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The increased demands on renewable and sustainable products require enhancing the
current conversion efficiency and expanding the utilization of biomass from a single
component (i.e., cellulose) to entire biomass components in the biorefinery concept.
Pretreatment solvent plays a critical role in various biorefinery processes. Recent
pretreatment solvents such as organic co-solvents, acid hydrotropes, ionic liquids and
deep eutectic solvents showed effective biomass fractionation as well as preservation of
high-quality cellulose and lignin under mild conditions. Despite these significant
enhancements in biomass pretreatment solvent, there are still many challenges, such
as feedstock variety, valorization of non-cellulose components, and eco-friendliness of the
applied catalyst and solvent. These technical, economic and environmental obstacles
should be considered in future biomass pretreatment solvents. In particular, the
development of feedstock-agnostic solvent with high fractionation performance for high
quality and quantity of all three major components (i.e., cellulose, hemicellulose, and lignin)
together would be an ideal direction.
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INTRODUCTION

Environmental concern and shortage of petroleum-based resources have increased people’s interests
in alternative fuels, chemicals and materials. Lignocellulosic biomass, a heterogeneous polymer
mainly composed of carbohydrate fractions such as cellulose and hemicellulose with lignin, a natural
aromatic macromolecule, is a promising renewable and sustainable resource in these applications.
Due to the structural rigidity and complexity of biomass, diverse pretreatment strategies have been
developed in biorefinery processes. Figure 1 shows the network map generated by analysis of
keyword co-occurrence in the recent 3,000 scientific publications on “biorefinery” using the full-
counting method of VOSViewer (Perianes-Rodriguez et al., 2016). As shown, pretreatment is found
to be a major research topic in biorefinery community. Although the processing conditions vary
depending on the target products, in general, pretreatment aims to facilitate and maximize the
conversion/application of major biomass components. In the pulp and paper industry, for example,
the pretreatment fractionates the qualified fibers by removing lignin. Similarly, conventional
methods such as hydrothermal, dilute acid, alkaline, and steam explosion pretreatments focus
on the conversion/utilization of carbohydrates, in particular, cellulose. However, current biomass-
derived products are still challenging to compete with petroleum-based products in terms of their
economic compatibility. Recent biomass utilization strategies target not only cellulose but also other
major components such as hemicellulose and lignin to overcome this challenge.
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FIGURE 1 | The network map by analysis of keyword co-occurrence in the recent 3,000 scientific publications on “biorefinery.”

Lignin has been reported as a major recalcitrance factor in
biomass conversion. It is an aromatic macromolecule composed
of different aromatic units (i.e., syringyl, guaiacyl, and
p-hydroxyphenyl units) linked through C-O and C-C linkages.
It limits enzyme access to cellulose, decreases enzyme activity by
non-productive binding, and reduces microorganism’s activity as
an inhibitor (Yoo et al, 2020). Therefore, removal and
modification of lignin in the plant cell wall are effective ways
to enhance biomass conversion. Alkaline and organosolv
pretreatments show significant delignification effects from
biomass (Kim et al., 2016; Zhou et al., 2018). However, these
conventional pretreatment methods focus on cellulose utilization;
therefore, the removed lignin cannot avoid significant
condensation and other modifications (Yoo et al., 2017). This
is one of the reasons why the recovered lignins from the
conventional pretreatments showed limited applications.
Hemicellulose is a heterogeneous polysaccharide with xylan,
galactan, arabinan, mannan, glucan, and some sugar acids like
glucuronic acid and galacturonic acid. This component is
relatively easy to remove from the plant cell wall, so
hydrothermal treatment without additional catalysts is enough
to fractionate. A certain type of pretreatments like ammonia
pretreatment can selectively remove lignin while retaining most
cellulose and hemicellulose; therefore, these carbohydrates can be

hydrolyzed and/or fermented together (Zhao et al., 2020; Hans
etal., 2021). However, this pretreatment is not effective on woody
biomass (Kim et al., 2016). Also, under severe acidic pretreatment
conditions, the hydrolyzed carbohydrates can be degraded and
dehydrated to furans like HMF and furfural. These furans can be
repolymerized and condensed to the unwanted solids named
pseudo lignin because they are measured as acid insoluble lignin
in the analysis (Shinde et al., 2018; He J. et al., 2020). Smith et al.
reported that lignin and pseudo lignin aggregate onto cellulose
surface and inhibit biomass conversion (Smith et al., 2016).

