
Towards Digitalization in
Bio-Manufacturing Operations: A
Survey on Application of Big Data and
Digital Twin Concepts in Denmark
Isuru A. Udugama1,2, Merve Öner1, Pau C. Lopez1, Christan Beenfeldt3, Christoph Bayer4,
Jakob K. Huusom1, Krist V. Gernaey1* and Gürkan Sin1*

1Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical
University of Denmark, Kgs. Lyngby, Denmark, 2Department of Chemical System Engineering, The University of Tokyo, Tokyo,
Japan, 3Knowledge Hub Zealand, Kalundborg, Denmark, 4Department of Process Engineering, TH Nuernberg, Nuernberg,
Germany

Digitalization in the form of Big Data and Digital Twin inspired applications are hot topics in
today’s bio-manufacturing organizations. As a result, many organizations are diverting
resources (personnel and equipment) to these applications. In this manuscript, a targeted
survey was conducted amongst individuals from the Danish biotech industry to
understand the current state and perceived future obstacles in implementing
digitalization concepts in biotech production processes. The survey consisted of 13
questions related to the current level of application of 1) Big Data analytics and 2)
Digital Twins, as well as obstacles to expanding these applications. Overall, 33
individuals responded to the survey, a group spanning from bio-chemical to
biopharmaceutical production. Over 73% of the respondents indicated that their
organization has an enterprise-wide level plan for digitalization, it can be concluded
that the digitalization drive in the Danish biotech industry is well underway. However,
only 30% of the respondents reported a well-established business case for the
digitalization applications in their organization. This is a strong indication that the value
proposition for digitalization applications is somewhat ambiguous. Further, it was reported
that digital twin applications (58%) were more widely used than Big Data analytic tools
(37%). On top of the lack of a business case, organizational readiness was identified as a
critical hurdle that needs to be overcome for both Digital Twin and Big Data applications.
Infrastructure was another key hurdle for implementation, with only 6% of the respondents
stating that their production processes were 100% covered by advanced process
analytical technologies.
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INTRODUCTION

The economic value proposition of Industry 4.0 concepts and related technologies versus the
traditional engineering approach to production improvements (be it capacity, quality, resource
utilization, environmental footprint, or other relevant attributes) is the exploitation of information
rather than the implementation of traditional "steel and concrete” solutions to realize such
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improvements. In bio-manufacturing operations, the tide of
digitalization and Industry 4.0 has resulted in two main
thrusts of developments, namely Digital Twins and data-
driven process monitoring, operation, and optimization. Such
concepts promise production improvements without further
capital investments in equipment, as illustrated in Figure 1.
However, for industry digitalization concepts to have an
advantage over traditional equipment-based improvements, the
associated infrastructure and the required engineering,
operational and maintenance resources need to be managed.
For both Digital Twins and data-driven concepts, this delicate
balancing act between potential/expected benefits and the
difficulty/cost of implementation plays an essential role in
becoming a widely implemented set of solutions in the bio-
manufacturing industry. Before delving further into this
balancing act, the structures and the historical perspectives of
these two key developments will be reviewed.

Digital Twins
The concept of Digital Twins was first proposed by Greeves in
2002 for Product LifecycleManagement and was then taken up by
NASA to describe the development of advanced high fidelity
simulations for flight certification and flight testing (Glaessgen
and Stargel, 2011). Since this initial work, many other industrial
sectors have taken to this naming convention and use this term to
describe the development of high-fidelity digital simulations.
Examples include aircraft engine and maintenance suppliers
(Tuegel et al., 2011) (e.g., GE aviation or Lufthansa Technik),
discrete manufacturing suppliers (e.g., Siemens) and the
automobile industry, which are now implementing Digital
Twins of their assets and systems (Lukowski et al., 2019). In
manufacturing operations, the concept of a Digital Twin can take
three main forms (Lukowski et al., 2019): 1) A Digital Model, a
high-fidelity simulation of a physical object that has been
validated using data gathered. In the context of process
systems engineering (PSE), this is similar to a fully
mechanistic/hybrid process model that has been validated
against plant data (Mauricio-Iglesias et al., 2015). A Digital
Model allows engineers to conduct offline experiments and
test different operational aspects, including testing new control
structures. 2) A Digital Shadow, a high-fidelity simulation that
can receive information from the physical object (uni-directional
communication), exhibits similarities to the concept of state
estimation, e.g., to the concepts practised in Kalman filters
(Krämer and King, 2016; Krämer and King, 2019). A Digital
Shadow allows for dynamic process forecasts to be made in real-
time and for making these forecasts available to operators, e.g.,
through a suitable visualization interface. This flow of
information allows the operators to act on the process based
on the predictions made, i.e., a kind of ’operator enabled’ Digital
Twin is achievable. However, the availability of real-time
information-rich data is still somewhat limited in industrial
fermentation operations (Lopez et al., 2020; Udugama et al.,
2020). 3) Finally, a fully-fledged Digital Twin is discussed,
where the Digital Model can both receive information and
manipulate/alter the operation of the physical object in real-
time. In conceptual terms, this is similar to Model Predictive

Control, which has been used extensively for chemical and
biochemical process operations (Wegerhoff and Engell, 2016).
Hence, it can be argued that the Process Systems Engineering
community working on bio-manufacturing operations has
employed the fundamental building blocks of Digital Twins
for at least a decade. Further, this definition was extended to
five levels of Digital Twins (Udugama et al., 2021) that can be
achieved in the domain of fermentation-based manufacturing
operations (Figure 2). These levels can be described as follows:

• Level 1–3 represents Digital Models that are based on
increasingly more complex and thorough process models,
with level 3 representing an offline Digital Model that is
validated against process data.

