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Strategies to exploit and enable the digitalization of industrial processes are on course

tobecomegame-changers inoptimizing (bio)chemical facilities. Toachieve this, these

industries face an increasing need for processmodels and, as importantly, an efficient

way to store the models and data/information. Therefore, this work proposes

developing an online information storage system that can facilitate the reuse and

expansion of processmodels andmake them available to the digitalization cycle. This

system is named NyctiDB, and it is a novel non-relational database coupled with a

bioprocess ontology. The ontology supports the selection and classification of

bioprocess models focused information, while the database is in charge of the

online storage of said information. Through a series of online collections, NyctiDB

contains essential knowledge for the design, monitoring, control, and optimization of

abioprocessbasedon itsmathematicalmodel.OnceNyctiDBhasbeen implemented,

its applicability andusefulness aredemonstrated through twoapplications. Application

A shows how NyctiDB is integrated inside the software architecture of an online

educational bioprocess simulator. This implies that NyctiDB provides the information

for the visualization of different bioprocess behaviours and the modifications of the

models in the software. Moreover, the information related to the parameters and

conditions of eachmodel is used to support the users’ understanding of the process.

Additionally, application B illustrates thatNyctiDB can be used as AI enabler to further

the research in this field through open-source and reliable data. This can, in fact, be

used as the information source for the AI frameworks when developing, for example,

hybrid models or smart expert systems for bioprocesses. Henceforth, this work aims

to provide a blueprint on how to collect bioprocess modeling information and

connect it to facilitate and empower the Internet-of-Things paradigm and the

digitalization of the biomanufacturing industries.
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1 Introduction

In this period of rapid digital and technological

transformation, the biomanufacturing industry faces many

challenges, from the acquisition and processing of data

Gargalo et al. (2020a) to the generation of process models

Narayanan et al. (2020). This digital transformation aims to

exploit the use of the internet to link and communicate

information. This is commonly known as the Internet-of-

Things paradigm. In the IoT, heterogeneous information is

integrated into the cloud, and it undergoes a wide exchange of

data between different systems. The availability of this data to

be linked takes the system a step closer to fully understand the

process as well as how to optimize it. Figure 1 shows a

conceptual representation of the connection between data

and the digitalization of a system.

While data import and processing methods have been

widely studied Charaniya et al. (2008) and/or can be used from

other disciplines Narayanan et al. (2020), the re-use and

storage of information related to process models is a

different and more complex topic that has been discussed

for many years already. Process models are highly specific and

costly to develop, especially regarding the time required for

information gathering. Consequently, researchers rely on

knowledge databases, literature reviews, and/or computer-

aided tools as well as their previous experiences. When

information is not available, researchers need to generate it

through experimental work. Although a more accurate source,

this option is very time and resources consuming and thus not

a sustainable strategy to gather all levels and types of

information. Therefore, searching for or acquiring the

relevant information for and about process modeling can

become a challenging task. A step towards solving this

issue could be using an online process model database. A

database is commonly defined as a collection of data in a

computer system. There are several types of databases, and

new systems for data collection inside computers are

continuously being developed as new digitalization

strategies are pushed forward. Hence, this work faces the

question: how should information about bioprocess modeling

be stored so that it can be linked and exploited in the

digitalization and IoT paradigms?
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This question is tackled here by developing NyctiDB, a

non-relational database for bioprocesses that connects the

information in such a way that the number of possibilities

is maximized, i.e., reuse of model structure based on

similarities of the bio-kinetic process. NyctiDB focuses not

only on the kinetic models but also on the process conditions

and characteristics for which they were developed. Moreover,

the collected information should be easily understandable and

open to fellow researchers and industrial partners, as “If I have

seen further it is by standing on the shoulders of Giants”- Issac

Newton; Steinbeck et al. (2003). We believe that NyctiDB can

provide a structure and platform to help researchers and

industries advance on the digitalization of bioprocesses. To

do so, NyctiDB has been developed as an open-source,

accessible, and readable database.

