Floudas (1992) Synthesis of heat-integrated distillation Feed composition and flowrate
Chu and You (2013) Integrated scheduling and dynamic optimization Process uncertainty, e.g., kinetic parameters
Ye et al. (2014) Production scheduling of steelmaking Demand
Zhang et al. (2016) Scheduling of power-intensive processes Electricity price
Legg et al. (2012) Gas detector placement Leak locations, weather conditions
Han and Lee (2012) Carbon capture and storage infrastructure design CO2 emissions, product prices, operating costs
Zavala (2014) Control of natural gas networks Demand
Zeng and Cremaschi (2018) Shale gas infrastructure planning Production
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significant growth in the number of papers in this surveyed time
horizon, with around 30 papers per year after the 2010s.

The applications of stochastic programming are also
widespread in the PSE community. In Table 1, some highly
cited papers from the four PSE-related journals that apply
stochastic programming are reported. The applications have a
very broad temporal scale, ranging from long-term design and
planning problems to short-term scheduling and control
problems. In terms of industrial sectors, the listed papers in
Table 1 have both traditional industrial sectors, such as
petroleum, natural gas, pharmaceutical, chemical, etc., and
new sectors, such as biofuels, carbon capture, etc. The
uncertainties that are considered in those applications include
prices, supply, and concentration of raw materials, demands of
final productions, process technologies, clinical trial outcomes.

Given the increasing popularity of stochastic programming in
the PSE community, this paper aims to give an overview of basic
modeling techniques and algorithms for stochastic programming
as well as a high-level description of the recent contributions
made by the PSE community to a non-expert audience. For
readers interested in the recent mathematical developments in
stochastic programming, we refer to the review papers by
Sahinidis (2004); Küçükyavuz and Sen (2017); Torres et al.
(2019).

This paper is organized as follows. In Section 2, we provide an
overview of mathematical programming and optimization under
uncertainty. In Section 3, we introduce the concepts,
mathematical formulations, and algorithms of two-stage
stochastic programming. In Section 4, we introduce an
extension of two-stage stochastic programming, multistage
stochastic programming. In Section 5, the techniques for
multistage stochastic programming under endogenous
uncertainty are reviewed. In Section 6, we review data-driven
methods for generating scenario trees. We draw the conclusion in
Section 7.

2 OPTIMIZATION UNDER UNCERTAINTY

The decision-making process is normally modeled as an
optimization problem. A generic optimization problem is
represented in the following succinct form in Eq. 1 where we
have some continuous variables x, to represent the decisions
being made, (e.g. sizing decision of a reactor), 0–1 variables y to
represent the discrete choices, (e.g. select a given reactor or not),
an objective function f to minimize or maximize, (e.g. to
minimize the total cost), and some constraints g, h, that the
variables have to satisfy, (e.g. the mass balance).

min
x,y

f (x, y; θ)
s.t. g(x, y; θ)≤ 0

h(x, y; θ) � 0

x ∈ Rnx , y ∈ {0, 1}ny (1)

Variables x are continuous variables with dimension nx, which
can take real values. Variables y are binary variables with

dimension ny, which can only take values 0 or 1. Binary
variables are usually used to represent logic relations or
choices e.g., whether to install a given chemical plant or not.
Vector θ represents parameters involved in the optimization
problem, such as product demand, unit costs of some
processes. If we assume that these parameters are known with
certainty, the problem Eq. 1 is a deterministic optimization
problem. A deterministic optimization problem can be
classified into several categories depending on the forms of f,
g, h, x, y.

• some of f, g, h, are nonlinear functions. Problem Eq. 1 is a
mixed-integer nonlinear program (MINLP).

• f, g, h are all linear functions. Problem Eq. 1 becomes a
mixed-integer linear program (MILP).

• some of f, g, h, are nonlinear functions and there is no y
variable, i.e., ny � 0. Problem Eq. 1 becomes a nonlinear
program (NLP).

• f, g, h, are linear functions and there is no y variable, i.e., ny �
0. Problem Eq. 1 becomes a linear program (LP).

The four different mathematical programs, MINLP, MILP,
NLP, LP, are chosen depending on the nature of the problem. For
problems in chemical engineering, nonlinear equations are often
used to describe thermodynamic or kinetic behavior. Integer
variables can be used to describe process synthesis problems
e.g., a binary variable can describe whether a given distillation
column exists or not in a chemical flowsheet. For a detailed
treatment of deterministic optimization methods, we refer to the
textbook by Grossmann (2021).

In deterministic optimization models, parameters θ are
assumed to be known. However, in practice, uncertainties
are prevalent in process systems due to inaccurate
measurement, forecast error, or lack of information. For
example, uncertainties in supply chain management can
arise from future customer demand, potential network
disruption, or even the spread of a pandemic. Failing to
consider uncertainties in the decision-making process may
lead to suboptimal or even infeasible solutions. To hedge
against the uncertainties in process systems, several
mathematical frameworks have been used by the PSE
community including stochastic programming, chance-
constrained programming (Li et al., 2008), and robust
optimization. (Lappas and Gounaris, 2016). The three
approaches are different in their degrees of risk aversion
and ways of characterizing uncertainties. Stochastic
programming (SP) is a risk-neutral approach, which seeks
to optimize the expected outcome over a known probability
distribution. Chance-constrained programming can be seen as
solving a stochastic program with some probabilistic
constraints, which specify that some constraints with
uncertain parameters are satisfied with a given level of
probability. For example, a chance constraint can specify
that a budget/cost that should not exceed a certain
threshold. Chance constrained programming offers
modeling flexibility to deal with reliability issues and have
important connections with risk management. Robust
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optimization is another risk-averse approach, which seeks to
optimize the “worst-case” over a pre-defined uncertainty set.
Robust optimization problems typically involve min-max type
of operators. A summary of the three approaches is shown in
Table 2.

Besides these three approaches, there are a number of
mathematical frameworks to model decision-making under
uncertainty, such as Markov Decision Process (MDP). Powell
(2019) unifies 15 communities in optimization under uncertainty
in a single framework. Reviewing all the 15 approaches is outside
the scope of this paper. Interested readers can refer to the relevant
papers (Powell, 2019, Powell, 2016).

3 TWO-STAGE STOCHASTIC
PROGRAMMING

Two-stage stochastic programming is a special case of stochastic
programming. In this section, we describe the mathematical
formulations, algorithms and illustrative examples for two-
stage stochastic programming.

3.1 Two-Stage Stochastic Mixed Integer
Linear Programs
For simplicity of presentation, we fist consider stochastic MILP
problems.

3.1.1 Mathematical Formulation
In stochastic programming, it is assumed that the probability
distributions of the uncertain parameters are known a priori. The
uncertainties are usually characterized by some discrete
realizations of the uncertain parameters as an approximation

to the real probability distribution. For example, the realizations
of the demand for a product can have three different values which
represent high, medium, and low demand, respectively. Each
realization is defined as a scenario. The objective of stochastic
programming is to optimize the expected value of an objective
function, (e.g. the expected cost) over all the scenarios.

A special case of stochastic programming is two-stage
stochastic programming (Figure 2). Specifically, stage one
decisions are made ‘here and now’ at the beginning of the
period, and are then followed by the resolution of uncertainty.
Stage two decisions, or recourse decisions, are taken ‘wait and see’
as corrective action at the end of the period. One common type of
two-stage stochastic program is mixed-integer linear program
presented in Eq. 2.Ω is the set of scenarios. τω is the probability of
scenario ω. x represent the first-stage decisions. yω represent the
second-stage decisions in scenario ω. The uncertainties are
reflected in the matrices (vectors), Wω, hω, Tω shown in Eq. 2.
In the literature, Wω is called the “recourse matrix”; Tω is called
the “technology matrix”. On the right of Figure 2, an example of a
“scenario tree” that has three scenarios with uncertain hω is used
to represent the realizations of uncertainties on the right
hand side.

