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Membrane biofilm formation has traditionally been perceived as a wholly negative
occurrence in membrane filtration-based wastewater treatment systems due to its
resultant effect on transmembrane pressure and energy expenditure. This is the case
for both membrane bioreactor (MBR) systems, generally, and anaerobic membrane
bioreactors (AnMBRs), specifically. Insight gained through recent research, however,
has revealed a potentially positive aspect to biofouling in AnMBR systems—namely,
the improved removal of certain emerging contaminants (both microbial and chemical)
from wastewater that would not otherwise be retained by the microfiltration/ultrafiltration
membranes that are commonly used. Although the exact reasons behind this are not yet
understood, the biofilm-specific anaerobic microbial communities that develop on
membrane surfaces may play a key role in the phenomenon. Mechanisms of biofouling
development in AnMBRs have recently been proven distinctly different from those that
govern fouling in aerobic MBR systems. Based on these differences, it may be possible to
devise operational strategies that promote the development of anaerobic biofilms on
membranes while also minimizing transmembrane pressure increases. If achievable, this
would serve as a sustainable basis for reducing the release of emerging contaminants such
as organic micropollutants (OMPs) and antibiotic resistance genes (ARGs) with treated
wastewater effluents.
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INTRODUCTION

The concept of what constitutes an emerging contaminant is, by nature, continuously evolving. In
wastewater treatment, organic micropollutants (OMPs) such as pharmaceuticals, pesticides, personal
care products, and endocrine disrupting compounds continue to be of great concern globally
(Barbosa et al., 2016; Ben et al., 2018). However, when defining emerging contaminants, the threat of
antibiotic resistance must not be overlooked. Antibiotic resistance genes (ARGs) have also long been
considered emerging contaminants due to their ever-increasing potential to spread resistance to
pathogenic bacteria (Pruden et al., 2006).

When considering adapting wastewater treatment plant design for the purpose of reducing the
spread of such emerging contaminants, the sustainability of the processes involved is also an eminent
priority. Membrane bioreactors (MBRs), for example, have been shown to possess certain advantages
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for reducing ARG proliferation (Munir et al., 2011), while
showing no real differences compared to conventional
wastewater treatment with respect to overall OMP removal
(Grandclément et al., 2017). Energy expenditure, however,
remains a significant drawback for MBR system sustainability,
with limited options for reducing energy use due to their inherent
requirement of continuous aeration (Sun et al., 2016). A
developing technology that also utilizes membrane separation
but has high potential for energy sustainability is the anaerobic
membrane bioreactor (AnMBR) (Smith et al., 2014). AnMBRs
combine anaerobic biological treatment with membrane
separation, thus eliminating the requirement of sludge aeration
while also introducing the possibility of energy recovery in the
form of methane.

Only a limited amount of research has been performed thus far
on the fate of emerging contaminants in AnMBR systems.
However, recent work has shown that they may possess
certain distinguishing advantages for the reduction of both
OMPs and ARGs in wastewater effluents. Although removal of
OMPs in wastewater treatment (generally) is partly dependent on
pollutant-specific characteristics, anaerobic biofilm-based
retention and degradation would likely provide combined
positives for improving removal rates overall (Harb et al.,
2019). Likewise, membrane separation and anaerobic digestion
are also known to be jointly beneficial to the reduction of ARGs in
wastewater effluents (Harb and Hong, 2017).

The membrane biofouling layer in MBR systems (both aerobic
and anaerobic) has also been shown to elicit benefits for emerging
contaminant rejection and removal. Still, these benefits are
overshadowed by the increased energy demands associated
with biofouling and its control processes. Recent research,
however, has elucidated explicit and fundamental differences
between the fouling mechanisms governing AnMBR and
aerobic MBR membrane system blockage (Yao et al., 2020b).
Amajority of prior research on AnMBR biofouling characteristics
had assumed certain similarities to conventional (aerobic) MBR
systems and, as such, potentially inhibited the exploration of
novel bases for membrane fouling control. In the following, we
examine the potential advantageous aspects of anaerobic
membrane biofouling in AnMBRs for removal of emerging
contaminants. We also explore the implications of newly
characterized AnMBR biofouling mechanisms on the
possibility of sustaining low-pressure anaerobic biofilms in
such systems.

THE POSITIVE EFFECTS OF BIOFOULING
IN AnMBRs ON OMP REMOVAL

OMPs are known to have wide-ranging impacts (in terms of
toxicity and mutagenicity) on receiving water environments
(Shao et al., 2019). Their removal in wastewater treatment
systems is complicated by the recalcitrance caused by
compound-specific properties (Grandclément et al., 2017).
With membrane-combined treatment systems (i.e., MBRs)
becoming increasingly common worldwide, their utility for
improved OMP removal should be thoroughly considered.

