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Human pluripotent stem cells (hPSCs) are ideal “raw materials” for making

various human cell types for regenerative medicine and are needed in large

numbers. 3D suspension culturing (e.g., stirred-tank bioreactor or STR), which

suspends and cultures cells in an agitatedmedium, has been extensively studied

to scale up hPSC production. However, a significant problem with 3D

suspension is the uncontrolled spheroid agglomeration. It leads to cell

growth arrest, cell apoptosis, and inhomogeneity in cell purity and quality.

We propose that i) inhibiting the spheroid adhesion can prevent spheroid

agglomeration and ii) the inhibition can be achieved via coating spheroids

with biocompatible anti-adhesion molecules. We used PEG-lipids as model

anti-adhesion molecules to successfully demonstrate the concept. PEG-lipids

anchor to the spheroid surface through the interactions between their lipid

chains and the cell membrane lipids. The flexible and hydrophilic PEG chains act

as a dynamic barrier to prevent spheroid adhesion. We showed that the coating

eliminated spheroid agglomeration, leading to homogenous spheroid size

distribution and significant improvements in cell growth rate and volumetric

yield. This novel approach is expected to impact large-scale hPSC production

significantly. Furthermore, the approach can be generalized for culturing other

human cell types.
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Introduction

Eighty percent of healthcare costs are used to treat late-stage illnesses, which could be

treated or managed early through regenerative medicine (Denning et al., 2016). Human

pluripotent stem cells (hPSCs) including human embryonic stem cells (hESCs) (Thomson

et al., 1998) and induced pluripotent stem cells (iPSCs), have unlimited proliferation

capability. They can be expanded to generate large numbers of cells. hPSCs also have the
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potential to differentiate into all somatic cells (Tabar and Studer,

2014; Kimbrel and Lanza, 2015; Trounson and Mcdonald, 2015).

Thus they are ideal “raw materials” for making various human

cell types for regenerative medicine. Since their first report in

1998, hPSCs have been successfully differentiated into various

cell types such as cardiomyocytes, beta cells, endothelial cells,

vascular smooth muscle cells, muscle cells, neural stem cells,

neurons, macrophages, T cells, natural killer cells, etc.

(Yamanaka, 2020). hPSC-derived cells have been widely used

to model genetic and environmental diseases (Brennand et al.,

2011; Devine et al., 2011; Israel et al., 2012; Ambasudhan et al.,

2013; Kondo et al., 2013; Reinhardt et al., 2013; Woodruff et al.,

2013; Young et al., 2015; Soldner et al., 2016). They have been

applied for screening new drugs (Höing et al., 2012; Naryshkin

et al., 2014; Bright et al., 2015; Kumari et al., 2015; McNeish et al.,

2015), testing drug toxicity (Matsa et al., 2016a; Matsa et al.,

2016b; Burridge et al., 2016; Kodo et al., 2016; Sayed et al., 2016;

Sharma et al., 2017; Magdy et al., 2018), engineering tissues, and

developing cell-based therapies (Barker et al., 2017; Kikuchi et al.,

2017; Mandai et al., 2017). Several clinical trials using hPSC

derivatives are ongoing (Mandai et al., 2017; Deinsberger et al.,

2020).

However, the widespread use of hPSCs and their derivatives

is limited by the difficulty of producing them on large scales at

high quality (Jenkins and Farid, 2015; Mount et al., 2015; Silva

et al., 2015; Denning et al., 2016; Hartman et al., 2016; Kempf

et al., 2016; National science and technology council, 2016).

Regenerative medicine needs large numbers of cells (Lei and

Schaffer, 2013; Denning et al., 2016; Kempf et al., 2016). For

instance, ~1 × 1010 cardiomyocytes or beta cells for treating a

myocardial infarction or diabetic patient (Amour et al., 2006;

Serra et al., 2012; Chong et al., 2014), 1 × 1011 platelets for a

platelet transfusion (Amour et al., 2006; Serra et al., 2012; Chong

et al., 2014), ~1 × 1010 cardiomyocytes for making a human heart

(Badylak et al., 2011), and ~1 × 1010 cells for screening one

million compounds (Desbordes and Studer, 2012). Regenerative

medicine also requires cells to have high quality, such as normal

genetics, epigenetics, phenotypes, and high in vivo safety and

functions (Lei and Schaffer, 2013; Denning et al., 2016; Kempf

et al., 2016). hPSC-derived cells can be prepared as universal cells

and used as off-shelf products (i.e., allogeneic cells). This

approach requires the capability to culture massive numbers

of cells per batch (Denning et al., 2016; Hartman et al., 2016;