For problem Eq. 2, both the first and the second stage
decisions are mixed-binary. Let I � {1, 2, . . . , n} be the index
set of all the first stage variables. I14I is the subset for indices
of the binary first stage variables. Let J � {1, 2, . . . ,m} be the index
set of all the second stage variables. J14J is the subset for the
indices of the binary second stage variables. xub is a vector that
represents the upper bound of all the first stage variables. yubω is a
vector that represents the upper bound of all the second stage
variables. The problem described by Eq. 2 is a two-stage
stochastic mixed-integer linear program (TS-MILP). If both J1
and I1 are empty sets, Eq. 2 reduces to a two-stage stochastic

TABLE 2 | Summary of stochastic programming, chance-constrained programming, and robust optimization.

Method Degree
of risk aversion

Characterization
of uncertainty

Stochastic programming Risk neutral Probability distribution
Chance-constrained programming Risk averse Probability distribution, risk level
Robust optimization Worst case scenario Uncertainty set

FIGURE 2 | Two-stage problem: conceptual representation (left); scenario tree (right) where x represents the first stage decisions, yω represents the stage two
decisions for scenario ω. τω, hω represent the probability and the uncertain right hand side of scenario ω, respectively.
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linear programming problem (TS-LP). Eq. 2 is often referred to as
the deterministic equivalent or the extensive form of the two-stage
stochastic program since Eq. 2 can be solved in the same way as if
we were solving a deterministic optimization problem.

min cux + ∑
ω ∈ Ω

τωd
u
ω yω

s.t. Ax ≤ b
Wωyω ≤ hω − Tωx ∀ω ∈ Ω
x ∈ X, X � {x : xi ∈ {0, 1},∀i ∈ I1, 0≤ x ≤ xub}
yω ∈ Yω∀ω ∈ Ω, Yω � {yω : yωj ∈ {0, 1},∀j ∈ J1, 0≤ yω ≤ yubω }.

(2)

3.1.2 Process Network Problem
To show how two-stage stochastic programming can be applied
to a process systems engineering problem, we provide a process
network design problem under demand uncertainty. Through
this example, we also aim to show that the solutions obtained
from a stochastic program can be different from solving a
deterministic problem where the uncertain parameters are
fixed at their expected value.

Consider producing a chemical C which can be manufactured
with either process 2 or process 3, both of which use chemical B as
raw material. B can be purchased from another company and/or
manufactured with process 1 which uses A as a raw material. The
demand for chemical C, denoted as d, is the source of uncertainty.
The superstructure of the process network is shown in Figure 3,
which outlines all the possible alternatives to install this chemical
plant. The alternatives include: 1) All three processes are selected.
2) A true subset of the three processes are selected. 3) None of the
three processes are selected.

Following the time realization framework described in Figure 2,
the problem is formulated as a two-stage stochastic program. The
chemical plant has to be first installed before the demand for the
product is realized and the plant starts production. Therefore, the first-
stage decisions are investment decisions on the three processes, which
include binary variables Yi to denote whether process i is selected and
continuous variables CAPi to denote the capacity of process i for i � 1,
2, 3. We assume that after the plant is installed, the demand for the
product is realized. Based on the realizations of the demand, different
recourse actions on how to operate the installed plant can be taken,
i.e., the second-stage decisions are the material flows. We denote the
scenarios as ω and explicitly state the dependency of the second-stage
decision on them by presenting them as functions of ω.

Variables PA(ω), PB(ω) represent the purchase amount of
chemical A and B, respectively. Other material flows for chemical
B and C are shown in the superstructure in Figure 3. The MILP
formulation is shown as follows.

max − (10Y1 + 15Y2 + 20Y3 + CAP1 + 1.5CAP2 + 2CAP3)
+ E

d(ω) ∼ P
[ − 4.5PA(ω) − 9.5PB(ω) − 0.5PA(ω) − 0.5B2(ω)

− 0.5B3(ω) + 25C2(ω) + 25C3(ω)]
(3a)

s.t. CAP1 ≤U · Y1, CAP2 ≤U · Y2, CAP3 ≤U · Y3, Y2 + Y3 ≤ 1
(3b)

PA(ω)≤CAP1, B2(ω)≤CAP2, B3(ω)≤CAP3 ∀ω (3c)

B1(ω) � 0.9PA(ω), C2(ω) � 0.82B2(ω),
C3(ω) � 0.95B3(ω) ∀ω

(3d)

B1(ω) + PB(ω) � B2(ω) + B3(ω) ∀ω (3e)

C2(ω) + C3(ω)≤ d(ω) ∀ω (3f)

Yi ∈ {0, 1} ∀i ∈ {1, 2, 3} (3g)

The objective is maximizing the expected profit, which
includes the expected income obtained from selling the final
product [25C2(ω) + 25C3(ω)], minus the total cost that includes
the fixed (10Y1 + 15Y2 + 20Y3) and variable (CAP1 + 1.5CAP2 +
2CAP3) investment costs in stage one, the expected cost to
purchase chemical A and B in different scenarios
[4.5PA(ω) + 9.5PB(ω)]) the expected operating cost
[0.5PA(ω) + 0.5B2(ω) + 0.5B3], which is proportional to the
amount of input to each process, i.e., PA(ω), B2(ω), B3(ω).

Suppose we have a 3-scenario problem where the demands
d(ω) take values d(ω1) � 8, d(ω2) � 10, d(ω3) � 12, with
probabilities τ(ω1) � 0.25, τ(ω2) � 0.5, τ(ω3) � 0.25,
respectively. The optimal first-stage decisions are to select
processes 1 and 3 with capacities 11.70 and 12.63, respectively,
which is shown in Figure 4I. Note that the first-stage decisions
are made “here-and-now” and thus are the same for all three
scenarios. However, different second-stage decisions are taken for
different scenarios as shown in Figure 4II. When the demand is
low d(ω1) � 8, processes 1 and 3 are not operating at their full
capacity. For d(ω2) � 10, process 1 is operating at full capacity
but process 3 is not. For d(ω3) � 12, both installed processes are
operating at full capacity. The chemical A produced by process 1
is not able to satisfy the requirement of process 3. Therefore,
additional chemical B needs to be purchased from other vendors

FIGURE 3 | Superstructure for the process network problem.
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when the demand is high. The expected profit of the stochastic
program is 117.22. This optimal value of the stochastic program is
called the value of the recourse problem (RP) in the literature
(Birge and Louveaux, 2011) (RP � 117.22).

Other than using stochastic programming, an alternative
approach is to solve the deterministic model where the demand
is fixed at its mean value, i.e., set d � 10. The optimal solution for
this deterministic model is selecting processes 1 and 3 with
capacities being 11.70, and 10.52, respectively as shown in
Figure 4III. The only difference from the stochastic solution is
that the capacity of process 3 becomes lower. The reason is that the
deterministic model is “unaware” of the high demand scenario and
therefore makes the capacity of process 3 to be just enough to
satisfy d � 10. However, if we use the deterministic solution for d �
12, it will result in lost sales. We can fix the first stage solutions to
the optimal solutions and evaluate how it performs in the three
scenarios by solving each stage two problem separately. An
expected profit of 114.20 is obtained. This value is called the
expected result of using the expected solution (EEV).

One quantitative metric to evaluate the additional value
created by stochastic programming compared with solving the

deterministic model at mean value is a concept called the value of
the stochastic solution (VSS) (Birge and Louveaux, 2011). If the
problem is a maximization problem, VSS is defined as,

VSS � RP − EEV (4)

Therefore, the value of the stochastic solution is 117.22 −
114.20 � 3.02 for the process network problem.