This article is organized as follows. Section 2 presents a

comprehensive literature review of the current status of

modeling and databases for biotech processes. Section 3

provides a contextual theoretical background about data

storage strategies. In Section 4, NyctiDB and its

functionalities are described, along with illustrative

examples of each library. Potential applications are

explored in Section 5. Finally, conclusions are presented in

Section 6.

2 Literature review

2.1 Previous efforts on database
development for bioprocesses

Previously developed biological databases have mainly

focused on the molecular biology and genetic information

of the systems. Some examples of these biological databases

are Swiss-Prot Bairoch and Apweiler (2000) and PIR Barker

et al. (2000)for protein sequences, or Biofilms Structural

Database for the different protein structures involved in

biofilm formation, development, and virulence Magalhães

et al. (2020), or GenBank Benson et al. (2012) and DDBJ

Tateno et al. (2002)for genome sequence information, as well

as Kanehisa (1998), BRENDA Schomburg et al. (2002) for

enzyme information, or CDK for chemo- and bioinformatics

Steinbeck et al. (2003). However, structured compilations of

models built with an engineering approach are still scarce.

Some compilations of models are embedded in commercial

simulators, and therefore, their mathematical model and

process conditions are not freely accessible. SuperPro Inc.

(2017) or LABSTER ApS. (2018)are examples of such software

with a biochemical modelling database without providing free

access to the users. On the other hand, there are other

bioprocess simulators that contain process models while

allowing the inspection of the models. Some examples of

these open-source simulators are BioSTEAM Cortes-Peña

et al. (2020), PhotoBioLib Perez-Castro et al. (2017) for

photobioreactors, and pyFOOMB Hemmerich et al. (2020).

Non-etheless, the collection of models available in these

software tools is still very limited, and more importantly,

they do not provide a framework and structure on how to

add new models.

The biggest (bio)model repository is BioModels Malik-

Sheriff et al. (2020). BioModels provides an extended number

of models and is supported by a curator group. Still, the

models do not share a common structure or even a

standard file format or programming language. This lack of

standardization is not in line with the latest requirements

established by the FAIR principles (Findability, Accessibility,

Integrateability, Reusability) Wilkinson et al. (2016). These

principles work towards improving digital assets at a global

level tackling their findability, accessibility, interoperability,

and reuse.The lack of standardization and integrated storage

of process design conditions and specifications do not

facilitate the reuse of the models within the biotech

industry and scientific community. Previous efforts have

been done within synthetic biology, such as with the

development of SBML Caltech (2022). SBML, or Systems

Biology Markup Language, is a markup language for

communicating and storing computational models of

biological processes. Furthermore, model standardization

and reuse has been achieved to some extent in the

wastewater field with their range of standard Activated

Sludge Model (ASM) Henze et al. (2005) or the Benchmark

Simulation Model (BSM) Nopens et al. (2009). Meanwhile, it

is still essential to develop a bioprocess model’s data storage

system that considers the industry needs and the FAIR

principles.

FIGURE 1
Conceptual view of how linked data is needed and supports
the digitalization strategy. This image metaphorically represents
how having structured and clean data is necessary, since it builds
the foundation to enable the application of digitalization
strategy.
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2.2 Modeling and simulation of
bioprocesses

Process models enclose information through a set of

mathematical expressions that enable, for example, the

design of equipment to predict the system’s behavior and

process optimization, among others Gernaey et al. (2010).

Conventional bioprocess modelling depends significantly on

unstructured mechanistic models (e.g., the Monod, Tessier,

and Blackman equations) Gomez et al. (2016). Although

mechanistic models yield better process understanding,

there are several implied challenges. Some of these

challenges are Tsopanoglou and del Val (2021): i)

developing mechanistic models requires considerable

experimental effort for model validation; ii) it is difficult to

automate model assembly; ii) using mechanistic models is

resource intensive to use in industry due to high-level

expertise required; and, iv) the development of

overparametrized models lead to the lack of robustness and

universality. However, in recent years, modeling and

simulation have shaped important strategies such as the

Quality-By-Design (QbD) framework, the Process Analytical

Technology (PAT) guidance or model-driven control Sin et al.