Kempf et al., 2016). Alternatively, patient-specific cells can be

prepared for personalized regenerative medicine (i.e., autologous

cells). This approach requires a technology to produce cells for

thousands of patients in parallel (Trainor et al., 2014). To date,

the production of high-quality allogeneic or autologous cells at

large scales has not been achieved due to the low efficiency of

current cell culture methods (Baum et al., 2013; National Cell

Manufacturing Consortium, 2016; National science and

technology council, 2016).

hPSCs are typically cultured on a 2D surface. However, 2D

culturing is labor- and space-consuming and is only suitable for

preparing small numbers of cells (Kropp et al., 2017). Due to its

success in culturing Chinese Hamster Ovary (CHO) cells for

producing protein therapeutics, 3D suspension culturing (e.g.,

stirred-tank bioreactor or STR), which suspends and cultures

cells in an agitated medium, has been extensively studied to scale

up hPSC production (Polak and Mantalaris, 2008; Serra et al.,

2012). However, a significant problem with 3D suspension is the

uncontrolled cellular aggregation. hPSCs have strong cell-cell

interactions (Chen et al., 2014a; Chen et al., 2014b) that make

them aggregate to form large cell agglomerates in suspension

(Kinney et al., 2011; Fridley et al., 2012; Kropp et al., 2017). The

mass transport in agglomerates >500 µm in diameter becomes

insufficient, leading to cell growth arrest, apoptosis, and

uncontrolled differentiation (Hajdu et al., 2010; Kropp et al.,

2017). Additionally, uncontrolled cellular aggregation leads to

inhomogeneity in hPSC aggregate or spheroid size. Since the

spheroid size significantly influences the hPSC differentiation

efficiency (Jara-avaca et al., 2014; Kropp et al., 2017), the

inhomogeneity in aggregate size results in heterogeneity in

product purity (Jara-avaca et al., 2014; Kropp et al., 2017).

In short, uncontrolled cellular aggregation should be

mitigated to improve the hPSC culture efficiency and product

homogeneity in 3D suspension culture. This report proposes to

coat hPSC spheroids with biocompatible anti-adhesion

molecules to reduce spheroid agglomeration. To our best

knowledge, this is the first report to propose and successfully

demonstrate using a molecular coating to reduce spheroid

agglomeration to enhance hPSC culture efficiency. We believe

this novel approach will have a significant impact on large-scale

hPSC production.

Materials and methods

Materials

E8 medium (E8), accutase and Live/Dead cell viability

staining kit: Life Technologies; Y-27632: Selleckchem;

Matrigel: BD Biosciences; Calcein AM viability dye (#50-169-

52, eBiosicence); Ethidium homodimer I (#40010, Biotium);

Antibodies for Nanog, Oct4, SSEA-4 and Alkaline

phosphatase (R&D system, 10 μg/ml); Nestin antibody

(BioLegend, 1:200); α-SMA antibody (Santa Cruz, 1:200);

FOXA2 antibody (Santa Cruz, 1:200); Polyethylene Glycol

conjugated with 1,2-Dipalmitoryl-sn-Glycero-3-

Phosphoethanolamine (PEG-DPPE, Mw5000, #PG1-DP-5k,

Nanocs); Polyethylene Glycol conjugated with 1,2-Distearoyl-

sn-Glycero-3-Phosphoethanolamine (PEG-DSPE, Mw5000,

#PG1-DS-5k, Nanocs); Fluorescein labeled DSPE-PEG (DSPE-

PEG-FITC, Mw 5,000, PG2-DSFC-5k, Nanocs); Fluorescein
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labeled DPPE-PEG (DPPE-PEG-FITC, Mw5000, PG2-DPFC-5k,

Nanocs).

Culturing hPSCs in 2D

Fib-iPSCs and MSC-iPSCs (iPSCs reprogrammed from

human dermal fibroblasts and human mesenchymal stem

cells, respectively) were obtained from George Q. Daley

laboratory (Children’s Hospital Boston, Boston) (Park et al.,

2008). hPSCs were maintained in a 6-well plate coated with

Matrigel (BD Biosciences) in E8 medium as described in our

previous publications (Lei and Schaffer, 2013; Li et al., 2018).