• Level 4 represents a Digital Shadow, which acquires and
uses data in real-time, allowing the model to forecast future
operations of the physical process.

• Level 5 represents a fully-fledged Digital Twin for
operations where “real time” process data is used to
make future predictions and calculate and execute
control actions on the physical production process.

The literature contains a vast number of implementations in
the domain of mechanistic modelling (process models) that fit the
description of a Level 1–3 Digital Twin attempt, including work
such as (Xu et al., 1999; Rodríguez et al., 2006; Paramita and
Kasapis, 2019). From an operational point of view, these tools are
mainly used offline by engineering personnel to develop, test and
understand alternative process operation strategies. In
comparison, Level 4 and Level 5 Digital Twins are focused
explicitly on being implemented alongside process operations.
They directly influence the process operations through operations
guidance via forecasting and visualization or closed-loop control.
In comparison to Levels 1–3, are only a limited number of Level 4
Digital twin examples in the domain of bio-manufacturing. Lopez
et al. (2020) developed a Level 4 Digital twin, while similar
implementations are observed in (Krämer and King, 2016;
Kager et al., 2018; Krämer and King, 2019). The development
of Level 5 Digital Twins are currently underway in bio-
manufacturing. Attempts in (Ehgartner et al., 2017; Mears
et al., 2017; Lopez et al., 2020) have shown that even in the
bio-manufacturing domain, data can be gathered, future
predictions made (using a model), control actions planned and
executed in real-time. However, it should be noted that these
Level 5 Digital Twin examples use a significantly simplified
model, which may be too simplistic to be called a Digital Model.

From an engineering effort point of view, developing a
validated Digital Model for a given application already
requires the allocation of significant engineering resources. For
a Digital Model to accurately depict the behaviour of physical bio-
manufacturing processes, key phenomena at multiple scales need
to be captured. For example, an accurate representation of a
fermentation process might require integrating a cell line model
with a mechanistic model and a compartmental model. The cell
line model then describes the reactions within a cell that carries
out the fermentation. The mechanistic model describes the
general time-dependent input and output relationships of the
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whole fermentation unit operation. Finally, a compartmental model
accounts for the spatial dependencies (over time) thatmay occur in a
vessel due to transport phenomena. As such, the creation of a Digital
Model is a complex undertaking in practice. However, upgrading a
Digital Model into a Digital Shadow only requires the model to
operate while taking in real-time data. In contrast, a Digital Twin
would require implementing a decision-making algorithm or
optimization routine that calculates future movements in
manipulated variables enabled by the bi-directional information
flow. In practice, a Digital Shadow or Twin could use a surrogate
model of a rather complex Digital Model to ensure timely execution,
as practised in the implementation of concepts such as Extended
Kalman Filters (Cabaneros Lopez et al., 2020).

Big Data
“Big Data” and “Artificial Intelligence” are topics of great interest
in the path towards Industry 4.0. The key driving force for this
interest (in the process industries) is the phenomenal success of
data-driven concepts in specific areas, as illustrated by AlphaGo
of Google’s DeepMind, which can defeat an expert player in the
two-player abstract strategy game Go (Silver et al., 2016). Similar
examples can also be found in video games where Big Data-based
algorithms can excel at complex multi-level games (Arzate Cruz
and Ramirez Uresti, 2017).

However, a careful look into these concepts shows that (similar
to Digital Twin concepts) the use of data-driven concepts in
process operations is hardly new and goes back decades with
established ideas such as statistical process control (MacGregor,
1988). In general, these data-driven methodologies and
technologies can be divided into:

• Clustering methods can be divided into Hierarchical or
Partitional methods (Jain et al., 1999). Methods include
K-means (Sabbagh and Ameri, 2020; Singhal and Seborg,
2005), Density-based clustering, mean-shift clustering,
BIRCH (balanced iterative reducing and clustering using
hierarchies) (Thomas et al., 2018). Clustering, in general, is
supported by dimensionality reduction methods.

• Classification based methods include methods based on the
concepts of convolutional neural networks (Paoletti et al.,
2018). As well as methods such as, support vector machines
(Wang et al., 2006; Yin et al., 2014) and random forest
methods (Melcher et al., 2015).