A processing solvent plays a crucial role in biomass
pretreatment. Characteristics such as solubility of each
component and phase change temperatures (e.g., boiling point
and freezing point) of pretreatment solvent are closely associated
with pretreatment and fractionation effects as well as separation
and recycling of catalysts and solvents. In addition, the feasibility
of bioresources for solvent production, biodegradability and low-
toxicity are essential to achieve a carbon neutrality and eco-
friendly processing system.

Several pretreatment solvents were newly developed to
enhance the valorization of all three major components.
Firstly, these pretreatment solvents focus on both the quality
and quantity of all three components. Solvents are designed to
reduce the severity of pretreatment conditions which directly
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affect degradation and condensation of hemicellulose and lignin
during the processes. Secondly, sustainability and environmental
impacts of the solvents are considered. It includes toxicity,
recyclability, biodegradability, energy consumption for its
processing and separation, and bio-derivability. This mini-
review summarizes technical features and obstacles of recently
developed pretreatment solvents and discusses the remaining
challenges and future perspectives.

RECENT BIOMASS PRETREATMENT
SOLVENTS

Organic Co-Solvents
Organosolv pretreatment has been applied to various biomass
conversions due to its effective lignin removal. Traditional
organosolv pretreatment is a co-solvent method using low
boiling point solvents such as ethanol and acetone with water
and acid/base catalyst (Huijgen et al., 2010; Yao et al.,, 2018).
Because of their relatively high lignin solubility, those solvents
show an effective pretreatment on both woody and herbaceous
biomass (Brudecki et al., 2013; Hallac et al., 2010; Pan et al., 2005).
However, extensive decomposition and modification of lignin are
still observed because of its relatively harsh conditions like
elevated temperature (Meng et al, 2020a). Co-solvent
enhanced lignocellulosic fractionation (CELF) is a type of
organosolv pretreatment applying tetrahydrofuran (THF)-
water mixture as a pretreatment solvent. THF, a polar aprotic
solvent, significantly enhances the delignification and
deconstruction of polysaccharides (Mostofian et al, 2016).
THF is miscible with water in the range of pretreatment
conditions and limits lignin-lignin interactions by solvating
lignin in the hydrophobic (THF) medium. The solvation of
lignin in THF facilitates lignin removal during the
pretreatment (Smith et al, 2016). For instance, CELF
pretreatment significantly reduced enzyme loading to achieve
over 95% C5 and C6 sugar production from corn stover (2 mg
enzyme/g glucan) compared to dilute acid pretreatment (Nguyen
et al,, 2015). CELF pretreatment effectively fractionated lignin
from biomass with high yield and purity (Cai et al., 2013; Meng
et al,, 2018), which are important factors for lignin valorization.
In addition, this pretreatment drastically reduced the molecular
weights of lignin while forming less condensed aromatics than
ethanol organosolv pretreatment (Meng et al., 2020a).
y-Valerolactone (GVL) was also applied as a co-solvent in
biomass pretreatment due to its chemical stability, water
miscibility and low melting temperature (Raj et al, 2021;
Shuai et al, 2016b). GVL is considered a green solvent in
many applications such as polymer and pharmaceuticals
manufacturing based on its ecotoxicity and biodegradability
tests (Kerkel et al., 2021). Luterbacher et al. investigated non-
enzymatic saccharification using GVL and resulted in high sugar
yields by lowering the activation energy of the hydrolysis of
glycosidic bonds (Luterbacher et al., 2014; Mellmer et al., 2014).
The combination of mild GVL pretreatment with enzymatic
hydrolysis was also tested and resulted in higher total sugar
yields. Both glucose and xylose were nearly completely
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recovered after the pretreatment with high purity of technical
lignin. In particular, GVL pretreatment effectively removed
hemicellulose and lignin at milder temperatures than other co-
solvent processing such as ethanol-organosolv and CELF
pretreatments did (Shuai et al, 2016b). This pretreatment
preserved more intact structures of native lignin like B-ether
units than other co-solvent methods, possibly due to the mild
reaction conditions (Luterbacher et al., 2015; Meng et al., 2020a).
These new co-solvents showed superior delignification
because of their high lignin dissolution capacity compared to
traditional pretreatment solvents. Also, these solvents enhance
the catalytic activity by destabilizing acidic protons (Shuai et al.,
2016b). Although GVL showed a better pretreatment
performance under the same mild pretreatment conditions, its
high boiling point (~207°C) makes solvent recycling and products
separation challenging. Recovery of GVL by the combination of
precipitation and distillation at reduced pressure and liquid CO,
could make 87-90% recovery yield (Galbe and Wallberg, 2019);
however, further study is necessary to answer the economic
feasibility. THF and GVL are potentially produced from
biomass-derived chemicals, which are available from furfural,
5-hydroxymethylfurfural (HMF) and levulinic acid; therefore,
these processes can be sustainable (Ding et al., 2014; Mostofian
et al,, 2016). However, THF was not recommended as a green
solvent from an environmental point because of its high
cumulative energy demand and complex production steps at
this stage (Capello et al., 2007). Besides, other organic co-
solvents such as dioxane and butanol have been applied in
biomass pretreatments (An et al., 2017; Teramura et al., 2018);
however, further investigation by considering their sustainability,
eco-friendliness, and cost-competitivity is necessary.