The effects of membrane fouling on OMP retention in MBRs
has generally been found as positively correlated (Sanguanpak
et al., 2019). As should be expected, OMP compound type plays a
key role in the level of retention achievable within membrane
biofilms. Specifically, hydrophobic OMPs have been found as
highly maintained in fouling layers due to their increased affinity
for fouling layer constituents such as extracellular polymeric
substances (EPS). Although this is the case for both AnMBRs
and aerobic MBRs, compound biodegradability within the
fouling layer ultimately dictates how effective the initial
retention in biomass due to hydrophobicity can be on ultimate
removal rates. This is particularly relevant to the different
microbial groups that occupy aerobic vs. anaerobic membrane
biofilms. Alternatively to hydrophobic means of increased OMP
removal by membrane biofouling, actual pore blockage by EPS
and soluble microbial products (SMP) can further help in the
rejection of OMPs that would otherwise permeate membrane
pores (Cheng et al., 2018). This is applicable to both hydrophobic
and hydrophilic compounds alike. However, reliance on such
means of compound rejection is not preferable, as they would
concurrently result in increased transmembrane pressure.

One of the only studies thoroughly investigating OMP
retention by AnMBR membrane biofilms found that, similar
to in aerobic systems, a majority of OMPs with high removal
contribution by the fouling layer were hydrophobic (Monsalvo
et al., 2014). Those compounds included 17α-estradiol, 17α-
ethynylestradiol, amitriptyline, bisphenol A, clozapine, estrone,
linuron, octylphenol, and triclosan, whose biofilm-based
retention ranged between 10 and 80 mg/m2 of membrane
surface area. Incidentally, all of these compounds were found
in a different study to be highly biodegradable by anaerobic
biomass (Wijekoon et al., 2015), implying that the retention of
such compounds in the membrane fouling layer did, in fact, aid in
their overall removal.

MEMBRANE BIOFILM MICROBIAL
COMMUNITIES IN AnMBRs

Due to the inherent differences of the biological processes used in
AnMBRs as compared to aerobic MBRs, it is to be expected that
the microbiomes of the membrane biofouling layers of each
system type will have essentially no overlap. In the case of the
more widespread aerobic MBR, extensive work has been done on
analyzing aerobic biofouling layer microbial communities in full-
scale systems (Choi et al., 2017; Matar et al., 2017; Wang et al.,
2020). Despite no full-scale AnMBR systems’ membrane biofilm
having been similarly analyzed so far, the lab- and pilot-scale
studies that performed such characterization have provided
insights into microorganisms that are commonly present.

A recently-published review on the main microbiota of
AnMBRs has indicated that the microbial communities of
membrane biofouling layers are dominated by a combination
of fermentative, syntrophic, and methanogenic microbes (Cheng
et al., 2019). Additionally, between the 12 analyzed AnMBRs, a
core group of microorganisms was found to be present in all
systems’ membrane biofilm samples. This group included the
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genera: Acinetobacter, Geobacter, Lactococcus, Smithella,
Syntrophomonas, Syntrophorhabdus, Methanothrix,
Methanospirillum, and Methanobacterium. Among these, the
syntrophic and methanogenic genera, specifically, showed
consistently high relative abundances across several of the
reactors’ membrane biofilms. Although significant, this is not
surprising considering that anaerobic biofilms (as compared to
suspended biomass) have the potential to increase syntrophic co-
occurrence of these two groups (Harb et al., 2015). The presence
of Geobacter as a core bacterium in AnMBR biofilms has
additional implication, considering that several species of this
genus are known to be exoelectrogenic (Rotaru et al., 2015).
Another more recent study on AnMBR biofouling showed that
other potentially-exoelectrogenic bacteria (certain sulfate-
reducing groups) could also be enriched in biofilms under
various conditions (Zhou et al., 2019). In addition, it was
recently discovered that certain Methanospirillum species are
considered electrically conductive (Walker et al., 2019). These
observations imply that, in addition to syntrophic-methanogenic
interaction, exoelectrogenic activity may also play an essential
role in AnMBR membrane biofilm activity (Figure 1).