• Regression-based methods such as partial least squares
(PLS) (Pontius, 2019) or recurrent neural networks such
Long-Short Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) or the Gated Recurrent Unit (GRU)
(Cho et al., 2014) and Autoencoders (Bengio, 2011). In
addition Generative Adversarial Networks (Paoletti et al.,
2018;Wu and Zhao, 2018), reinforcement learning (Aloupis
et al., 2015), or other statistical process control and
monitoring concepts (Spooner et al., 2018)

Big Data, which is often associated with high volume-, variety-,
veracity- and velocity- (4Vs) data, offers to leverage advanced and
smarter solutions to revolutionize business products, processes
and services. Beyond the popular perception of more insightful
data analyses, Big Data is believed to create and exploit new,
challenging and more granular data sources, utilizing advanced
analytics to create or promote products, processes and services,
and respond rapidly to changes in the business (Davenport et al.,
2012). The “volume” in 4Vs characterizes the magnitude or
amount of data. At the same time, “variety” describes the
organization of data such as structured (e.g., transactional

FIGURE 1 | The role of Big Data and Digital Twins in improving production efficiencies.

FIGURE 2 | five levels of Digital Twins in process operations (Udugama
et al., 2021).
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Survey for the industrial perspectives on big data and digital twins
(Answers to this survey will be anonymous).

1–What is your current role? *

• Engineer/manager Process design

• Engineer/manager Operations

• Engineer/manager product development

• Scientist–R&D

• Other:
2–Which industry do you work in? *

• Energy/Chemical

• Food/Dairy

• Pharma

• Other:
3–In which country do you work? *
4–When did you graduate (from your highest degree)? *

• < 1970

• 1971–1980

• 1981–1990

• 1991–2000

• 2001–2010

• 2011–Now
5–Does your organization have a plan for digitalization and/or implementing Industry 4.0 concepts in the future? *

• No

• Yes
5. a If answered “Yes” in question 5–What resources both human and infrastructure have been allocated to drive this?
5. b. If answered “Yes” in question 5–Has your organization clearly identified the benefits of digitalization and/or implementing Industry 4.0 concepts for your company?

• Yes, we have a business case or cases (know exactly)

• Somewhat, we have a general idea (including company-wide directives towards digitalization)

• No

• other:
6–Do you use any advanced representations of your production line (Digital Twin, 3D model, a simulation model) that support flexible configuration and redesign,
performance benchmarking or maintenance work? *

• No

• Yes (If yes, can you give us a generic example? please fill below)

• Other:
7–Do you use any advanced data-driven technique such as deep neural networks or model-based controls/operator guidance in your production line? *

• No

• Yes (If yes, can you give us a generic example? please fill below)

• Other:
(Continued on following page)
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| (Continued) Survey for the industrial perspectives on big data and digital twins
8–Do you use advanced data-driven or model-based methodologies during the early-stage design, feed, detailed design, plant upgrading, and/or testing of your
production processes? *

• No

• Yes (If yes, can you give us a generic example? please fill below)

• Other:
9–In your production, do you have the ability to monitor key specific variables related to the product quality (e.g., product/impurity concentration, etc.) beyond the
standard process variables (temperature, pressure, flow, level, pH measurements, etc.)? *

• No

• Yes (If yes, how many variables? please list a few examples. Please fill below)

• Other:
10–In terms of implementing a digitalization solution (such as model-based forecasting or control) in a production setting, what is the most critical hurdle out of the
following: *

• Lack of a business case (costs outweigh the benefits of the implementation)

• Engineering knowhow (i.e., developing the models)

• Infrastructure limitations (including lack of hardware, lack of sensors or installation difficulty)

• Organizational readiness (including lack of resources or willingness)

• Regulatory restrictions

• Employee time (i.e., manpower)

• Software limitations (including a lack of data management tools, e.g., process historians)

• other:
11–In terms of implementing a data-driven solution (such as data-based forecasting or control) in a production setting, what is the most critical hurdle out of the following: *

• Lack of a business case (costs outweigh the benefits of the implementation)

• Data know-how (i.e., training and implementing the correct model)

• Infrastructure limitations (including lack of hardware and lack of sensors or installation difficulty)

• Lack of good quality data (4V’s, veracity, velocity, variety and volume)

• Organizational readiness (including lack of resources or willingness)

• Regulatory restrictions

• Employee time (i.e., manpower)

• Software limitations (including a lack of data management tools, e.g., process historians)

• other:
12–Approximately how many units have sensors/PAT tools related to the product quality (critical quality attributes) installed? *

• 100%

• 75%

• 50%

• <25%

• Don’t know

• Other:
13–Anything we have missed concerning digitalization/AI? Any thoughts or ideas welcome to share with us.
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data, spreadsheets, relational databases), semi-structured (e.g., log
files), and unstructured (e.g., audio, video, images) (Davenport
et al., 2012; Chandarana and Vijayalakshmi, 2014; Gandomi and
Haider, 2015). Even though semi-structured and unstructured
data are hard to analyze, they often carry a lot of information. The
rate of data generation, data storage and retrieval (e.g., batch, real-
time), as well as the speed of analysis and decision support, is
covered by the term “velocity” (Davenport et al., 2012). The
“veracity” term puts a spotlight on the possibly inaccurate data, as
it could be that the analysis relies on the datasets or data resources
with several degrees of precision, accuracy, and trustworthiness
(Chandarana and Vijayalakshmi, 2014; Gandomi and Haider,
2015). Over time, the term “value” also appeared. It indicates the
anticipated outcomes of processing and analyzing Big Data,
i.e., the value added by adopting and integrating various data
types and sources.