Acid Hydrotropes

Recently, several acid hydrotropes such as maleic acid,
p-toluenesulfonic  acid, benzenesulfonic acid and 4-
phenolsulfonic acid have been applied for biomass processing
(Cai et al., 2020; Chen et al., 2017; He D. et al., 2020; Zhou et al.,
2020). A hydrotrope has both lipophilic and hydrophilic ends in
the structure and can aggregate above its minimal hydrotrope
concentration (MHC) to solubilize lignin, a hydrophobic solute.
The lipophilic nonpolar parts of the hydrotrope shield the
dissolved lignin through the m-m stacking or hydrophobic
interaction to form micellar-like aggregates, while the
hydrophilic parts (sulfonic acid moiety) make an effective
dissolution (Chen et al., 2017). Therefore, it showed high
lignin solubility (Ji and Lv, 2020) and resulted in an effective
lignin fractionation from woody biomass (Cai et al., 2020; Chen
et al, 2017). Compared to aromatic salt-based hydrotropes
treatment conditions in pulping and biorefinery processes (e.g.,
>150°C, several hours) and long reaction time, acid hydrotrope
pretreatment can effectively fractionate biomass under relatively
low temperatures (i.e., below water boiling point) and short
reaction time (<30 min) (Zhu et al, 2019). Acid hydrotrope
treatments selectively dissolve hemicellulose and lignin while
preserving cellulose. The dissolved lignin can be readily
precipitated by destabilizing the aggregation of acid
hydrotrope with water dilution below MHC (Chen et al,
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2017). The solubilized hemicellulose in the fractionation liquor
after lignin precipitation was further treated at elevated
temperature with the presence of hydrotrope and produced
furfural. Either membrane separation or distillation can be
applied to recover the furans and recycle the hydrotrope
(Chen et al., 2017; Cai et al., 2020). Moreover, mild processing
conditions, such as low operating temperature and atmospheric
pressure, of acid hydrotrope fractionation allow using low-cost
equipment. Since the market price of acid hydrotropes ranges
higher than common industrial solvents, its efficient recycling is
critical for its commercialization. By now, unwanted residual
sugar contamination remains a future task. Further investigation
about water, solvent and energy consumptions for the recycling of
the hydrotrope is necessary. In addition, these pretreatments
require high concentrations of the acid hydrotrope (>50%);
therefore, this acidity of the solvent should be considered in
the pretreatment reactor design.

lonic Liquids and Deep Eutectic Solvents
A major movement in biomass pretreatment came with the
development of ionic liquids (ILs). ILs are organic salts that
typically melt below 100°C and are often called green solvents or
are connected with green chemistry (van Rantwijk and Sheldon,
2007). The interest of ILs as green solvents resides in their low
vapor pressure and high thermal stability, offering advantages
such as product recovery and recycling ability (Mallakpour and
Dinari, 2012). In modern biorefineries, ILs have been studied as
alternative pretreatment reagents, replacing toxic and hazardous
chemicals due to their green solvent properties.

Dialkylimidazolium-based, choline-based, and protic ILs have
been heavily studied in biomass pretreatment (Zhang et al., 2021).
Such ILs can dissolve carbohydrates and lignin via competing for
hydrogen bonding, resulting in the disruption of the complex
network between biomass components (Agbor et al., 2011; Alvira
et al., 2010). The structure of cation and degree of anion charge
delocalization of ILs were found to be primary factors affecting
the efficiency of biomass pretreatment (Agbor et al, 2011).
Although the IL-based biomass pretreatment has opened up
new perspectives for the development of the biorefinery sector,
there remain several critical scientific challenges that must be
addressed before affordable IL-based processes are commercially
viable. For example, an energy-intensive recycling process is
considered a major technical obstacle. In addition,
imidazolium-based ILs that have shown great pretreatment
performances are relatively expensive, and many of ILs are
mainly obtained from petroleum, which must be addressed to
make IL-based biomass pretreatment more sustainable and
scalable.