Cells were passaged every 4 days with 0.5 mM EDTA

(Invitrogen), and the medium was changed daily. Cells were

routinely checked for the expression of pluripotency markers,

Oct4 and Nanog, their capability to form teratomas, their

karyotypes, and bacterial contamination.

hPSC spheroids formation and fusion
experiments

Single hPSCs (1,000–6,000 cells) in 200 µL E8 medium were

placed in one V-shape non-adhesive well of a 96-well plate for

48 h to form one hPSC spheroid. For the spheroid fusion

experiments, two spheroids were placed in one V-shape well

of the 96-well plate. The fusion process was then imaged with a

microscope.

Surface modification of hPSC spheroids
with PEG-lipids and 3D suspension culture

PEG-lipids in PBS was added to the spheroid suspension and

then incubated for 30 min with gentle agitation at room

temperature. These spheroids were washed once and then

cultured in the incubator at 37°C, 5% CO2. For 3D suspension

culture, single cells were suspended in E8 media in a low

attachment 6-well plate and shaken at around 57 rpm for 24 h

to form small clusters. After that, cell spheroids were treated with

250 μg/ml PEG-DPPE for 30 min in PBS before culturing in fresh

E8 medium daily.

Scanning electron microscopy

Cell spheroids were prepared for scanning electron

microscopy (SEM) to observe the cell spheroid morphology

with or without PEG-DPPE coating. Briefly, cell spheroids

were fixed in 2.5% glutaraldehyde in 100 mM phosphate

buffer, PH 7.0 for 2–3 h at room temperature, then 4°C for

1–2 h. Then the samples were fixed in 1% osmium tetroxide

(OsO4) in 100 mM phosphate buffer, PH 7.0 for 1 h at room

temperature, followed by at least three washes in 100 mM

phosphate buffer. Samples were subjected to dehydration

through an alcohol series (30%, 50%, 70%, 2 × 95%, 2 ×

100%) before HMDS coating (2:1 to 1:2 ethanol:HMDS; 100%

HMDS) and then left the samples in 100% HMDS to air-dry in

the hood. Keep in a low-vacuumed desiccator and transport to

the core for sputter coating before image collection using SEM.

Staining, flow cytometry, and imaging. Cells cultured on 2D

surfaces were fixed with 4% paraformaldehyde (PFA) at room

temperature for 15 min, permeabilized with 0.25% Triton X-100

for 15 min, and blocked with 5% donkey serum for 1 h. Cells were

then incubated with primary antibodies at 4°C overnight. After

extensive washing, secondary antibodies and 4′,6-Diamidino-2-

FIGURE 1
(A) The two phases in suspension cultures: single cells
associate to form small clusters (i.e., initial clustering) that
subsequently expand as spheroids (i.e., cell expansion). However,
spheroids frequently aggregate into large agglomerates,
leading to slow cell growth, death and uncontrolled differentiation.
(B) Two vials of hPSCs, stained with DIO (green) and DID (red) dyes
respectively, were mixed at 1:1 and cultured in suspension. Small
clusters were seen at 24 h. Both small cell spheroids and large cell
agglomerates were seen on day 4. (C) Schematic illustration of
preventing spheroids agglomeration via surface coating with anti-
adhesion molecules. PEG-lipids were added after small cluster
were formed. The lipid segment was insert into the membrane of
cells on the spheroid surface. The flexible PEG chains act as a
dynamic barrier to prevent the spheroid adhesion. PEG-DPPE and
PEG-DSPE are used in this study.
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Phenylindole, Dihydrochloride (DAPI) were added and

incubated for another 1 h at room temperature. Finally, cells

were washed with PBS 3 times before imaging with a Zeiss Axio

Observer Fluorescent Microscopy. LIVE/DEAD® Cell Viability
staining was used to assess live and dead cells, according to the

product manual.

EB differentiation

hPSC spheroids were cultured for five passages with PEG-

DPPE and then suspended in DMEM +20% FBS +10 µM β-
mercaptoethanol in a low adhesion plate for 6 days. The cell mass

was then transferred onto plates coated with 0.1% gelatin and

cultured in the same medium for another 6 days, followed by

fixation and staining as above.

Statistical analysis

The data are presented as the mean ± SD. We used an

unpaired t-test to compare two groups and one-way ANOVA to

compare more than two groups. p < 0.05 was considered

statistically significant.