3.1.3 Classical Decomposition Algorithms
One option to solve the stochastic MILP problems described by
Eq. 2 is to solve the deterministic equivalent problem Eq. 2
directly using commercial solvers like CPLEX, GUROBI.
However, solving Eq. 2 directly can be prohibitive when the
number of scenarios is large because the computational time can
grow exponentially with the number of scenarios. Due to the
difficulties in solving the deterministic equivalent problem,
decomposition algorithms such as Lagrangean decomposition
(Guignard, 2003; Oliveira et al., 2013) and Benders
decomposition (Van Slyke and Wets, 1969; Laporte and
Louveaux, 1993) can be applied to solve problem Eq. 2 more
effectively.

FIGURE 4 | (I) represents the optimal first stage decisions of the two stage stochastic program (II) describes the optimal stage one decisions and the stage two
decisions under scenarios ω1, ω2, ω3 (III) represents the optimal design decisions of the deterministic model.
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A high-level view of the ideas behind Benders decomposition
and Lagrangean decomposition is shown in Figure 5. The figure
shows the structures of the constraint matrices where the
columns correspond to the variables and the rows correspond
to the constraints. Both decomposition algorithms take advantage
of the “almost” block-diagonal structure shown in Figure 5.

Benders decomposition (Van Slyke and Wets, 1969; Laporte
and Louveaux, 1993), also referred to as L-shaped method in
stochastic programming literature, views the first stage variables
as “complicating variables” in the sense that if the first stage
variables x are fixed the rest of problem Eq. 2 has a block-diagonal
structure that can be decomposed by scenario and solved
independently. A schematic view of the “complicating
variable” idea behind Benders decomposition is shown in
Figure 5. Mathematically, the Benders decomposition
algorithm starts by defining a master problem with only the
first-stage decisions. After the master problem is solved, the first-
stage decisions are fixed at the optimal solution of the master
problem. Then the deterministic equivalent problem can be
decomposed into |Ω| subproblems where |Ω| denotes the
cardinality of the set of scenarios. The subproblems can be
solved in parallel and valid inequalities of x can be derived
and added to the Benders master problem. The master
problem is solved again and the algorithm iterates until the
upper bound and the lower bound converge. The lower bound
is the optimal value of the Benders master problem. The upper
bound is obtained by updating the best feasible solution. Benders
decomposition is able to converge in a finite number of steps
when the second-stage decisions are all continuous and the
second stage constraints are linear.

Lagrangean decomposition reformulates problem Eq. 2 by
making a copy of the first-stage decisions for each scenario and
adding non-anticipativity constraints (NACs) to ensure that the
first-stage decisions made for all the scenarios are the same. For
example, in a three-scenario problem, three copies of the x
variables, xω1, xω2, xω3, are made. NACs including xω1 � xω2, xω1 �
xω3 are added to guarantee the first-stage decisions are the same
for all three scenarios. A schematic view of Lagrangean

decomposition is also shown in Figure 5. After this
reformulation, the NACs are then dualized so that the
deterministic equivalent problem is decomposed into scenarios
that can be solved in parallel. The Lagrangean multipliers can be
updated using the subgradient method or the cutting plane
method (Oliveira et al., 2013). A lower bound can be obtained
at each iteration of Lagrangean decomposition which is the
summation of the optimal value of the Lagrangean
subproblems. However, the upper bound procedure of
Lagrangean decomposition is in general a heuristic. Therefore,
Lagrangean decomposition is not guaranteed to converge even for
the problems with continuous recourse. There is usually a
“duality gap” between the upper and the lower bound.

Although neither Benders nor Lagrangean decomposition are
able to solve Eq. 2 with integer recourse variables to optimality
with their classical form, recent developments have been made
that can solve Eq. 2 to optimality by extending these two
methods. A discussion of these recent advances can be too
technical and we refer interested readers to the review papers,
Torres et al. (2019); Küçükyavuz and Sen (2017), for details.

As for software implementations, the CPLEX solver has an
implementation of the Benders decomposition algorithm Bonami
et al. (2020), which can be accessed through most modeling
platforms, such as GAMS, C, C++, Pyomo (Hart et al., 2017),
Python, etc. DSP (Kim and Zavala, 2018) is a Lagrangean
decomposition-based solver for two-stage stochastic mixed-
integer programs, which provides interfaces that can read
models expressed in C code and the SMPS format (Gassmann
and Schweitzer, 2001). DSP can also read models expressed in
JuMP (Lubin and Dunning, 2015).

3.2 Two-Stage Stochastic Mixed-Integer
Nonlinear Programs
Most SP algorithms and applications investigated by the
Operations Research (OR) community are (mixed-integer)
linear problems as in Eq. 2. However, chemical engineering
applications can involve significant nonlinearities. Examples

FIGURE 5 | Schematic view of Benders decomposition (left; variables x are “complicating variables”), Lagrangean decomposition (right; the NACs are
“complicating constraints”).
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include the mass balance equations for the splitters and mixers in
a flowsheet, the MESH equations in distillation column design,
the Arrhenius equation in reactor modeling. Therefore,
developing stochastic programming models and algorithms for
(mixed-integer) nonlinear problems is of great interest to
chemical engineers doing PSE research. As a matter of fact,
the PSE community has been the main driver of developing
algorithms to efficiently solve stochastic MINLPs (Li et al., 2011b;
Li and Grossmann, 2019b; Cao and Zavala, 2019).

3.2.1 Mathematical Formulation
The mathematical formulation of a general two-stage stochastic
mixed-integer nonlinear program is shown in Eq. 5.

min f0(x) + ∑
ω ∈ Ω

τωf1(x, yω; θω)
s.t. g0(x)≤ 0

g1(x, yω; θω)≤ 0 ∀ω ∈ Ω
x ∈ X, X � {x : xi ∈ {0, 1},∀i ∈ I1, 0≤ x ≤ xub}

yω ∈ Yω, ∀ω ∈ Ω, Yω � {yω : yωj ∈ {0, 1},∀j ∈ J1, 0≤ yω ≤ yubω }
(5)

Problem Eq. 5 is an extension of Eq. 2 by considering
nonlinear objective and nonlinear constraints. Functions f0, f1,
g0, g1 in Eq. 5 are nonlinear functions. f1 and g1 are functions of

the first-stage decisions x, the second-stage decisions yω and the
uncertain parameters θω for scenario ω. Due to the nonlinear
objective and the nonlinear constraints, Eq. 5 is more difficult to
solve than Eq. 2. We will review the algorithms to solve Eq. 5 in
Subsection 3.2.3.

3.2.2 Stochastic Pooling Problem Example
We provide an example of the stochastic pooling problem
presented in Li and Grossmann (2019b). Pooling problem
arises in applications include wastewater treatment (Karuppiah
and Grossmann, 2008), crude oil refinery planning (Yang and
Barton, 2016), and natural gas networks planning (Li et al.,
2011a). Solving the pooling problem to optimality is of great
interest due to potential savings in the order of tens of millions of
dollars. In a pooling problem, flow streams from different sources
are mixed in some intermediate tanks (pools) and blended again
in the terminal points. At the pools and the terminals, the quality
of a mixture is given as the weighted average of the qualities of the
flow streams that go into them.

The pooling problem involves both design decisions and
operating decisions. The design decisions are which feed i and
which pool l to select from the superstructure shown in
Figure 6A, and the sizing decisions for the selected feed tanks
and pools. The second-stage decisions are the mass flowrates of
different streams, and the split fractions. The operator has to
operate the feeds and the pools to satisfy the quality specifications

FIGURE 6 | Stochastic pooling problem (A) is the superstructure of the pooling problem (B) is the optimal first-stage decisions for the pooling example (C)
represents the optimal mass flow rates in the low-demand scenario (left) and the high-demand scenario (right).
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at the product terminals j (Figure 6A). In this problem, we also
consider purchasing the feeds using three different types of
contracts i.e., fixed price, discount after a certain amount, and
bulk discount.