Recently, deep eutectic solvents appeared as a new class of
green solvents. Although DESs were often considered a new class
of ILs due to their similar properties, they are two different types
of solvents (Zhang et al., 2012). An IL is an association of a cation
and an anion, whereas DES is a combination of two (binary) or
more (ternary or quaternary) solids, forming a eutectic mixture
with a strong hydrogen bonding network at a temperature lower
than the melting point of each component (Smith et al., 2014).
DESs are tailor-made solvents that can be prepared from low-cost
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and bio-derived sources and have been applied in biomass
fractionation due to their outstanding ability to dissolve
biomass components.

One of the components frequently used to prepare DESs for
biomass pretreatment is choline chloride (ChCl) as a hydrogen
bond acceptor (HBA). ChCl is a bio-derived, inexpensive, and
nontoxic salt, exhibiting remarkable H-bonds accepting
capability. In the biomass pretreatment context, hydrogen
bond donors (HBDs) that have been investigated include
acids, polyols, amides, monosaccharides, and phenolic
compounds. The combination and molar ratio of HBA and
HBD, and the mass ratio of DESs to biomass substantially
influenced the pretreatment efficiency (Satlewal et al., 2018;
Wang et al, 2021; Xu et al., 2020). DESs have great potential
to fractionate biomass components; however, there are several
technical barriers to overcome to make the DES-mediated process
more sustainable. For example, the strong hydrogen bond
interaction between biomass components and DESs makes
product recovery and purification difficult in downstream
processing. Another pillar in the development of successful
DES-assisted biomass pretreatment will be the recycling of
DESs. Despite the fact that DESs are being studied to replace
conventional pretreatment reagents, the recycling and reuse of
DESs remain a major technical challenge. Several recycling
technologies, including anti-solvent addition, crystallization,
ultrafiltration, solid-liquid extraction, and liquid-liquid
extraction, have been reported. The recycling process of DES
should be selected based on the physicochemical properties of
DESs and the nature of the process (Isci and Kaltschmitt, 2021).
In addition, it is often discussed that intermediate products after
pretreatment bound to DES components reduce the purity of the
DES, influencing pretreatment efficiency. Therefore, maintaining
the high purity of DES has to be carefully considered when
developing a recycling process.

What are Recent Pretreatment Solvents
Focusing?

Traditional pretreatment solvents mainly focused on lignin
removal, maximizing the release of fermentable sugars for
subsequent  fermentation. However, because of the
carbohydrates-oriented philosophy of conventional
biorefineries, strong catalysts and petroleum-derived solvents
have been widely used, which are now criticized for their
toxicity and non-biocompatibility. Furthermore, relatively poor
lignin quality (i.e., condensed lignin) due to harsh reaction
conditions makes lignin non-attractive feedstock for further
utilization.

Whereas lignin removal, the yield of fermentable sugars, and
recyclability of solvents were the primary metrics of the past,
future pretreatment solvents should meet additional metrics,
including biocompatibility, bio-derivability, and recovery of
high-quality lignin (Figure 2). The biocompatibility of certain
ILs and DESs has attracted significant research in developing
consolidated biomass conversion processes (e.g., one-pot biomass
conversion). Considering that the consolidated process does not
require additional steps such as solvent removal and water
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washes, it would lower capital and operating costs due to the
reduced number of unit operations. Modern lignocellulosic
biorefineries also aim to replace petroleum-derived organic
solvents with bio-derived and renewable green chemicals to
develop a sustainable biomass conversion process. Equally
important, the pretreatment should have minimal effect on the
lignin structure. From a techno-economic standpoint, the success
of future biorefineries is highly dependent on lignin valorization
(Yu and Kim, 2020). In this respect, preserving native lignin
structures targeting minimal lignin condensation is an imperative
research topic in this community.

FUTURE DIRECTION OF BIOMASS
PRETREATMENT SOLVENTS

Feedstock-Agnostic Solvent

Biomass pretreatment is the first step in any lignocellulose-based
biorefineries to fractionate biomass components, facilitating their
subsequent conversion to fuels, chemicals, and other bioproducts.
Thus, choosing an appropriate pretreatment method will be
critical as it determines subsequent downstream processing
steps and the efficiency of the overall biomass conversion
process (Saddler and Kumar, 2013). The type of pretreatment
highly depends on the nature of the biomass feedstock because
the structural diversity of various biomass sources requires a
different approach to obtain the desired products. An ideal
biomass pretreatment solvent will be feedstock-agnostic.
Feedstock-agnostic pretreatment can utilize a wide array of
biomass feedstocks, liberating a high yield of the
monosaccharides and lignin-derived phenolic intermediates.
Several studies revealed that some ILs and DESs exhibited
versatility with multiple feedstocks with high pretreatment
efficiency (Hennequin et al., 2021). A relatively high capability
of ILs and DESs for the dissolution of biomass components makes
them promising pretreatment reagents. In addition, IL- and DES-
based biomass pretreatments do not typically need additional