Results

Using molecular coating to avoid spheroid
agglomeration

3D suspension cultures are being widely studied for culturing

hPSCs due to their simplicity, easiness for scaling up, and

automation (New Brunswick Scientific et al., 2009; Serra et al.,

2012). Ideally, inoculated single hPSCs expand through two

phases: single cells first associate to form small cell clusters

(i.e., initial clustering) that subsequently expand as spheroids

(i.e., cell or spheroid expansion) (Figure 1A). Unfortunately,

neighboring spheroids frequently adhere to each other and fuse

to form large agglomerates (>500 μm, i.e., spheroid

agglomeration) (Figure 1A). The initial clustering, spheroid

expansion, and spheroid agglomeration were clearly

demonstrated in a simple experiment. Two vials of hPSCs,

stained with DIO and DID dyes, respectively, were mixed at

1:1 and cultured in suspension. The lipophilic DIO and DID dyes

stain cells to appear green and red, respectively, under fluorescent

microscopy. Single cells associated to form small clusters in 24 h

that subsequently expanded as spheroids. Spheroid

agglomeration was frequently found on day 4 (Figure 1B).

It is well known that the transport of nutrients, oxygen, and

growth factors to cells located at the center of agglomerates with

diameters larger than 500 µm becomes insufficient (Hajdu et al.,

2010; Kropp et al., 2017). Therefore, the large cell spheroids

exhibit a layer-like structure, including a necrotic core and an

outer layer of live cells (Alvarez-Pérez et al., 2005; Lin and Chang,

2008). This was confirmed in our experiment. We prepared hPSC

spheroids with diameters of 200 μm, 400 μm, 500 μm, 700 μm,

and 800 µm and cultured them for 3 days (Figure 2). Live/dead

staining showed very few dead cells in spheroids <400 µm and

significant dead cells in spheroids ≥500 µm. Large necrotic cores

appeared when the spheroid’s diameter exceeded 700 μm

(Figures 2C, D). Therefore, uncontrolled cell aggregation

(>500 µm) is a critical problem for 3D suspension culture (Lei

and Schaffer, 2013; Lei et al., 2014; Li et al., 2018). The above

mechanistic studies clearly show that if hPSCs could follow the

initial clustering-spheroid expansion path without spheroid

agglomeration, the resultant spheroids would have uniform

size, and the cell growth rate, viability, yield, and quality

could be maximized.

To find a solution to prevent spheroid agglomeration, we

must understand the molecular mechanisms under cell

aggregation and spheroid agglomeration. On the plasma

membranes of single cells or cells on the spheroid surface,

many cell-cell adhesion molecules (e.g., cadherins) and

receptors for ECM proteins (e.g., integrins) are not bound by

their ligands (Foty and Steinberg, 2005). These molecules drive

cells to aggregate to maximize their interactions with their

ligands (Ivascu and Kubbies, 2006; Pérez-Pomares and Foty,

2006; Ivascu and Kubbies, 2007). Cells can aggregate through,

individually or combined, cell-cell adhesions and cell-matrix

interactions. Through these mechanisms, single hPSCs

associate to form small clusters. During the cell expansion in

suspension cultures, and when two spheroids contact, cells on

one spheroid can adhere to cells or ECMs of the other spheroid

through cell-cell, cell-matrix interactions, leading to spheroid

adhesion and agglomeration.

We propose that i) inhibiting the spheroid adhesion can

prevent spheroid agglomeration and ii) the inhibition can be

achieved via coating the spheroids with a layer of biocompatible

anti-adhesion molecules (Figure 1C). This study will use

Polyethylene glycol conjugated with lipids (PEG-lipids) as

model anti-adhesion molecules to demonstrate the concept.

The PEG-lipids can anchor to the spheroid surface through

the interactions between their lipid chains and the cell

membrane lipids (Tatsumi et al., 2012). The flexible and

hydrophilic PEG chains act as a dynamic barrier to prevent

spheroid adhesion.

Spheroid fusion assay

We developed a spheroid fusion assay for quantitatively

studying spheroid agglomeration. To generate hPSC

spheroids, single cells were suspended in V-bottom low

attachment 96-well plates. Within hours, single cells settled at

the well bottom and formed a cell cluster. For the fusion assay,
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two spheroids were placed into one low attachment V-shape well

(Figure 3A). The fusion process was imaged at 0, 2, 8, and 28 h.