Before the design decisions are made, several sources of
uncertainties can arise at the operating level including quality
of the feed streams, prices of the feeds and products, demands for
the products. For this illustrative example, we only consider
uncertainty in the demands of the products. The demands for
the three products can take low, medium, and high values and are
assumed to vary simultaneously i.e., there are three scenarios in
this problem with probabilities 0.3, 0.4, 0.3, respectively. The
actual delivered products have to be less than or equal to the
demands. The objective is to maximize the expected total profit.
The mathematical formulation of this problem has been reported
in Li and Grossmann (2019b). To make this paper self-contained,
we include the mathematical formulation in the supplementary
material.

The deterministic equivalent of the stochastic pooling problem
with three scenarios is solved to optimality. The optimal first-
stage decisions are to select feeds i1, i2, i5, pools l1, and l4. The
optimal capacities of the selected feeds and pools are shown in
Figure 6B. Recall that in two-stage stochastic programming, after
the first-stage decisions are made, the uncertain demands are
realized. In different scenarios, different recourse actions can be
taken depending on the realization of the demand. The mass flow
rates of all the streams in the high and the low demand scenarios
can be seen in Figure 6C. When the demand is low, the feed tanks
and the pools are not operating at their full capacities. When the
demand is high, the feed tanks and pools are operating at their full
capacities. Recall that the production of each product can be less
than or equal to the demand. In the high-demand scenario, the
production of product j1 is even lower than that in the low-
demand scenario. However, the productions of j2 and j3 are
higher in the high-demand scenario than those in the low-
demand scenario. The results also indicate that the optimal
capacity is not enough to meet the high demand. The reason
is that if one were to fully satisfy the high demand, a great part of
the capacity would be left idle in the low-demand scenario. On the
other hand, if the capacity were designed to be just enough to
satisfy the low demand, there would be significant lost sales in the
high-demand and the medium-demand scenarios. Stochastic
programming is a “risk-neutral” approach to achieve the
highest expected profit, which balances the trade-off between
lost sales and idle capacity.

3.2.3 Algorithms for Solving Stochastic MINLP
As we discussed in Subsection 3.1.3, the classical decomposition
algorithms, such as Benders decomposition and Lagrangean
decomposition, cannot be readily applied to solve stochastic
MINLPs. The challenges to solve stochastic MINLP problems
are two-fold: the nonlinear functions in stage two can be
nonconvex; second, some of the stage two variables need to
satisfy integrality constraints, which also make the stage two
problem nonconvex. Due to its wide application in process
systems, researchers from the PSE community have been
developing algorithms for solving problem Eq. 5. Most of the

algorithms are based on the classical decomposition algorithms
including Lagrangean decomposition, and generalized Benders
decomposition (GBD) (Geoffrion, 1972) which is an extension of
the Benders decomposition (BD) algorithm to convex nonlinear
problems.

For convex stochastic MINLP, where the nonlinear feasible
region of the continuous relaxation is convex, Li and Grossmann
(2018) propose an improved L-shapedmethod where the Benders
subproblems are convexified by rank-one lift-and-project, and
Lagrangean cuts are added to tighten the Benders master
problem. Li and Grossmann (2019a) further propose a
generalized Benders decomposition-based branch and bound
algorithm with finite ϵ-convergence for convex stochastic
MINLPs with mixed-binary first and second stage variables.

For nonconvex stochastic MINLP, where the nonlinear
functions in the stochastic MINLPs can be nonconvex, the
pioneering work is done by Li et al. (2011b) who propose a
nonconvex generalized Benders decomposition algorithm, which
can solve two-stage nonconvex MINLPs with pure binary
variables in a finite number of iterations. For the more general
case where the first stage variables can be mixed-integer, Ogbe
and Li (2019) propose a joint decomposition algorithm. A perfect
information-based branch and bound algorithm that solves
nonseparable nonconvex stochastic MINLPs to global
optimality is proposed by Cao and Zavala (2019). Kannan
(2018) propose a modified Lagrangean relaxation-based (MLR)
branch and bound algorithm, and they prove that MLR has finite
ϵ-convergence. A generalized Benders decomposition-based
branch and cut algorithm for nonconvex stochastic MINLPs
with mixed-binary first and second stage variables is proposed
by Li and Grossmann (2019b). Li et al. (2020) propose a sample
average approximation based outer approximation algorithm for
stochastic MINLPs with continuous probability distributions.

4 MULTISTAGE STOCHASTIC
PROGRAMMING

In two-stage stochastic programming, it is assumed that the
uncertainties are realized only once after the first-stage
decisions are made. However, most practical problems involve
a sequence of decisions reacting to outcomes that evolve over
time. A generalization of two-stage stochastic programming to
the sequential realization of uncertainties is called “multistage
stochastic programming”. The time horizon is discretized into
“stages” where each stage has the realizations of uncertainties at
the current stage.

A scenario tree similar to Figure 2 for a multistage problem is
shown in Figure 7. The scenario tree has three stages. In stage
two, there are two different realizations of uncertain parameters
and therefore two nodes. Each of the two nodes can have different
stage two decisions depending on the realization of information
until stage two. After the stage two decisions are made, there are
two different realizations of uncertain parameters at stage three
for each node in stage two. Therefore, there are four nodes in total
at stage three. The stage three decisions depend both on stage one,
stage two decisions and the history of the uncertain parameters. A
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scenario in the multistage setting is a “path” from the root node of
the scenario tree to the leaf node of the scenario tree, which
corresponds to a full history of realization of uncertainty
parameters until stage three. It is easy to see that there are 4
scenarios in Figure 7, represented using ω1, ω2, ω3, ω4. The seven
nodes in the scenario tree are numbered sequentially with
notation n1−n7.

It is worth pointing out that in some PSE applications, there
are two types of decisions i.e., the strategic decisions e.g., the
installation of chemical processes and the operational decisions
e.g., material flow rates. The uncertainties can arise from both
strategic and operational decision-making processes. A scenario
tree that combines the two types of decisions and uncertainties
can be found in Escudero and Monge (2018).

4.1 Mathematical Formulation
The general multistage stochastic programming formulation is
given as follows (Birge and Louveaux, 2011):

min cu1 x1 + Eξ[2,H]|ξ[1,1]{min cu2 (ξ2)x2(ξ2) + . . .

+ Eξ[H:H]|ξ[1:H−1][min cuH (ξH)xH(ξH)]} (6a)

s.t.W1x1 ≤ h1 (6b)

T2(ξ2)x1 +W2x2(ξ2)≤ h2(ξ2) (6c)

. . . (6d)

TH(ξH)xH−1(ξH−1) +WHxH(ξH)≤ hH(ξH) (6e)

x1 ∈ X1; xt(ξt) ∈ Xt , t � 2, . . . ,H; (6f)

where we have H stages. For simplicity, we assume all the
constraints and the objective function are linear. Suppose the
data (ξ2, . . . , ξH) is uncertain and evolves according to a known
stochastic process. We use ξt to denote the random data vector in
stage t and ξt to denote a specific realization. The parameters ct ,
Tt ,Wt , ht are functions of ξt . Similarly, we use ξ[t,t′] to denote the
sequence of random data vectors corresponding to stages t
through t′ and ξ[t,t′] to denote a specific realization of this
sequence of random vectors. The decision dynamics is as
follows: in stage t, we first observe the data realization ξt and
then take an action xt depending on the previous stage decision
xt−1 and the observed data ξt to optimize the expected future cost.