acid or base catalysts, which can avoid or minimize the formation
of fermentation inhibitory compounds. Furthermore, some of the
recent IL- and DES-based biomass processes facilitate recovery of
high-quality lignin (i.e., highly preserved (B-O-4 linkages),
providing opportunities in lignin valorization (Dutta et al.,
2017; Chen et al, 2020). Developing feedstock-agnostic and
economical biomass pretreatment that can effectively separate
biomass components with minimum use of chemicals and energy
will be a key research area in the biorefinery community.

Lignin-First Biorefinery

The lignin-first biorefinery concept stems from the recognition of
unwanted lignin modification (i.e., condensation) and its adverse
effect on lignin depolymerization processes (Renders et al., 2017).
Lignin-first ~ philosophy implements active stabilization
mechanisms in biomass pretreatment and fractionation. This
approach is more compatible with relatively severe conditions;
therefore, it overcomes the trade-off between lignin fractionation
yield and its quality (e.g., condensation and cleavage of f-O-4
linkages). Also, cellulose has a more rigid semi-crystalline
structure compared to lignin; thus, it can avoid a significant
cellulose loss (Renders et al., 2017). Shuai et al. applied
formaldehyde to preserve P-aryl ether linkages by forming a
stable six-membered 1,3-dioxane (acetal) structure with a- and
y-hydroxyl groups of lignin side-chains. In addition,
hydroxymethylation of aromatic rings with formaldehyde
blocks reactive positions as a secondary stabilization. These
stabilization reactions significantly improved the subsequential
hydrogenolysis yield of lignin (Shuai et al., 2016a). Similar studies
applying diols (e.g., 1,4-butanediol, Cyrene, and ethylene glycol)
as a co-solvent or DES component resulted in comparable
delignification yields and relatively high p-O-4 linkage (Dong
et al, 2019; Liu et al, 2021; Meng et al., 2020b). Wu et al.
effectively fractionated biomass via a photocatalytic lignin-first
approach at room temperature. However, energy-intensive ball-
milling was performed prior to the fractionation process (Wu
et al,, 2018). Besides, Luo et al. recently introduced another
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lignin-centered strategy by non-alkaline oxidative catalytic
fractionation of biomass using a heterogeneous catalyst in
acetone. This process simultaneously fractionated lignin and
produced oxygenated aromatic monomers and comparable
carbohydrates in a single step (Luo et al., 2021). However, this
approach is at an early stage and still needs to compromise either
yield or quality; therefore, further investigation is necessary to
achieve both. In particular, ideal biomass processing solvents
require to meet technical (e.g., lignin solubility and stabilization
effect), economic (e.g., price, energy consumption, and
recyclability), and environmental (e.g., biocompatibility and
bio-derivability) aspects.

Hemicellulose Valorization

Even though hemicellulose is one of the major components
(20-35%) of lignocellulosic biomass, most pretreatment
approaches emphasize either cellulose or lignin or both. The
components of hemicellulose, different carbohydrates, can be
utilized with cellulose together in biological (e.g., enzymatic
hydrolysis and  fermentation), thermochemical (e.g,
dehydration to furan, pyrolysis to bio-oil) and material (e.g.,
holocellulose pulp) applications. However, it is mostly extracted
and decomposed with lignin in many pretreatments due to its
amorphous nature. Therefore, the solubilized hemicellulose and
lignin are typically separated based on their characteristics (e.g.,
solubility of carbohydrates vs. aromatics). While lignin can be
precipitated by antisolvent or solvent distillation or extracted by
liquid extraction from the hydrolysates, hemicellulose mostly
remains with acid/base catalysts and water, which is
challenging to isolate it further. Therefore, it is either
converted into furans and other products in the hydrolysates
or combined with cellulose fraction after enzymatic hydrolysis for
the fermentation. This challenge limits the hemicellulose
utilization and pretreatment solvent and catalyst recycling
efficiency. To minimize the contamination of each fraction
and ensure high purity of all three components, multi-stage
fractionation has been proposed (Pongchaiphol et al., 2021;
2019; Yoo et al, 2011); however, the
applications of hemicellulose as a separated feedstock are not

Toscan et al,
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