We used the (πr2)/(πR2), wherein r and R are the radius of the

interface of the two spheroids and the radius of the spheroids,

respectively, to quantitatively measure the percentage of the

spheroid fusion (Figure 3C). And t1/2 is referred to the time

when 50% of the fusion is completed or (πr2)/(πR2) = 0.5

(Figure 3D). We found that t1/2 is less than 5 h. We measured

the fusion rates of spheroids with different diameters and found

that the spheroid size did not significantly affect the fusion rate

(Figures 3B–D).

PEG-lipids coating on hPSC spheroids

PEG-lipids molecules have been reported for surface

modification of cells to modulate immunogenicity (Teramura

and Iwata, 2010a; Teramura and Iwata, 2010b; Inui et al., 2010;

Takemoto et al., 2011; Tatsumi et al., 2012). We first studied if

PEG-lipids could coat hPSC spheroids. Spheroids were

prepared and treated with PEG-DPPE at varied

concentrations for 30 min. Without PEG-DPPE coating, the

spheroid surface was smooth, and the cell-to-cell boundaries

were not clearly seen (Figures 4A, B). The spheroid surface

became rough, and cell-to-cell boundaries became apparent

after PEG-DPPE coating. The morphology change indicates

that PEG-DPPE coating decreased the spheroid surface tension.

The coating did not cause cell death. When treated with 100 μg/

ml, 250 μg/ml, 500 μg/ml, very few dead cells were detected

(Figure 4C).

To confirm the coating and investigate its stability, we

coated spheroids with FITC labeled PEG-DPPE for 30 min

and imaged them with a confocal microscope immediately

and 24 h after the coating. Fluorescence was clearly observed

at the spheroid surface, showing successful coating.

However, 24 h later, the fluorescence intensity decreased

to about 50%, indicating the half-life time of PEG-DPPE

on the spheroid surface was about 24 h (Figure 4D). We

treated the spheroids with both 250 μg/ml and 500 μg/ml

PEG-DPPE and found the coating efficiency and half-life

time were similar, indicating 250 μg/ml was sufficient for

coating (Figure 4D). To assess if the lipid length affects the

coating stability, we also coated spheroids with FITC labeled

PEG-DSPE. The fatty acid DPPE and DSPE have 16 and

18 carbons, respectively. No significant difference was

observed between FITC-PEG-DPPE and FITC-PEG-DSPE

in terms of the fluorescent intensity immediately and 24 h

after coating (Figure 4E).

PEG-lipids coating reduced spheroid
agglomeration

We evaluated the effect of PEG-DPPE coating on the

spheroid fusion process (Figure 5). Spheroids were generated

and treated with 0, 100, 250, and 500 μg/ml PEG-DPPE for

FIGURE 2
Live/dead staining of hPSC spheroids with diameter of 200 µm (A), 400 µm (B), 500 µm (C), 700 µm (D), 800 µm (E). Scale bar: 200 µm.
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30 min. Two spheroids were placed in one V-shape, and the

fusion process was recorded (Figures 5A, B). We found that the

fusion rate decreased as the PEG-DPPE concentration increased

(Figure 5C). The fusion became extremely slow when treated

with 250 or 500 μg/ml PEG-DPPE. The t1/2 for spheroids coated

with 0, 100, 250, and 500 μg/ml PEG-DPPE was 3.7, 9.2, 26.8, and

69 h, respectively (Figure 5D). We observed that spheroids

without coating adhered around 5 min after contacting, and

PEG-DPPE coating extended this time to ~20 min. Similar

results were obtained when PEG-DSPE was used. Thus

molecular coating could effectively prevent spheroid adhesion

and agglomeration.

PEG-lipids coating prevented spheroid
agglomeration in 3D suspension culture

Next, we investigated the effect of PEG-lipids coating in 3D

suspension culture. Single cells were suspended in the medium in

a low attachment-well plate with shaking at 57 rpm for 24 h to

form small cell clusters. The clusters were treated with PEG-

DPPE daily, and cultures without PEG-DPPE coating were used

as the control. Two initial seeding densities (5 × 105 cells/ml and

1 × 106 cells/ml) were tested to evaluate the effect of seeding

density. Two hPSC lines, induced pluripotent stem cells

generated from human mesenchymal stem cell cells (MSC-

FIGURE 3
Spheroid fusion assay. (A,B) hPSC spheroids with different sizes (small, medium and large) were prepared in V-bottom low attachment 96-well
plates, and then two spheroids were placed in contact and the fusion process was imaged using microscopy at 1, 2, 4, 8, and 28 h. (C) The spheroid
fusion rates were quantified using (r/R)2, where r and R were the radius of the interface of the two spheroids and the radius of the spheroids,
respectively. (D) t1/2, the time to complete 50% fusion or (r/R)2 = 1/2. Small, medium and large spheroids had similar fusion rates.
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iPSC) and skin fibroblasts (Fib-iPSC), were studied to assess if the

coating method could be cell-line dependent. Cells were

harvested daily to analyze the spheroid size, cell number, and

cell viability.