Eξ[t,H]|ξ[1,t−1] denotes the expectation operation in stage t with
respect to the conditional distribution of ξ[t,H] given
realization ξ[1,t−1] in stage t − 1. The constraints at stage t are
defined for all the possible realizations of the stochastic process
(ξ2, . . . , ξt) until stage t. SetXt denotes the domain of variables xt ,
which can be continuous or (mixed)-integer. Eq. 6 can represent
the deterministic equivalent of any multistage mixed-integer
linear stochastic programs with discrete or continuous
distributions.

For problems with discrete distributions, we can use the
following node-based formulation,

min
xn

⎧⎨⎩ ∑
n ∈ N

τnc
u
n xn : Tnxa(n) +Wnxn ≤ hn, xn ∈ Xn,∀n ∈ N

⎫⎬⎭,

(7)

where set N denotes the set of nodes in the scenario tree. The
decisions at node n is denoted as xn. We use a(n) to denote the
ancestor nodes of node n. For example, in the scenario tree shown
in Figure 7, the ancestor nodes of n4 are n2 and n1,
i.e., a(n4) � {n2, n1}. τn is the probability of node n. The
probability of a non-leaf node equals to the summation of the
probabilities of its child nodes. For example, in Figure 7,
τn2 � τn4 + τn5. The decisions at a given node n, xn, is
dependent on the decision made at its ancestor nodes xa(n)
and the realizations of the uncertain parameters until node n,
which is reflected in Tn, Wn, and hn.

An alternative way to write the deterministic equivalent of the
node-based formulation is the following recursive formulations
where set C(n) denotes all the child nodes of a node n. Parameter
qnm denotes the transition probability from node n to its child
node m. For example, in Figure 7, if nodes n4, n5 have equal
probability, the transition probabilities from node n2 to n4 and n5
are both 0.5.

min
x ∈ X1

⎧⎨⎩cu1 x1 + ∑
m ∈ C(1)

q1mQm(x1) : W1x1 ≤ h1
⎫⎬⎭, (8)

where for each node n ∈ N /{1}, the cost-to-go function Qn is
defined as

FIGURE 7 | Illustration of a scenario tree with 3 stages, 4 scenarios, seven nodes.
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Qn(xa(n)) � ⎧⎨⎩ min
xn ∈ Xn

cun xn + ∑
m ∈ C(n)

qnmQm(xn)

: Wnxn ≤ hn − Tnxa(n)
⎫⎬⎭. (9)

For the terminal condition t � H, the set C(n) is be empty.

4.2 Multistage Process Network Problem
To provide an illustrative example for multistage stochastic
programming, the two-stage process network design problem
in Subsection 3.1.2 is extended to a three-stage problem. Stage
one decisions are the same as those in Section 3.1.2 i.e., the
selection of the three processes and the capacities of the selected
processes. After the design decisions at stage one are made, the
demand in stage two are realized. Besides the operating decisions
on the installed plant, the decisions at stage two include capacity
expansion decisions on the installed processes. We assume that
the expanded capacity will be available at stage three. After the
stage two decisions are made, the demand at stage three is
realized. The stage three decisions only include the operating

decisions i.e., the material flow rates. The objective is to maximize
the expected total profit over all the scenarios.

The scenario tree is assumed to have two realizations per stage,
which has the same structure as the scenario tree in Figure 7. We
use dn to denote the realization of demand at node n. The demand
at stage two is assumed be take two different values, dn2 � 8,
dn3 � 12. The two child nodes, n4 and n5, of node n2, are assumed
to take values dn5 � 8, dn6 � 10, whereas, the two child nodes, n6
and n7, of node n3, are assumed to take higher values i.e., dn6 � 12,
dn7 � 14. The four scenarios are assumed to have equal
probabilities.

The optimal solution of multistage stochastic process network
design problem corresponding to nodes n2, . . . , n7 are shown in
Figure 8. The material flowrates at each node are shown in red.
The installed capacities at the previous stage are shown in blue
italics. At stage one, process one and three are selected and can be
used in stage two. At stage two, when the demand is low
i.e., dn2 � 8, processes 1 and 3 are not operating at full
capacity. When the demand is high i.e., dn3 � 12, both process
one and process three are operating at full capacity. Process three
is expanded at stage two when the high demand is observed. The

FIGURE 8 | Optimal solutions of the stochastic process network design problem corresponding to nodes n2 , . . . , n7. The material flow rates at each node are
shown in red. The installed capacities are shown in blue italics.
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expanded capacity can be used in stage three at nodes n6 and n7.
The stage three decisions are the material flow rates of different
chemicals. At node n4, n5, and n6, the installed process one and
three are able to satisfy the demand. At node n7, due to the limited
capacity of process 1, additional chemical B needs to be
purchased.

4.3 Algorithms for Multistage Stochastic
(Mixed-Integer) Linear Programs
The number of scenarios of a multistage stochastic program
grows exponentially with the number of stages. For example,
suppose we have three different realizations of uncertain
parameters at each stage, the number of scenarios for a
problem with H stages is 3H−1. Therefore, special
decomposition algorithms are usually applied to solve
multistage stochastic programming problems. Most of the
algorithms for multistage stochastic programs are based on
classical Benders and Lagrangean decomposition algorithms.

An extension of Benders decomposition tomultistage stochastic
linear programs is called “nested Benders decomposition” (Birge,
1985). The idea is to apply Benders decomposition recursively to
the multistage problem. Nested Benders decomposition has a
“forward pass” step and a “backward pass” step. In the forward
pass step, feasible solutions are generated by sequentially solving
the root node of the scenario tree all the way to the leaf nodes of the
scenario tree. Problem Eq. 9 for node n is solved “locally” in the
forward pass with the value of xa(n) fixed from the solution of its
parent node and the expected cost to go function Qm(xn)
approximated by some cutting planes generated from the
backward pass. In the backward pass, the problems are solved
sequentially from the leaf nodes to the root node. Cutting planes
are generated in the backward pass to refine the approximations for
the cost-to-go functions Qm(xn).

Although the nested Benders decomposition algorithm can
decompose the fullspace problem by nodes, it still has to solve an
exponential number of leaf nodes. An algorithm that avoids
solving an exponential number of nodes is the stochastic dual
dynamical programming (SDDP) algorithm (Pereira and Pinto,

1991). One caveat to apply SDDP is that the underlying stochastic
process has to be stagewise-independent i.e., the realizations of ξt
do not dependent on the history ξ[1,t−1]. The idea of SDDP is that
the cutting plane can be shared among the nodes under the
stagewise-independence assumption and thus avoiding solving
an exponential number of nodes. An extension of SDDP that can
solve multistage stochastic mixed-integer linear program is the
stochastic dynamic dual integer programming (SDDiP)
algorithm proposed by Zou et al. (2019). Besides the standard
Benders cuts, the authors propose to use other families of cutting
planes including Lagrangean cuts, integer cuts, and strengthened
Benders cuts. Applications of SDDiP have been reported in
Escudero et al. (2020); Zou et al. (2018); Lara et al. (2019).

Lagrangean decomposition can be adapted to solve multistage
stochastic programs in a similar way to two-stage by duplicating
the variables such that each scenario has its own copy of variables
at each stage and adding nonanticipativity constraints (NACs).
The scenario tree in Figure 7 can be expressed in an alternative
form shown in Figure 9 (Ruszczyński, 1997). The node in the first
stage in Figure 7 is duplicated for each scenario ω and NACs
(shown in red in Figure 9) are added to guarantee that the first
stages decisions are the same for all the scenarios. Each node in
stage two in Figure 7 is duplicated once and NACs are added to
guarantee that the scenarios with the same parent node in
Figure 7 have the same second-stage decisions. With the
alternative scenario tree, Lagrangean decomposition dualizes
the NACs and solves each scenario independently.