Prerequisites and methods, and applications to establish and
leverage Big Data in the (bio)chemical industries were covered in
great detail elsewhere (Udugama et al., 2020).

What Makes (bio) chemical Engineering and
(bio) chemical Engineers Different?
Compared to other industries, the process industries have
decades of experience collecting process data from a vast
number of sensors (Venkatasubramanian, 2019; Udugama
et al., 2020), which is significantly longer than other
manufacturing domains. More specifically, sectors such as fine
chemicals, refining, and polymer production enjoyed this “data
rich” environment where Real Time Optimization and Model
Predictive Control practices have been carried out pervasively
(Bauer and Craig, 2008). However, in bio-pharma and bio-based
manufacturing sectors, the data gathered lack veracity, variety,
and velocity compared to the more data-rich segments. To
address this gap, there are research and development efforts
underway in developing improved sensor technologies,
including the concept of bio-sensors and novel measurement
methodologies (Yakovleva et al., 2013; Golabgir and Herwig,
2016; Cabaneros Lopez et al., 2020). Process industries also
rely on mathematical models (including industrial process
simulations) for process design, optimization and control (Van
Der Merwe et al., 2013; Materials, n.d.; Zhang et al., 2018).
Chemical engineers are also well versed in combining these
concepts to improve their capabilities, be it in using data-
driven concepts for parameter estimations of mechanistic
models (Sin and Gernaey, 2016). Employing the two concepts
side-by-side for improved process predictions (Lopez et al., 2020)
or using the underlying process understanding improves the
quality of the data-driven process predictions (Gajjar et al., 2018).

Moreover, in the area of drug manufacturing, Quality by
Design (QbD)—a formal framework that was adopted in the
early 2000’s by regulatory agencies. QbD puts forward the ability
to monitor and understand the progression (and hence the
advanced control) of a process as a key concept in
transforming the drug (including biologics) manufacturing
processes. QbD identifies a clear need to track and explain the
effect of variations on the process and, in turn to correct for these

variations in real-time (Narayanan et al., 2020). The similarities
between the current Digital Twin trends and the concept of QbD
are apparent. From a process control point of view, the regulatory
concept of “design space,” a key concept within the QbD
framework, can be seen as a drive towards moving away from
classical recipe-based validation, which also includes quality
testing production. Instead, QbD proposes a “process control-
based operational regime” where real-time corrections ensure the
on-specification product falls within the “design space” of a
process. The linked concept of process analytical technologies
(PAT), which refers to the development and implementation of
measurements (and further analysis) techniques to track critical
quality parameters (Teixeira et al., 2009), is somewhat similar to
the concept of data-driven process monitoring. However, in
practice, neither all pharmaceutical companies nor all unit
operations are capable of supporting PAT.

When analyzing the examples mentioned above, it can be
observed that the current Industry 4.0 drive for chemical
engineering and chemical engineers is a logical extension of
the previous endeavours. To this end, the chemical engineers
have a solid “theory” base and understanding of implementing
these concepts. At the same time, we are currently at a stage where
advances in computing power enable us to “actually” implement
these Industry 4.0 concepts in a full-scale production process.

The primary focus of this manuscript will be on understanding
and identifying the opportunities in the implementation of
Industry 4.0 concepts in industrial bio-manufacturing
processes. To this end, a targeted questionnaire was sent to
industrial engineers and scientists working in the Danish bio-
based manufacturing industry to identify perceived challenges
and opportunities. Based on the understanding gained from the
responses to the questionnaire, future perspectives building on
the current trend in digitalization are provided and followed by
conclusions.

INDUSTRIAL PERSPECTIVE

Academia has produced a noticeable number of examples of
Digital Twins and Big Data-based solutions in lab scale and
beyond. Hence, the question can be raised about why these
concepts are currently not implemented in the bio-
manufacturing industry in their drive towards digitalization
and Industry 4.0. To elucidate the industrial perspective on
the current state and future plans for Big Data and Digital
Twin-based solutions in bio-manufacturing, a survey was
developed and distributed (digitally) by e-mail to known
industrial practitioners in Denmark. This “closed” distribution
means that the responses received are from individuals who are
working in the bio-manufacturing industry day in and day out.
Choosing to focus on Denmark and particularly the Region of
Zealand is justified by the presence of a cluster of large world-class
bio-manufacturing organizations in this area. In fact, the Danish
municipality of Kalundborg, which is part of this region, is home
to the largest biomanufacturing cluster in Scandinavia.