For MSC-iPSCs, severe spheroid agglomerations were seen

on day 3 and day 4, especially for the high seeding density

(Figures 6A, B; Table 1). With the PEG-DPPE coating, uniform

cell spheroids were formed at both seeding densities from day

1 to day 4 (Figures 6A, B).We also quantified the size distribution

(Figures 6C, D). At low seeding density and without PEG-DPPE

coating, the size distribution was 50–121 μm, 65–180 μm, and

85–379 μm, and the median was 90, 121, and 183 µm on day 1, 2,

and 3, respectively. With PEG-DPPE coating, the size

distribution became much narrower, e.g., 39–103 μm,

51–124 μm, and 74–178 µm on day 1, 2, and 3, respectively

(Figures 6C, D). Moreover, the median became significantly

smaller, for instance, 71, 84, and 117 µm on day 1, 2, and 3,

respectively (Figures 6C, D). The reductions in mean spheroid

size and size distribution by PEG-DPPE coating were also seen at

the high seeding density. Without coating, the median was 93,

149, and 189 μm, and the distribution was 51–173 μm,

73–377 μm, and 92–510 µm on day 1, 2, and 3, respectively.

With PEG-DPPE coating, the median was 72, 98, and 126 μm,

and the size distribution was 41–108 μm, 59–148 μm, and

FIGURE 4
(A) hPSC spheroids were coated with PEG-lipids. (B) Scanning electron microscopy images of uncoated and coated spheroids. (C) Live dead
staining of spheroids coated with 0, 100, 250, and 500 μg/ml PEG-DPPE. (D,E) Confocal scanning microscopic images of hPSC spheroids coated
with 250 and 500 μg/ml FITC-PEG-DPPE (D) or FITC-PEG-DSPE (E). Free PEG-lipids were removed from the medium after coating. Images were
taken immediately (0 h) and 24 h after coating. Scale bar: 200 µm.
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76–181 µm on day 1, 2, and 3, respectively. (Figures 6C, D). Large

agglomerates were not seen with PEG-DPPE coating.

For both seeding densities without PEG-DPPE coating, the

cell number exhibited a slow increase in the first 3 days, and no

apparent increase was seen on day 4, resulting in about 2.9- and

1.7-fold expansion after 4 days with a final cell density at 1.5 × 106

cells/ml and 1.7 × 106 cells/ml for 5 × 105 cells/ml and 1 × 106

cells/ml seeding density, respectively, (Figures 6E, F). With PEG-

DPPE coating, cells grew in all 4 days, resulting in about 4.9 - and

3.3-fold expansion with a final cell density at 2.5 × 106 cells/ml

and 3.3 × 106 cells/ml for 5 × 105 cells/ml and 1 × 106 cells/ml,

respectively (Figures 6E, F). Thus the cell expansion and yield

were significantly improved by PEG-DPPE coating.

Similar results were achieved when Fib-iPSCs were used

(Figure 7, Table 1). PEG-DPPE coating eliminated spheroid

agglomeration. When seeded at 5 × 105 cells/ml and without

coating, the median was 68, 118, and 183 μm, and the size

distribution was 42–136 μm, 53–176 μm, and 76–356 µm on

day 1, 2, and 3, respectively, with PEG-DPPE coating, the

median was 61, 97, and 139 μm, and the size distributions

FIGURE 5
PEG-lipids coating slowed down spheroid fusion. (A,B) hPSC spheroids were coated with 0, 100, 250, 500 μg/ml PEG-DPPE, and two spheroids
were placed in one well. Their fusion process was recorded with microscopy. (C) The fusion rates and (D) t1/2. Scale bar: 200 µm.
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were 27–85 μm, 48–146 μm, and 71–192 µm on day 1, 2, and 3,