One major difference between nested Benders decomposition
and Lagrangean decomposition is that nested Benders
decomposition decomposes the fullspace problem by nodes,
whereas Lagrangean decomposition decompose the fullspace
problem by scenarios. A discussion of the trade-offs are not
within the scope of this paper and can be found in Torres et al.
(2019). Moreover, a recent review on main types of
decomposition algorithms for two-stage and multistage
stochastic mixed integer linear optimization can be found in
Escudero et al. (2017).

As for software packages for multi-stage stochastic programs,
SDDP. jl (Dowson and Kapelevich, 2020) is an implementation of

FIGURE 9 | An alternative form of the scenario tree with 3 stages, 4 scenarios.
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the SDDP algorithm in Julia that is built on the JuMP modeling
tools (Lubin and Dunning, 2015). MSPPy (Ding et al., 2019) is an
implementation of the SDDP/SDDiP algorithm in Python. PySP
(Watson et al., 2012) is an implementation of the progressive
hedging algorithm (Rockafellar and Wets, 1991), an algorithm
that can be seen as an augmented Lagrangean decomposition, in
Pyomo (Hart et al., 2017).

5 MULTISTAGE STOCHASTIC
PROGRAMMING UNDER ENDOGENOUS
UNCERTAINTY
In the stochastic programming models that we have discussed in the
last few sections, the underlying stochastic processes are independent
of the decisions. This type of uncertainty is called “exogenous”
uncertainty. Another type of uncertainty that is decision-dependent
is called “endogenous” uncertainties. There two distinct types of
endogenous uncertainties commonly denoted as Type 1 and Type 2
in the literature (Goel and Grossmann, 2006).

In the case of Type 1 endogenous uncertainties, decisions
influence the parameter realizations by altering the underlying
probability distributions for the uncertain parameters. A simple
example of this may be an oil company’s decision to flood the
market in order to force a competitor out of business. Here the
uncertainty is no longer strictly exogenous, as the decision will
make lower oil-price realizations more likely. Type 1 endogenous
has not been widely studied.

In the case of Type 2 endogenous uncertainties, decisions
influence the parameter realizations by affecting the time at which
we observe these realizations. This refers specifically to technical
parameters, such as oilfield size, for which the true values cannot be
determined until a particular investment decision is made. The
modeling framework and algorithm for stochastic programming
with Type 2 endogenous uncertainty are first proposed by Goel
and Grossmann (2006). Since then, this approach has been adopted
by the PSE community to address problems in a wide range of

applications including oil and gas field planning (Goel and
Grossmann, 2004), synthesis of process networks (Tarhan and
Grossmann, 2008), pharmaceutical industry (Colvin and
Maravelias, 2008; Christian and Cremaschi, 2015), etc.

Here, we describe the modeling framework proposed by Goel
and Grossmann (2006). Figure 10 shows a scenario tree for a
three-stage problem with two endogenous uncertain parameters,
θ1, θ2. Both parameters are assumed to have two realizations
i.e., θ1 ∈ {θ̂L1 , θ̂

H
1 }, θ2 ∈ {θ̂L2 , θ̂

H
2 }. We consider the combinations

of the two realizations for θ1 and θ2. There are four scenarios in
total with realizations, {θ̂L1 , θ̂

L
2}, {θ̂L1 , θ̂

L
2}, {θ̂L1 , θ̂

L
2}, {θ̂L1 , θ̂

L
2},

respectively. The scenario tree in Figure 10 is a scenario-based
representation i.e., the decisions are duplicated for each scenario
and NACs are added. However, the way that the NACs are added
in Figure 10 is different than that in Figure 9 because the
realizations of the uncertain parameters are decision-dependent.
In stage one, since the decisions have not been made to reveal the
values of the uncertain parameters, “initial NACs” are added to
guarantee that the first-stage decisions are the same for all the
scenarios. The initial NACs are represented using solid red lines in
Figure 10. For stage two and three, the NACs are added
conditionally, depending on whether the corresponding
decisions are made in order to reveal the uncertain parameters.
These NACs are called “conditional NACs”, which are shown in
Figure 10 as dashed blue lines.

To provide a concrete example, suppose θ1 and θ2 are the sizes
of two undeveloped oil fields, o1 and o2, respectively, the decisions
to reveal the sizes are the drilling of oil field 1 and 2. We use
binary variable bot to denote whether oil field o is drilled at stage t.
At t � 1, since no oil fields have been drilled before t � 1 and no
information regarding the size of the oil fields has been obtained,
the decisions for all the four scenarios are the same i.e., we need to
add the initial NACs. At t � 1, if the operator decides to drill o1,
then the realization of θ1 will be known before stage 2. At stage
two, the scenarios with θ1 � θ̂

L
1 and the scenarios with θ1 � θ̂

H
1

can be distinguished. Conditional NACs will only be added for
the scenario pairs (ω1,ω2), and (ω3,ω4). On the other hand, if the
operator decides not to drill any oil fields at t � 1, the four
scenarios are still indistinguishable at the beginning of stage two,
all the conditional NACs at stage two have to be enforced.

5.1 Mathematical Formulation
The mathematical formulation for the multistage stochastic
programming problem under endogenous uncertainty is,

min ∑
ω ∈ Ω

τω ∑
t ∈ T

cut,ωxt,ω (10a)

s.t. ∑t
t’�1

At′ ,t,ωxt′ ,ω ≤ bt,ω ∀t ∈ T ,ω ∈ Ω (10b)

x1,ω � x1,ω′ , ∀(ω,ω′) ∈ SPF (10c)

[ Yt,ω,ω′

xt+1,ω � xt+1,ω′
]∨[Yt,ω,ω′ ] ∀(ω,ω′) ∈ SPN , t ∈ T (10d)

Yt,ω,ω′5F(x1,ω, . . . , xt,ω) ∀(ω,ω′) ∈ SPN , t ∈ T (10e)

xt,ω ∈ Xt , ∀t ∈ T ,ω ∈ Ω (10f)

Yt,ω,ω′ ∈ {True, False} ∀(ω,ω′) ∈ SPN , t ∈ T (10g)

FIGURE 10 | Illustration of the scenario tree of a stochastic programming
problem under endogenous uncertainty with 3 stages, four scenarios, two
uncertain parameters θ1, θ2.
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where xt,ω denotes the decisionsmade at stage t in scenarioω.Yt,ω,ω′

is a Boolean variable that equals to True if the two scenarios ω and
ω′ are indistinguishable at stage t. The objective function Eq. 10a is
to minimize the expected cost. Eq. 10b represents constraints that
govern decisions xt,ω and link decisions across time periods. The
initial NACs are expressed in Eq. 10c, where setSPF represents the
set of scenario pairs to enforce the initial NACs. The scenario pairs
for the initial NACs can be written similar to the NACs in the
exogenous case. Eq. 10d represents the conditional NACs where set
SPN represents the scenario pairs that differ in the realization of
only one endogenous parameter (Goel andGrossmann, 2004). If the
two scenarios ω and ω′ are indistinguishable at stage t
i.e., Yt,ω,ω′ � True, NACs are added for the decisions in the next
time period. Otherwise, no NACs are added. The value of the
Boolean variable is determined by the decisionsmade at and prior to
time t, which is expressed in a general form inEq. 10e. In the oil field
example, the expression F(x1,ω, . . . , xt,ω) is to determine whether a
given oil field has been developed based on the drilling decisions.
Eqs. 10f and 10g specify the domain of variables xt,ω and Yt,ω,ω′ .

We acknowledge that the mathematical formulation in Eq. 10
is a succinct form for ease of explanation. For a more detailed and
rigorous formulation, we refer the readers to the paper by Apap
and Grossmann (2017). See also Hellemo et al. (2018) for a
nonlinear modeling approach.