It is important to note that the core microbial groups of
membrane biofilms in AnMBRs have also been observed to be
dominant in other AnMBR system biofilm components
(whenever such components have been incorporated as part of
reactor design). For example, in a staged anaerobic fluidized bed
membrane bioreactor (SAF-MBR), granular activated carbon
particles were shown to carry biofilms dominated by
Geobacter, Smithella, and Methanothrix (Aslam et al., 2018).
Likewise, an anaerobic filter-type AnMBR (utilizing ceramic
biofilm carriers) was also found to have a high level of

microbial similarity between in-reactor biofilm carriers and the
membrane biofilms themselves (Harb et al., 2015). Although the
conditions under which biofilms develop on reactor carriers vs.
on membranes are markedly different (i.e., due to shear forces
from cross flow and/or biogas sparging on the latter), ultimate
microbial community structure appears to promote analogous
syntrophic and methanogenic activity.

BIODEGRADABILITY OF OMPs BY KEY
ANAEROBIC MICROBIAL GROUPS

Mainstream anaerobic wastewater treatment (generally) is
inherently required to rely more heavily on biodegradation of
OMPs than is aerobic wastewater treatment at steady-state
operation. This is due to the relatively negligible level of
sludge wasting employed in anaerobic treatment systems,
which results in only a miniscule fraction of any sludge-
adsorbed compounds exiting the system (Harb et al., 2019).
This is no less true in the case of AnMBRs, as they are
capable of being operated at nearly infinite solids retention
times (SRTs). Thus, when discussing the concept of “overall
removal” of OMPs from AnMBRs, understanding the
processes of OMP biodegradation is of utmost importance.
Further to this, anaerobic biofilm communities (generally)
have been documented as possessing distinct differences
compared to those that occur in suspended anaerobic sludge
(e.g., in continuously stirred reactors), with syntrophic and
methanogenic consortia being more prevalent within biofilms
(Harb et al., 2015). When combined with the intrinsic compound
retention capacity of biofilms, the potential for effective anaerobic

FIGURE 1 | Schematic representation of membrane biofilm components and communities that contribute to the enhanced removal of organic micropollutants
(OMPs) and antibiotic resistance genes (ARGs) in anaerobic membrane bioreactor (AnMBR) systems. Red circles indicate extracellular antibiotic resistance elements and
yellow cells represent ARG-carrying bacteria.
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degradation of OMPs by these biofilm communities can be
significantly improved (Harb et al., 2019).

Based on the above-described notions, it is reasonable to also
consider the prospect of enhanced OMP removal through
biodegradation by anaerobic membrane biofilm microbial
communities. Using the core microbial groups described in the
previous section as a starting point, one concept that stands out is
the recently-elucidated essential role that methanogens play in
OMP degradation. Methanogenesis and its associated enzymes
(e.g., acetate kinase) have been shown to account for large
fractions of OMP biotransformation in the anaerobic process
(Gonzalez-Gil et al., 2017; Gonzalez-Gil et al., 2018). Other
digestion steps (such as acidogenesis) have also been shown to
contribute to OMP removal. For instance, significant correlations
with antibiotic removal have been observed for co-occurring
microbial communities of hydrogenotrophic methanogens
(Methanomicrobiales) and homoacetogens (Cetecioglu et al.,
2016). Similar results were also reported for methanogens in
association with syntrophic groups that include Syntrophobacter
and Syntrophorhabdus for the degradation of antibiotics in
anaerobic fixed-bed biofilm reactors (Carneiro et al., 2020b).
Thus, the co-metabolic nature of methanogenesis in
conjunction with syntrophic and/or acidogenic bacteria
appears to be highly advantageous to degradation of a
significant fraction of OMPs (Carneiro et al., 2020a). This has
far-reaching implications for the prospect of maintaining a low-
level fouling membrane biofilm in AnMBRs that contains such
consortia. Further to this, the concurrent presence of
exoelectrogens in AnMBR biofilms (such as certain Geobacter
and Desulfovibrio species) are also likely to aid in the degradation
of multiple antibiotic-type OMPs, as has been recently reported
(Chang et al., 2019; Chen et al., 2020).

BIOFOULING AND ARG REMOVAL: THE
IMPORTANCE OF INTRACELLULAR AND
EXTRACELLULAR ARG DIFFERENTIATION

The dynamic nature of antibiotic resistance transmission causes
ARGs to proliferate through multiple avenues (e.g., in plasmids,
chromosomes, transposons, etc.). This allows ARGs to occur both
intracellularly and extracellularly, thus causing a logistical
challenge when targeting their removal. Nonetheless, recent
advances in understanding the state of existence and transfer
of ARGs in water and wastewater environments could soon pave
the way for their effective management and mitigation (Zarei-
Baygi and Smith, 2020).