The survey consisted of the following 13 questions. In this
survey, the terms digitalization and Industry 4.0 are used
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interchangeably as different organizations use either or both these
words to describe similar programs that primarily rely on Digital
Twins or Big Data-based tools.

RESULTS AND DISCUSSION

In this section of the manuscript, we will analyze the responses
received for the above 13 questions. Overall, 33 responses were
received from individuals working in the Danish biotech
industry. During the correspondence with the questionnaire
recipients, it was communicated that only a single individual
from a given sub-group would answer the questions. Therefore,
these 33 responses reflect the view of 33 different sub-
organizations (e.g., departments within a factory) within the
Danish biotech industry. Questions 1, 3 and 4 were included
in the survey to identify the respondents’ demographics and
ensure no bias exists between different groups. Question 2 was a
“check” question that allowed us to ensure the respondents were
from the Danish biotech industry. Figure 4 illustrates the
responses received for Questions 1, 3 and 4.

From analyzing Figure 3A, it can be seen that most of the
participants were from the pharma and the food and BioSolutions
sectors, while four participants were from the biochemical
industry and a single respondent from the area of wastewater
treatment. These responses are in line with the large industrial
organizations found in Denmark. Figure 3B shows that most of
the respondents worked in R&D, trailed by process operations
and process development. In other words, most of the
respondents to this survey worked in development roles
instead of actual operations. According to Figure 3C, the
respondents had differing experience levels, ranging from 40+
years to less than 10 years, more or less evenly distributed.

Despite the respondents representing a wide range of
demographics, the was no significant difference in the answers
provided to the subsequent technical questions between groups.

Figure 3D identified a clear divide between respondents where
24 out of the 33 respondents confirmed that their organization had
a plan for digitalization while 9 said no such plan exists. This result
shows that despite the critical importance most organizations and
academia within bio-manufacturing have placed on digitalization,
close to 30% of the respondents indicate that their organizations do
not have a plan to implement these technologies.

Perceived Costs Vs. Benefits of
Digitalization
For respondents who indicated that their organization had a
digitalization/Industry 4.0 plan, two follow-up questions (5a and
5b) were given. These questions intended to understand the
current commitment (in terms of infrastructure and human
expertise) the organizations were making towards this
transformation and the perceived benefits (whether or not a
clear business case could be established) the organization saw
in these investments. Generally, the responses to Question 5a
belonged to one of the four following groups:

1. The organization had a centralized approach of forming a
standalone department/projects. Response example:
“Digitalization and big data departments/groups are
established throughout the company to support Industry 4.0”

2. The organization took distributed approach where employees
and resources were spread out across the organization.
Response example: “Internal and external human resources,
upgrades to DCS and Datalake technology. Investments into
additional sensor technology”

FIGURE 3 | Demographics of the respondents; (A) illustrates the industry, (B) illustrates the current role (in the industry) (C) illustrates the year of graduation (level of
experience) (D) illustrates the plans for digitalization within the organization.
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3. The organization built-up infrastructure within the
organization while no dedicated employees were assigned/
hired. Response example: “We have infrastructure being build
up and hopefully the manpower will go along”

4. The organization provided general “lip service” where the top
management had indicated the “need” for transformation but
hadn’t committed any resources yet. Response example:
“upper management has set the direction that it is important”

Figure 4A illustrates to which category each of the responses
belonged. In contrast, Figure 4B shows the state of the business
case for implementation of digitalization/Industry 4.0 in the bio-
manufacturing industry.

From analyzing Figure 4A, it can be seen that the largest
subgroup of organizations deployed resources in a distributed
manner where digitalization experts and infrastructure were
embedded into different departments and groups across the
organization. In the centralized resource approach, dedicated
departments and business units were established to handle the
digital transformation. These are two starkly different
management approaches to tackle the challenge of raising the
digitalization level of industrial processes. Which approach would
prove to be the most beneficial is yet to be seen/understood.
Furthermore, 2 respondents indicated that their organization was
building up infrastructure, though they did not explicitly assign
personnel to introduce digitalization measures. Based on further
comments made by these two respondents, a conclusion can be
drawn that personnel assignment would begin once
infrastructure was close to completion. Meanwhile, 3
respondents said their management was talking about the
importance of digitalization but had not allocated any
resources. Overall, only 21 out of 33 respondents (or ∼63%)
reported that engineering work in infrastructure or human
capacity related to the digital transformation was being carried
out within their organization.

The answers to Question 5b show that there were only 10 well-
defined business cases for implementing digitalization/Industry
4.0 concepts within the respective organization. From a business
point of view, this means that about 30% of the respondents
indicated an application that provided a clear economic need
(cost vs. benefit) for applying digitalization technologies. The

other 14 respondents mainly were aware of a strategic need to
invest in digitalization/Industry 4.0 concepts, e.g., “Riding the
same wave as everybody else.”