5.2 Multistage Process Network Design
Under Endogenous Uncertainty
To provide an illustrative example for multistage stochastic
programming under endogenous uncertainty, the two-stage
process network design problem in Subsection 3.1.2 is

modified to a three-stage problem where the uncertainty is
assumed to come from the yield of process one and the
demand is assumed to be deterministic. In practice, process
one can be a new technology that has never been installed
before. Once process one is installed, its yield will be realized
in the next stage. Therefore, the time of realization is decision-
dependent. We assume that there are two realizations of the yield
of process one i.e., two scenarios, being 0.9, and 0.8 with equal
probability, which is denoted as Yield(ω1) � 0.9, Yield(ω2) � 0.8,
τ(ω1) � 0.5, τ(ω2) � 0.5

For this problem, stage one decisions are the same as those in
Subsection 3.1.2 i.e., the selection of the three processes and the
capacities of the selected processes. At stage two, besides the operating
decisions on the installed plant, the capacity of the processes that have
been installed at stage one can be expanded; the processes that have
not been installed at stage one can also be selected and installed at
stage two. The installed and expanded processes will be available at
stage three. The stage three decisions only include the operating
decisions i.e., thematerial flow rates. The objective is tomaximize the
expected total profit over all the scenarios.

Three cases can happen for the realization of the yield
uncertainty:

(1) Process 1 is selected at stage one. The uncertainty of the yield
is realized at stage two. Only the initial NACs are active.

(2) Process 1 is selected at stage two. The uncertainty of the yield
is realized at stage three. The initial NACs and the NACs for
stage two decisions are active.

(3) Process 1 is never selected. The uncertainty of the yield is
never realized. The initial NACs and the NACs for stage two
and stage three decisions are active.

FIGURE 11 | Optimal solution of the three-stage process network problem under endogenous uncertainty.
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The optimal solution is shown in Figure 11. Processes 1 and 3
are selected at stage one. The yield of process 1 is realized at stage
two. The capacity of process 1 installed at stage one is chosen such
that it is only able to produce enough chemical B if the yield is
high. On the other hand, if the yield of process 1 is low, additional
chemical B needs to be purchased at stage two. Since the two
scenarios can be distinguished at stage two, additional capacity
for process 1 is added in the high-yield scenario such that enough
chemical B can be produced by process 1 when the demand is
increased to 14 at stage three. For the low-yield scenario, it is not
profitable to produce chemical B from process 1. Therefore, no
capacity for process 1 is added in stage two. The inadequacy of
chemical B is resolved by purchasing from other suppliers.

In order to see the value of the stochastic solution, we solve a
deterministic problem with the yield fixed at mean value i.e., 0.85.
The optimal solution of the deterministic model is to select
processes 1 and 3 as well. However, the capacity of process 1
at stage one is 12.38 instead of 11.70 as in the stochastic model.
This capacity is chosen such that enough chemical B can be
produced at stage two when the yield is 0.85. This capacity is
suboptimal if the actual yield can be 0.8 or 0.9.

5.3 Algorithms for Solving Stochastic
Programming Under Endogenous
Uncertainty
Solving stochastic programs under endogenous uncertainties can
be even more challenging than solving the stochastic programs
under exogenous uncertainties because of the additional binary
variables involved in reformulating the disjunctions in the
conditional NACs Eq. 10d. To reduce the number of
redundant NACs, scenario pair reduction techniques have
been proposed Goel and Grossmann (2006); Boland et al.
(2016); Apap and Grossmann (2017). However, even with a
reduced number of scenario pairs, the deterministic equivalent
(10) of problems with a large number of scenarios is still
intractable. Goel and Grossmann (2006) propose a Lagrangean
decomposition-based branch and bound algorithm that dualizes
the initial NACs and relax the conditional NACs. To satisfy the
NACs, the authors propose to branch on the logical variables
Yt,ω,ω’ , and the variables involved in the constraints that are
dualized. The Lagrangean decomposition-based algorithm is
able to provide both feasible solutions and a lower bound for
the stochastic programs. Colvin and Maravelias (2008) propose a
branch and cut algorithm where necessary non-anticipativity
constraints that are unlikely to be active are removed from the
initial formulation and only added if they are violated within the
search tree.

Others have proposed heuristic algorithms that can quickly
obtain feasible solutions to (10). Christian and Cremaschi (2015)
apply a knapsack decomposition algorithm (KDA) to the
pharmaceutical R&D pipeline management problem. Zeng
et al. (2018) extend the KDA algorithm to a generalized
knapsack-problem based decomposition algorithm (GKDA).
Apap and Grossmann (2017) propose a sequential
decomposition algorithm for stochastic programs under both
exogenous and endogenous uncertainties.

6 DATA DRIVEN SCENARIO TREE
GENERATION

The crucial assumption in stochastic programming is that a
scenario tree is given to characterize the probability distribution
of the underlying stochastic process. The values and probabilities in
the scenario tree affect the optimal solutions obtained from the
stochastic programs. A poor scenario-generation method can spoil
the result of the whole optimization model. In this section, we
review the concepts and algorithms of scenario tree generation.
Note that the notations used here are for exogenous uncertainty.
The concepts andmethods can be easily extended to problems with
endogenous uncertainty.

The sources of data for generating scenarios can come from
historical data, time-series model, or expert knowledge (Kaut,
2011). Historical data represents reliable past information but can
generalize poorly in the future. Statistical or time-series models
such as autoregressive integrated moving average (ARIMA),
hidden Markov model (HMM), might generalize well in the
future but usually need to be fit by data. Expert knowledge is
useful in certain applications. For example, the prediction of oil
price needs expertise in geopolitics. In practice, usually, a
combination of all the three approaches is used i.e., estimate
the distribution from historical data, then use a mathematical
model and/or expert knowledge to adjust the distribution to the
current situation.

A good scenario tree should capture the distributions of the
random variables at each time period and the inter-temporal
dependencies. The distributions at each time period can be
characterized by the marginal distributions of all the variables,
or more succinctly by their means and higher-order moments.
Furthermore, the dependence of the variables is usually measured
by their correlations. The inter-temporal dependencies describe
how the realizations in the previous time periods affect the
distributions at the current period. These dependencies are
typically modeled by time-series models.

The time series models are inherently continuous
probability distributions of the random variables. A
scenario tree can be seen as a discrete approximation of a
time-series model. The quality of a scenario tree generation
method can be evaluated by the stability and the error of this
approximation. The stability measures the deviation of the
optimal solutions if the generation method is applied multiple
times to generate the scenario trees. The error measures the
suboptimality in the objective value resulted from the discrete
approximation. The quantitative descriptions of the stability
and error in scenario tree generation can be found in Kaut and
Wallace (2003).

6.1 Sampling-Based Scenario Generation
Methods
A common way to generate scenario trees is to generate i. i.d.
(independent and identically distributed) samples from the “true”
distribution through a simulation. For example, in the case of
two-stage stochastic programming, we represent “true” stochastic
programming problem succinctly as,
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z* � min
x

E
θ ∼ P

f (x; θ), (11)

where x is the first stage variables, P denotes the “true”
distribution, θ denotes the random variables. The stage two
problem is contained implicitly in function f. Solving Eq. 11
with a continuous distribution directly is usually computationally
intractable due to the integration over the continuous
distribution. Suppose we can generate N i. i.d. samples,
θ1, . . . , θN from P, (11) can be approximated by the following
sample average approximation (SAA) problem (Shapiro et al.,
2014),

zN � min
x

1
N

∑N
i�1

f (x; θi) (12)

where the true distribution P is approximated by the empirical
distribution of the N i. i.d. samples. It can be proved that as
N→∞, the optimal value and solutions of Eq. 12 converge to the
optimal value and solutions of Eq. 11 under some mild
assumptions (Shapiro et al., 2014). However, generating an
infinite number of samples is impractical. Sample size
estimates for finite error have been developed (Kleywegt et al.,
2002; Shapiro et al., 2014) for different types of two-stage
stochastic programs. These estimates are usually too
conservative for real-world problems. A practical
implementation of the sample average approximation is
proposed by Kleywegt et al. (2002).