respectively. When seeded at 1 × 106 cells/ml without PEG-DPPE

coating, the median was 71, 133, and 205 μm, and the size

distribution was 51–158 μm, 67–322 μm, and 102–456 µm on

day 1, 2, and 3, respectively. With PEG-DPPE coating, the

median was 62, 98, and 140 μm, and the size distribution was

32–89 μm, 60–169 μm, and 80–195 µm on day 1, 2, and 3,

respectively (Figures 7C, D). Without coating, about 3.2- and

1.7-fold expansion with a final cell density at 1.6 × 106 cells/ml

and 1.7 × 106 cells/ml were obtained for 5 × 105 cells/ml and

1 × 106 cells/ml seeding density, respectively. With PEG-

DPPE coating, about 5.5 - and 3.4-fold expansion with a

final cell density at 2.8 × 106 cells/ml and 3.4 × 106 cells/ml

were achieved for 5 × 105 cells/ml and 1 × 106 cells/ml seeding

density, respectively (Figures 7E, F). In summary, PEG-DPPE

coating leads to uniform spheroid formation in 3D suspension

culture with significantly improved expansion fold and cell

yield.

FIGURE 6
Suspension culture of MSC-iPSCs. (A,B) Phase images of spheroids on days 1–4 without and with PEG-DPPE coating at two seeding densities.
(C,D) Size distribution of spheroids on days 1–3. (E,F) Fold of expansion and volumetric yield of uncoated and coated cells. ***: p < 0.001.
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hPSCs retained pluripotency after long-
term culture with PEG-lipids coating

We cultured hPSCs in suspension with PEG-DPPE coating

for 10 passages and evaluated their pluripotency. The PEG-DPPE

coating did not sacrifice the pluripotency. Confocal microscope

image and flow cytometry analyses showed a majority of cells

expressed pluripotency markers after 5 and 10 passages (Figures

8A–C). In addition, in vitro embryoid body (EB) differentiation

was performed. hPSCs could be differentiated into the Nestin +

ectodermal cells, α-SMA + mesodermal cells, and FOXA2+

endodermal cells in the EB assay (Figure 8D). All these results

indicate that the PEG-lipids coating support hPSC culture

without altering the pluripotency.

Discussion

hPSCs are an ideal cell source for producing various human

cell types for regenerative medicine, cell therapy, drug

discovery, and disease modeling (Yamanaka, 2020). Large

numbers of cells are needed for these applications. 3D

suspension is a promising approach to scale up the

production (Lei and Schaffer, 2013; Lei et al., 2014; Lin

et al., 2017a; Lin et al., 2018a; Lin et al., 2018b; Ekerdt et al.,

2018; Li et al., 2018; Lin et al., 2019a; Lin et al., 2019b; Lin et al.,

2019d; Wang and Lei, 2019; Wang et al., 2021). However,

uncontrolled spheroid agglomeration is a significant problem

that negatively affects cell viability, growth rate, yield, and

quality in suspension culture. Thus methods to mitigate

spheroid agglomeration are valuable and should be developed.

Researchers have tried to optimize the bioprocess

parameters, such as the stirring speed, to reduce

agglomeration (Kempf et al., 2016). In general, a higher

stirring speed reduces spheroids’ settlement and

agglomeration. However, a high stirring speed results in shear

stress, negatively influencing cell viability. In short, this approach

can mitigate spheroid agglomeration to a certain level but cannot

wholly abolish it (Kempf et al., 2016). We and others have

cultured hPSCs in hydrogels with the intention of using

hydrogels as physical barriers to eliminate cell agglomeration

(Gerecht et al., 2007; Chayosumrit et al., 2010; Serra et al., 2011;

Stenberg et al., 2011), but hPSCs have slow growth in most

hydrogels. Significantly, we found that a very soft

thermoreversible hydrogel enabled the long-term, serial

expansion of hPSCs with excellent cell viability, growth rate

(20-fold/5 days), and yield (~2.0 × 107 cells/ml) (Lei and Schaffer,

2013; Lei et al., 2014; Li et al., 2016; Lin et al., 2017a; Lin et al.,

2017b). However, this hydrogel is unstable for long-term and

large-scale cell culture. Additionally, the material is expensive

and variable between batches.