From a purely economic point of view, these results show that
most organizations could not see an immediate and well-defined
economic benefit from investing in digitalization/Industry 4.0.
Nevertheless, some organizations decided to invest into digital
transformation to account for a strategic need. Hence, if this
“momentum” into digitalization is to be maintained in the long
term, economic benefits must become more apparent. In parallel
to technical developments, this endeavour also requires techno-
economic analysis concepts such as the methodology outlined in
(Udugama et al., 2018) for advanced process control. The
technical benefits can be converted into economic values and
onwards to a business case. In addition to this, it also seems clear
that there is a communication and leadership task for
management in clearly conveying the expected benefits from
investing in digitalization, short and long term, for the
organization. For management to succeed, it must adequately
analyze and identify these expected operational benefits.

Current Applications in Industry
Questions 6, 7, 8, and 9 were devised in the survey to identify the
industrial applications of digitalization and Industry 4.0 concepts
in use. These four questions were formulated to identify the
following key aspects:

1. Does the organization use Digital Twins (in some form) to
support plant operations?

2. Does the organization use Big Data or model-based control (in
some form) to support process control or operator guidance?

3. Does the organization use Big Data or Digital Twins
(including other computer-aided concepts such as CFD) in
plant design and capacity improvement projects?

4. Does the organization have used advanced sensors to monitor
production?

Figure 5 illustrates the answers of all 33 respondents to these
mandatory questions in the survey.

From analyzing Figure 5A, it can be seen that most
respondents noted that they had some form of Digital Twin in

FIGURE 4 | Perceived cost vs benefit of the digital transformation; (A) illustrates how resources are allocated; (B) illustrates the business case (economic benefit) of
digitalization.
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use to aid plant operations, which includes the use of a process
simulation model and even a capacity model. Three respondents
stated that their organization was developing this type of model.
However, 11 out of 33 (33%) respondents indicated that they had
no Digital Twin of any sort that could aid in process operations.
The following selected answers also shed some light on the type of
models that were in use:

“Many different types, 3D simulations, advanced 0D, 1D
tools” “We use BIOWIN for simulation of WWTP’s, we
have a project together with DTU regarding N2O
emissions, we also have project together with KWB on
joint control system with an industrial wastewater
treatment plant” “Mechanistic modelling of selected unit
operations, Flow sheet modelling to evaluate alternatives”
“capacity models 3D simulations”

According to Figure 5B, 21 out of 33 respondents (∼64%)
stated that they did not use any type of Big Data analytic tool or
model-based control concept for direct process control or
operator guidance. This means the vast majority of these
organizations are not leveraging these digitalization concepts
in achieving operational improvements. The following selected
answers show where digitalization tools were used directly in
process control or operator guidance.

“MPC and RTO for selected processes. PID tuning tool.” “real
time model based optimizers/predictive maintenance.”
“Predictive maintenance for example (predicting health
conditions)”

On the other hand, Figure 5C shows that a majority of the
organizations used Big Data analytics and/or Digital Twin
concepts in plant design and revamps. However, 10 out of 33
respondents (∼30%) claimed no such tools were used in their

organizations. The following selected answer illustrates where
these digitalization tools were used:

“Digital twins of new equipment and processes” “We are in the
very early stage of that” “Mechanistic modelling of selected unit
operations, Flow sheet modelling to evaluate alternatives”
“statistical modeling”

From Figure 5D, it can be seen that most respondents worked
for an organization that used advanced sensors in production
processes. However, 9 out of the 33 (∼30%) said their
organization had no such advanced measurement capabilities,
while 2 respondents stated that their organization was working on
it. The following selected answers shed light on the type of
advanced sensors being used:

“At line HPLC, Raman spectroscopy” “HPLC, ELISA, qPCR”
“Product concentration, Impurities, Oxygen level”
“concentrations, impurities but only after QC analysis has
been done”

A clear trend was spotted by analyzing the raw data behind
these four figures, where 9 out of 33 respondents provided
negative answers to the questions related to all four subfigures.
That is likely because if an organization was lagging in using
Digital Twins in operations, they were also likely to lag in
applying Big Data analytics and model-based approaches for
process control/operator guidance. These organizations are
also expected to be lagging in plant design and advanced
sensor implementation. Moreover, the raw data also suggest
that mechanistic modelling/Digital Twin solutions dominated
Big Data analytic concepts in the industry. This is likely because
process engineers are familiar with these concepts. Further, from
the answers to questions 6 a and 6 b, a majority of organizations
used digitalization concepts as an aid for engineers. Still, these

FIGURE 5 | The current state of digitalization technologies used in industry; (A) illustrates the use of Digital Twins during plant operations, (B) illustrates the use of
Big Data analytics during plant operations, (C) illustrates the use of Digital Twins during process development, (D) illustrates the use of advanced sensors during plant
operations.
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tools were yet to be used in “real time” on the operation floor to
support the production operations closely. This would require
these tools to be made available for plant operators or integrated
into the process control system.

FUTURE PERSPECTIVE

Danish biomanufacturing industry includes both organizations
leading the digital transformation in terms of resources,
implementations, and business cases and organizations that do
not even have a digitalization plan. This section of the manuscript
focuses on formulating an opinion on the future developments
that must take place to make digitalization and Industry 4.0
concepts standard in the bio-manufacturing industry.