There are several advantages to the SAA method. It is easy to
implement if it is possible to sample from the true distribution.
It also has very good asymptotic and finite convergence
properties. However, SAA can have poor performance and
stability if a small number of samples are used, especially for
probability distributions with large variances. More
importantly, we have to know the “true” distribution to
sample from.

6.2 Property Matching Methods
The idea behind the property matching methods is to construct
the scenario trees in such a way that some given properties of the
“true distribution” are matched. The properties are, for example,
the moments of the marginal distributions and covariances/
correlations. Høyland and Wallace (2001) propose a nonlinear
programming approach to matching the moments of the scenario
tree to those estimated from a dataset or a continuous
distribution. The unknowns in the nonlinear programming
problem are the probabilities and values of the scenarios with
the number of scenarios fixed.

However, with the moments alone, the matching problem is
usually under-specified, especially if the number of realizations in
the scenario tree is large i.e., the scenario tree is able to match the
moments perfectly and there are still some degrees of freedom left.
To address the under-specification issue, Calfa et al. (2014) propose
to match both the moments and the cumulative distribution
function (CDF) of the empirical distribution that are derived
from real-world data. For example, in Figure 12, the blue dots
represent the empirical CDF constructed from some production
yield data. Since the empirical distribution is discontinuous and
difficult to match in an optimization problem, Calfa et al. (2014)
propose to fit a Generalized Logistic Function (GLF) with the data
points of the empirical distribution.

GLF(x) � β0 +
β1 − β0(1 + β2e

− β3x)1/β4 (13)

When fitting the GLF to the empirical CDF data, the GLF can
be simplified by setting β0 � 0 and β1 � 1 as these parameters
correspond to the lower and upper asymptotes, respectively. The
empirical CDF in Figure 12 can be approximated by the red GLF
curve with β2 � 9.5587 × 107, β3 � 22.2792, β4 � 2.3810.

The NLP formulation that aims to match the moments, the
covariances, and the distribution calculated from data is,

FIGURE 12 | Distribution of the historical data for the production yield of facility P1 (Calfa et al., 2014).
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min
x,p

zL
2

DMP � ∑
i ∈ I

∑
k ∈ K

wi,k(mi,k −Mi,k)2 + ∑
(i,i′) ∈ I

i< i′

wi,i′(ci,i′ − Ci,i′)2

+ ∑
i ∈ I

∑N
j�1

ωi,jδ
2
i,j

(14a)

s.t.∑N
j�1
pj � 1 (14b)

mi,1 � ∑N
j�1
xi,jpj ∀ i ∈ I (14c)

mi,k � ∑N
j�1
(xi,j −mi,1)kpj ∀ i ∈ I, k> 1 (14d)

ci,i′ � ∑N
j�1
(xi,j −mi,1)(xi′ ,j −mi′ ,1)pj ∀ (i, i′) ∈ I, i< i′ (14e)

xi,j ∈ [xLBi,j , xUBi,j ] ∀ i ∈ I, j � 1, . . . ,N (14f)

pj ∈ [0, 1] ∀ j � 1, . . . ,N (14g)

ÊCDF(xi,j) −∑
j’�1

j

pj’ � δi,j ∀ i ∈ I, j � 1, . . . ,N (14h)

xi,j ≤ xi,j+1 ∀ i ∈ I, j � 1, . . . ,N − 1 (14i)

where the entries of the uncertain parameters are indexed by
i ∈ I. For example, if the uncertainties are the yields of some
processes, I will be the set of these processes. N denotes the
number of outcomes per node at the second stage, j ∈ J �
{1, 2, . . . , N} denotes the branches (outcomes) from the root
node, and k ∈ K � {1, 2, 3, 4} is the index of the first four
moments. The decision variables are the uncertain
parameters of the stochastic programming problem, xi,j, and
their corresponding probabilities, pj. The moments calculated
from the tree are denoted by variables mi,k and the ones
calculated from the data are denoted by parameters Mi,k.
The covariances calculated between entity i and i′ from the
tree and the data are denoted by ci,i′ and ci,i′ , respectively.
Variables δi,j represent the deviations with respect to the
empirical CDF data, which in turn are approximated by, for
example, the GLF and is represented by the expression
ÊCDF(xi,j). In addition to minimizing the weighted square
errors from matching (co-)moments, the sum of squares of the
deviations δi,j is also minimized with given weights ωi,j that can
be chosen relative to the weights for the term involving the
moments.

Problem Eq. 14minimizes the weighted Euclidean distance of
the moments, covariances, and distribution from the scenario tree
to those calculated from the data. Problem Eq. 14 is a nonconvex
NLP because the variables x,m, and p are involved in the bilinear
and trilinear terms in Eqs. 14d and 14e. If the empirical CDF is
not considered, problem Eq. 14 reduces to the standard moment
matching NLP problem proposed by Høyland and Wallace
(2001).

7 CONCLUSION

We have provided an overview of stochastic programming in
process systems engineering. The applications of stochastic
programming are widespread, from the traditional
petrochemical, pharmaceutical industry to carbon capture,
energy storage. There are two major types of uncertainties that
can be modeled using stochastic programming, exogenous
uncertainty, which is the most commonly one considered, and
endogenous uncertainty where realizations of the uncertainties
depend on the decisions taken. Depending on the time
discretization and the realizations of uncertainties, two-stage
or multistage stochastic programming can be used to solve the
problem under exogenous uncertainty. We have provided the
mathematical formulations and algorithms for solving two-stage
and multistage stochastic mixed-integer linear/nonlinear
programming problems. Endogenous uncertainty is decision-
dependent. Therefore, the scenario tree representation and the
mathematical formulation of multistage stochastic programming
under endogenous uncertainty differ from those of stochastic
programming under exogenous uncertainty. To provide an
intuitive view of the modeling framework, some process
network design problems and a pooling problem are used as
illustrative examples. Finally, we discussed how the scenario trees
in stochastic programming can be generated from time-series
models or historical data.

Despite the advances in applying stochastic programming in
process systems, several challenges exist for its broader
applications. First, it is often difficult to convince
practitioners without any mathematical programming
background to adopt stochastic programming methods in
their problems. To that end, more tutorials and textbooks for
practitioners rather than mathematicians need to be developed.
Also, simulation can be used to verify the advantages of using
stochastic programming. Second, the types of problems that can
be solved efficiently are still limited. A utopia problem would be
multistage stochastic mixed-integer nonlinear programming
under both exogenous and endogenous uncertainty with an
arbitrary probability distribution that can be stagewise
dependent. The current algorithmic development and
computational resources are still far from solving the utopia
problem efficiently. The major challenge for algorithm
development remains to be handling nonconvexity. Third,
risk measures can be better integrated into stochastic
programming, such as the ones used in chance-constrained
programming. Other risk measures, such as Expected CVaR
(conditional value at risk) (Pflug and Pichler, 2016), stochastic
dominance (SD) (Ruszczyński, 2010), can also be used. Fourth,
the connections of stochastic programming with the other 14
communities of decision-making under uncertainty (Powell,
2016) can be better established. Last but not least, generating
a scenario tree that has a low error in practice requires high
fidelity historical data and better forecast methods. The recent
popularity and advances in data science and machine learning
bring opportunities toward this direction.
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