Our lab also explored using hydrogel tube microbioreactors

to prevent agglomeration (Lei and Schaffer, 2013; Lei et al., 2014;

Li et al., 2016; Lin et al., 2017a; Lin et al., 2017b). In this method,

cells are cultured in microscale hollow hydrogel tubes suspended

in a bioreactor. The hydrogel tubes can confine the radial

diameter of cell masses within the diffusion limit to ensure

efficient mass transport. We showed that hPSCs could grow

in hydrogel tubes with high viability (>95%), growth rate (1,000-

fold expansion/9 days), pluripotency, and yield (5.0 × 108 cells/

ml). However, the hydrogel tubes are incompatible with the

existing stirred tank bioreactors since the stirring can break the

TABLE 1 Summary of 3D suspenssion culture results.

Cell
Type

Seeding
desnity(Cells/ml)

Coating Mean diameter(um) Diameter range(um) Fold of
expansion

Yield
(cells/ml)

day 1 day 2 day 3 day 1 day 2 day 3 day 4 day 4

MSC-iPSCs 5×10̂5 no 90 121 183 50-121 65-180 85-379 2.9 1.5×10̂6

PEG-
DPPE

71 84 117 39-103 51-124 71-178 4.9 2.5×10̂6

1×10̂6 no 93 149 189 51-173 73-377 92-510 1.7 1.7×10̂6

PEG-
DPPE

72 98 126 41-108 59-148 76-181 3.3 3.3×10̂6

Fib-iPSCs 5×10̂5 no 68 118 183 42-136 53-176 76-356 3.2 1.6×10̂6

PEG-
DPPE

61 97 139 27-85 48-146 71-162 5.5 2.8×10̂6

1×10̂6 no 71 133 205 61-158 67-322 102-
456

1.7 1.7×10̂6

PEG-
DPPE

32 98 140 32-89 60-169 80-195 3.4 3.6×10̂6
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soft hydrogel tubes. Thus special bioreactors should be developed

to contain these hydrogel tubes.

In this study, we proposed to use molecular coating to

prevent spheroid agglomeration. Compared to the hydrogel

tubes, molecular coating is simple and compatible with

existing bioreactors. The biocompatible anti-adhesion

molecules can be added to the cell culture media as additives.

The concept was successfully demonstrated using PEG-lipids.

Spheroid agglomeration was eliminated, resulting in spheroids

with uniform size. Consequently, the cell growth rate and

volumetric yield were significantly improved. In the future, we

can design molecules with better stability and anti-adhesion

capabilities to further improve the bioprocess outcome.

Although we used lipids to anchor the anti-adhesion

molecules in this study, other methods, such as covalent

conjugation, ionic binding, and the ligand or antibody-based

FIGURE 7
Suspension culture of Fib-iPSCs. (A,B) Phase images of spheroids on days 1–4 without and with PEG-DPPE coating at two seeding densities.
(C,D) Size distribution of spheroids on days 1–3. (E,F) Fold of expansion and volumetric yield of uncoated and coated cells. ***: p < 0.001.
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affinity binding, can also be used to coat the anti-adhesion

molecules. In this study, we used PEG as anti-adhesion

molecules. In principle, any biocompatible molecules with

anti-adhesion functions can be used. In this study, we focused

on culturing hPSCs. In principle, the molecular coating method

can be applied to any cell type in suspension culture.

Recent research shows that spheroids can be used as

building blocks to bioprint tissues or organs (Mironov

et al., 2003; Mironov et al., 2009; Mironov et al., 2011;

Laschke and Menger, 2016). Uniform spheroids are

important as building blocks. Current methods to prepare

these building blocks include hanging drops, microfluidics,

micro-molds, spinner suspension culture, and rotating wall

vessels (Mironov et al., 2009; Mironov et al., 2011; Olsen and

Alexis, 2014; Laschke and Menger, 2016). With the hanging

drop method, small volumes of cell suspensions are placed on

a lid that is subsequently inverted to form hanging drops. Cells

in each hanging drop aggregate to form one spheroid. With

the microfluidic and micro-mold methods, cells are placed in

micro-wells to form one spheroid per well. With the spinner

culture and rotating wall vessel methods, large numbers of

cells are cultured in suspension in the spinner flasks or

rotating wall vessels to simultaneously generate many

spheroids. The microfluidics, hanging drop, and micro-

molds cannot produce spheroids at a large scale (Olsen and

Alexis, 2014). 3D suspension is the scalable method to

produce spheroids but suffers from spheroid agglomeration.

We believe the molecular coating method described in this

study can be used to address the problem. (Takahashi et al.,

2007), (Shi et al., 2017)
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