Preliminary investigations into the removal of ARGs by
membrane filtration have indicated that, for the types of
membranes used in AnMBRs, removal rates of plasmid-based
ARGs ranged between 1 and 2 log (Breazeal et al., 2013).
Naturally, ARGs present in bacterial cells (either as plasmid
DNA or chromosomal DNA) would inevitably be even more
efficiently removed by similar non-fouled membranes. Thus, the
effective differentiation between intracellular DNA (within
bacterial cells) and extracellular DNA (outside of bacterial
cells) can play a key role in determining the mechanisms

through which ARGs are removed by operational membrane-
based wastewater treatment systems.

With respect to AnMBRs, specifically, only two studies to date
have attempted to characterize the effects of intracellular vs.
extracellular ARG presence on membrane biofouling-based
removal. Interestingly, both of these works came to similar
conclusions regarding the effects of membrane biofouling
development. One of these was a targeted study by Cheng and
Hong that was aimed at assessing the removal of ARGs by
utilizing anaerobically-fouled polyvinylidene fluoride (PVDF)
microfiltration membranes (ex-situ) (Cheng and Hong, 2017).
Results of this work indicated that several tested antibiotic
resistant bacteria (ARB) were most effectively removed by
low-fouled membranes. Inversely, the corresponding ARG-
containing plasmids of these ARB, when tested extracellularly,
actually increased in removal when biofouling rates were
intensified. Other recent work by Zarei-Baygi et al. also aimed
to differentiate the effects of anaerobic biofouling rates on ARG
removal, in this case, in an operational AnMBR system (Zarei-
Baygi et al., 2020). This study also found that intracellular ARGs
(those present in ARB) were more effectively removed at low
fouling rates, whereas extracellular ARGs (those commonly
contained on plasmids) were better removed during highly-
fouled conditions. These results indicate a likely positive effect
of EPS and SMP accumulation in the fouling layer on improved
rejection of extracellular ARGs, while the increased
transmembrane pressure caused by these foulants may cause
more suspended sludge-based and/or biofilm-associated ARB
to break through the actual membrane barrier. It has been
postulated that the higher abundances of intracellular ARGs
present in effluents during elevated transmembrane pressure
operation could be due to the deformability of bacterial cells
causing their passage through membrane pores (Zarei-Baygi
et al., 2020). This explanation seems plausible, especially
considering the size range of microfiltration membrane pores
and the nature of absolute vs. nominal pore size distribution
(Suchecka et al., 2005).

DISTINCTIVE BIOFOULING MECHANISMS
ARE ASSOCIATED WITH AnMBRs

One of the outstanding challenges facing the adoption of
AnMBRs for the purpose of full-scale domestic wastewater
treatment is the reality that consistently effective membrane
fouling mitigation strategies have yet to be established. This is
partly due to the fact that AnMBR foulant characterization (and
system operational strategy development based on this
characterization) is still in its relatively early stages. An
interesting aspect to AnMBR membrane unit operation,
however, is that membranes have been reportedly operable for
extended periods of time with only minimal increases in
transmembrane pressure (Robles et al., 2012; Gouveia et al.,
2015). Further, AnMBR membrane biofilms have recently
been described to contain consistent EPS and biomass content
(per membrane surface area) both before and after
transmembrane pressure jumps (Yao et al., 2020a). This stands
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in stark contrast to the conventional understanding of membrane
fouling mechanisms as they relate to aerobic MBRs.

A Number of studies have aimed at determining specific
differences between AnMBR and aerobic MBR foulant
characteristics and their effects on membrane pore blockage. An
early work on the topic had reported that particle sizes in an
approximate range of 1–2 µm were uniquely found in AnMBR
systems after long-term operation, while also reporting that protein
to carbohydrate ratios in the SMP were markedly higher than in a
concurrently operated aerobic MBR (Martin-Garcia et al., 2011).
Other work comparing AnMBRs with aerobic MBRs has also
implicated the potential importance of the SMP protein fraction
in biofouling. Specifically, Xiong et al. found that a 640 kDa protein
SMP compound directly correlated with the level of membrane
fouling, despite such a compound size having been significantly
smaller than the 0.3 µm pore size of the membranes employed
(Xiong et al., 2016). These studies indicated the potential
importance of the proteinaceous fraction of SMPs in fouling,
while also suggesting that compounds and particles in reactor
suspension likely play a more important role in AnMBR fouling
than they do in aerobic MBR systems.