Questions 10, 11 and 12 of the survey were formulated to
facilitate this discussion by identifying the aim to identify.

1. the critical hurdles that must be overcome to implement
Digital Twins in bio-manufacturing operations,

2. the critical hurdles to implementing Big Data analytics in bio-
manufacturing, and

3. the actual state of advanced process monitoring solutions in
the production line.

Figure 6 illustrates the responses to these questions. In
questions 7a and 7b, the respondents were able to make
multiple choices.

Figure 6A shows the multiple hurdles that must be overcome
to implement Digital Twin concepts in operations.
Organizational readiness was identified as the single biggest
hurdle, followed by infrastructure, Manpower, Business case,
Technical limitations, and regulations. Regarding technical

limitations, a key hurdle is integrating these state of the art
solutions to legacy control systems from the decades past,
while a lack of a straightforward methodology to pinpoint the
economic benefit of digitalization is a crucial hurdle to
establishing a business case. Failure from management in
showing a clear path for navigating through the regulatory
requirements is a potential showstopper for biopharmaceutical
manufacturing where regulations are extensive. The need to
attract and retain expert-level employees to develop and
maintain digitalization solutions is also a challenge that must
be overcome.

Figure 6B, shows a very similar set of critical hurdles that must
be overcome to implement Big Data analytics. In comparison to
Figure 6A, infrastructure was identified as a key hurdle that must
be overcome in applying big data analytics. This is likely due to
big data analytics solutions need for upgraded sensors, data
storage and handling capabilities as a prerequisite for
implementation.

Organizational Readiness
In Figures 6A,B, organizational readiness is identified as a
significant hurdle in implementing Big Data analytics and
Digital Twins, hence, in the overall digital transformation.
From an organizational point of view, implementing either
solution in an operations support/guidance role requires
coordinating multiple departments and stakeholders within an
organization, including plant operators who will be the end
customer. From the perspective of the technical department
(and in many cases top management), these technologies can
seem like potential “game changers”, which promise to improve
plant productivity (hence the operating margins) without the
need for large infrastructure investment. However, for a plant
operations team focused on achieving on specification operations,

FIGURE 6 | Critical hurdles in implementing digitalization concepts; (A) illustrates the hurdles identified for implementing Digital Twins in operations, (B) illustrates
the hurdles identified for implementing Big Data analytics in operations, (C) illustrates the current state of advances process monitoring carried out during operations.
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any new development requires an adjustment of their routines,
which at first increases the chance of off-specification operations.
Moreover, in many situations where productivity improvements
are achieved through operational changes, production is more
susceptible to process variations (Udugama et al., 2018). In
addition, any new technology that is introduced leads to a
learning period for the plant operators, which makes their job
more difficult. Similar requirements may arise in other
departments as well. Consequently, there is a strong need to
explicitly take these considerations into account.

Infrastructure, Manpower and Technical
Limitations
The number of respondents who saw infrastructure as a key
hurdle in Digital Twins and Big Data analytics is also significant.
For Digital Twins, this is likely because a Digital Twin solution,
particularly for close operational support, requires integration
to the operator consoles or the process control systems. This
means there is a hardware requirement to enable the “real time”
data acquisition, process prediction and control action
calculation. Considering the technical requirements such as
redundancies, this requires dedicated infrastructure
commitment and qualified manpower, which can be hard
to find.

In comparison, the number of respondents who saw
infrastructure as a key hurdle in implementing Big Data
analytics is significantly higher. This is likely due to the
implementation requirement for further advanced sensors, big
data repositories and computational power to carry out analytics
at scale, which requires dedicated hardware. Although
implementing a Digital Twin concept for operations is not
trivial, the implementation of Big Data analytic tools would
require significantly more hardware both in terms of data
gathering and computation. This was also conveyed by a
respondent as follows “Lack of good quality data (4V’s,
veracity, velocity, variety and volume).”

It can also be seen that both manpower and technical
limitations were listed as hurdles (Figure 6A,B). For
manpower, this is due to the need for dedicated Big Data
experts and process modelling experts. In Big Data, experts
who have traditionally not been a part of the operational
organization need to be hired. In terms of cost, infrastructure
developments are likely more costly than the technical work that
needs to develop these concepts. It should be noted that these are
likely projects that require a high level of technical education (for
example, a Master level degree or even a PhD) to perform. For a
location such as Kalundborg, it is somewhat challenging to recruit
and retain highly educated talents because of the relative
remoteness from Copenhagen.

In terms of technical limitations, both Big Data and Digital
Twin technologies require the integration of multiple databases
and systems, including legacy control systems designed as
standalone systems with limited “real time” data transfer
capabilities.

Overall, there is a need to build up technical infrastructure
further, high throughput/automated data collection (online/

PAT) and human expertise in these areas. Moreover, while the
industry can take care of the infrastructure build up, universities
need to further improve the course offerings in the field of
digitalization and focus on providing further input into
industry. A respondent also remarked this as follows.
“Seminar from you on Teams to make us up to date.”
Collaboration between universities and industry, in developing
a technical yet practice-oriented curriculum that directly
addresses the needs of current industry employees with respect
to digitalization and Industry 4.0 technology, is thus likely to play
an important role.

Regulations
In both Big Data analytics and Digital Twin solutions, the
operators will have to follow a set of suggestions generated by
a “computer”. This can be somewhat troublesome as the
processes are often validated under a standardized operating
procedure that must be followed to ensure GMP compatibility.
In these situations, implementing these solutions is incompatible
with following a standard operating procedure.While the concept
of QbD and its updates attempt to create an avenue for this type
of operation, this is not so straightforward, particularly not for the
“black box” methods used in Big Data analytics. Even if these
methods can be deemed acceptable, to introduce some of these
applications in direct operations, a set of complex re-validation
steps might be needed, which would require engagement and
discussions between experts from industry, academics and
regulatory agencies.

Advanced Sensors
From analyzing Figure 6C, quite a straightforward conclusion
can be drawn. That is, only 2 out of 33 (∼6%) respondents had
100% coverage of advanced sensors and measurements in their
production line. From a practical point, the first requirement for
implementing either of these concepts is the need for advanced
sensors. These sensors can then be used to predict the current
state of the process in “real-time”, which, in turn, enables
informed operator guidance and control steps can be used
taken to improve production. To this end, if ubiquitous
digitalization is to be achieved in the bio-manufacturing
industry, advanced sensors must cover the overall production
process.

A Road Map to Success?
The survey results illustrate clearly that many organizations
desire to implement digitalization concepts. However, the
business case for the digitalization solution is often unclear.
Especially the data availability (quality and quantity, among
others) can be regarded as a catch 22 situation. On the one hand,
one needs to elicit the value to the overall manufacturing organization
before significant resources are invested in obtaining Big Data.
Indeed, unlike social media, where Big Data is available virtually
for free (mostly pending corresponding user consent and agreement
about their data), Big Data in manufacturing has a significant cost
element. As such, it requires expensive automated data collection
systems (PAT sensors, collection, storage, maintenance, etc.). On the
other hand, if there is no Big Data available frommanufacturing, the
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whole concept of Big Data analytics (hence an essential pillar of
digitalization) becomes irrelevant.

Hence:

• Further tools and methods must be developed to establish
the business case, including the triple bottom line
(Economics, society, and environment).

• Appropriate strategies to address the cost of Big Data are
needed. In this regard, the increasing use of first-principles
models to complement data needs for Big Data analytics
could be considered and hybrid modelling concepts. In
addition, flagship projects focusing on critical processing
steps in manufacturing could be used to demonstrate the
value before scaling up the implementation across entire
manufacturing systems.

• Management must seek to develop a more comprehensive plan
or roadmap for implementing digitalization in the
manufacturing organization. I.e. management must formulate
a fairly comprehensive strategic plan, prioritize initial targets for
digitalization that provide the best cost/benefit case, and ensure
that the comprehensive digitalization strategy is rolled out across
multiple years, building on the initial prioritized cases towards
secondary and tertiary priorities. The strategic digitalization road
map itself must be flexible enough to allow for adjustments, as
the organizational use-cases of digitalization, big data and data
analytics become increasingly developed

Even if a business case is developed, the following represents
an additional set of hurdles that must be overcome. Hence, there
is a need for:

• Development of tools and methods to capture and
incorporate stakeholder requirements and, in particular,
develop operator-friendly digitalization solutions that will
make the onboarding of this critical stakeholder easier.

• Development of the infrastructure “backbone” needed for
implementing digitalization solutions.

• Educating skilled technical personnel who can support the
development of digitalization solutions.

• Clearly identifying the regulator requirements such that
digitalization solutions can be developed to circumvent
regulatory re-validation.

• Finding the “right”-size of the developments at each stage
across the multiple-year timeframe where Digitalisation can
be rolled out. So, for example, building enough infrastructure
to enable the initial phases of the strategic roadmap to be
implemented, but not building vastly more backbone than

there is a reasonable need for in the initial stages. This is
particularly important given the rapid pace of hardware and
software/application developments in this area.

CONCLUSION

There is still a long journey ahead to completely digitalize bio-
manufacturing operations despite the initial enthusiasm and
investments. Most Danish Biotec organizations have plans for
digitalization, while some have no concrete digitalization plans.
Even when an organization has a plan, the business case for
implementing a digitalization solution seems to be often
missing. Consequently, developing methodologies to identify
the economic value proposition of digitalization is an
immediate and burning need. Addressing organizational
readiness issues as opposed to technical issues was a more
direct concern. Hence, there is also a need for developing
and demonstrating methodologies and concepts that can
efficiently address this requirement. Finally, even for
industrial organizations with a clear economic business case,
there is a need to continuously invest in appropriate
instrumentation such as sensors and analytical technologies
to ensure all production processes can be operated with
Digitalization aids.
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