Perhaps most notably, various recent investigations of
AnMBR foulants have shed light on the role of micro-particles
and how they can directly affect fouling rates as compared to
aerobic MBRs. A 2016 study by Zhou et al. reiterated previous
findings that particles and colloids in the range of 0.45–10 µm
played an integral part in AnMBR fouling, as did their associated
microbial compositions (Zhou et al., 2016). When Zhou and
coworkers performed a subsequent study characterizing the
breakdown of micro-particles within this range (0.45–10 µm),
they found that colloidal particles of sizes 0.45–1 µm were the
specific fraction that resulted in severe pore blockage (Zhou et al.,
2019). The neglected nature of micro-particles in AnMBRs was,
most recently, directly compared to their possible role in aerobic
MBR systems (Yao et al., 2020b). Results of this study were highly
indicative that micro-particles play little to no role in fouling of
aerobic MBRs, whose membrane fouling layers are dominated by
EPS from the bulk sludge. AnMBR fouling layer organics were
comprised of 69% micro-particles, whereas aerobic MBR fouling
layer organics contained only 1.9%. All of the above works
highlight one commonality: that AnMBR fouling mechanisms
are dominated by factors which generally do not affect aerobic
MBR systems and, thus, cannot be controlled using the same
fouling mitigation strategies. Based on recent discoveries, it
remains likely that new strategies can be devised to promote a
microbial, EPS, SMP, and micro-particle matrix that sustainably
uphold low-fouling biofilm growth (Figure 1).

DISCUSSION

The AnMBR has been recognized as an emerging technology that,
if operable under low fouling conditions with effluent methane
recovery, can serve an integral solution for sustainable wastewater
treatment and reuse moving forward (Smith et al., 2014).
Although there are still operational challenges to overcome,
recent developments in the understanding of membrane

fouling mechanisms involved in AnMBR systems will likely
lead to a breakthrough in biofouling mitigation strategies in
the near future. Considering on the concepts outlined in this
study’s work, such mitigation strategies can be developed in
conjunction with targeted approaches for the enhancement of
emerging contaminant removal. The basis of removal for specific
emerging contaminant subtypes can, thus, be established using
the known/implied mechanisms of retention and/or
biodegradation as outlined in the recent work described herein.

Specific benefits of well-controlled anaerobic membrane
biofilms (in relation to specific emerging contaminant
subtypes) are summarized in Figure 2. With respect to
hydrophobic OMPs, the advantageous adsorption of such
compounds onto membrane biofilms and their subsequent
biodegradation can be promoted by the enhancement of a
methanogenic, syntrophic, and exoelectrogenic microbial
consortium within the membrane biomass. Hydrophilic OMPs
could be concurrently controlled by the establishment of a
naturally denser membrane biofilm that includes EPS from the
bulk solution, as well as micro-particles in a range greater than
0.45–1 µm. This would promote their rejection by the membrane
biofilm, as well as their resultantly improved biodegradability
within the AnMBR suspended biomass.

Regarding ARGs, their overall enhanced removal will be
dependent on reducing effluent concentrations of both their
intracellular and extracellular components. It has become
apparent from recent work that maintaining low
transmembrane pressure in AnMBRs is essential to minimizing
the release of intracellular ARGs/ARB. The solution to reducing
extracellular ARG transmission from AnMBR effluents, however,
may lie in promoting higher levels of targeted EPS, SMP, and/or
micro-particle fractions that are determined to have minimal
effects on actual fouling rates. To achieve this, it is therefore
proposed to incorporate fouling mitigation strategies that
facilitate dense membrane biofilm development that is
comprised of both sludge-based carbohydrate-type EPS and a
predominantly syntrohic-methanogenic consortium.

Although it was originally thought that high-density membrane
biofilms would inevitably result in high transmembrane pressure,
recent work has shown that the two circumstances are not
necessarily correlated in AnMBR membrane biomasses (Yao
et al., 2020a). Only a very specific fraction of micro-particles and
SMPhave been shown to affect transmembrane pressure increases in
AnMBR systems. As such, it remains thoroughly possible that
operational strategies can be devised to support biofilm growth
on membranes that promote both the sustainability of the
technology overall and the enhanced removal of a wide range of
emerging microbial and chemical contaminants.

Nonetheless, targeted research efforts are still needed to
elucidate the most effective low-impact membrane biofilm
development strategies. Based on existing work comparing
AnMBR system types, it seems likely that combining biofilm
carriers within AnMBR reactor units would aid in reducing
long-term fouling rates. Several studies have shown that
AnMBR systems employing biofilm carriers within reactor units
(specifically units that are separated from the membrane module
itself) can greatly reduce fouling-relevant ranges of both SMP
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fractions and particle fractions in the bulk solution (Garcia et al.,
2013; Harb et al., 2015; Chen et al., 2017). Considering the
concomitant advantages of biofilms in AnMBR systems
(generally) for the retention and degradation of emerging
contaminants, the possible mitigation of transmembrane
pressure rises by such systems is of high relevance for future work.
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