(2009); Mears et al. (2017). Furthermore, modelling and

simulation form the core of the most recent digitalization

developments, like digital twins Gargalo et al. (2020a);

Narayanan et al. (2020); Udugama et al. (2021). These

current efforts support shaping a more sustainable future

through the implementation of bioprocesses. This has been

included in the Sustainable Development Goals (SDGs) by the

United Nations United Nation Development Program (2014).

Meanwhile, from an economic perspective, biomanufacturing

is enduring a constant market growth due to an augmenting

demand for vaccines, drugs, and enzymes 202 (2020), which

also push forward strategies for the optimization of processes,

such as model-driven methods.The scientific interest is further

proven by the continuously increasing number of publications

related to the field of mathematical modeling of bioprocesses

and microbial growth Udugama et al. (2021), from

10,020 papers published on the topic in 2017 to 18,381 in

2020 Dimensions (2022). However, still, when designing a

bioprocess, the critical challenge is usually the availability of

suitable models Kroll et al. (2017). Although clearly needed, to

the best of our knowledge, there is no record of a

comprehensive and structured collection of bioprocess

models coupled with the associated model information in

the form of an open-source database.

3 Data storage strategies:
Background

The creation of a data storage strategy is a complex process

that requires numerous and well-thought decisions. Several data

storage strategies, as well as data formats, can be selected to

design and develop a database. This section reviews the different

FIGURE 2
An overview of the most common data storage strategies.
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available options and the reasoning behind the choices made

while developingNyctiDB. Furthermore, the use of an ontology is

also described along with its benefits and deficiencies.

3.1 Common types of data storage
strategies

New data storage strategies are continuously being developed

to handle the recent large amounts of data, as well as the increase

of variety and velocity in which the data is communicated Chen

et al. (2014); Chen et al. (2013); Boiarkina et al. (2018). Some of

the most common data storage strategies are presented in

Figure 2.

Data lakes and data warehouses Big Data Blog, Oracle

(2022)- among others - have been developed to store large

amounts of data. Figure 2 introduces the significant

differences between data lakes and warehouses. In this work,

we focus on relational and non-relational databases since they are

very flexible and suited for any user and are more organized for

smaller or medium size amounts of data.

It is beneficial to proactively select a database structure that

can later adapt to a “big data” strategy and with cloud

compatibility.

A database, as previously mentioned, is defined as an

organized collection of data typically stored in a computer

system. Currently, a database is classified based on how it

stores the data, and thus, a database can be relational or non-

relational. Relational databases are well established, and they are

the traditional choice for database design Kimelman et al. (2013).

Nevertheless, non-relational databases, also known as NoSQL,

commonly store data in a non-tabular form and are being

increasingly used due to their advantages in big data and real-

time web applications Paul (2022). Table 1 further illustrates

some of the main differences between relational and non-

relational databases.

Non-relational databases have been established as the

favorite option for IoT, based on their flexibility in terms of

their data structure and faster data retrieval compared to

relational databases Gyorödi et al. (2015). Based on these

characteristics, in this work, a non-relational database was

selected as the basis for NyctiDB since it seems to be the best

choice considering the expected needs of a digitalized biotech

industry.

Mongo (2022a) is currently the most popular example of a

non-relational database program Mahipal Nehra (2022);

Gyorödi et al. (2015). Some examples of software using

MongoDB are SEGA, BARCLAYS, or the tax platform for the

UK government, amongmany others Mongo (2022b). MongoDB

stores its data records in documents; these documents are

subsequently grouped in collections. Documents in a

collection do not need to share the same structure or set of

fields, however, practically, they do share some similarities (e.g., a

similar structure and common fields). Those documents are

characterized by being available to store their data in a JSON

data format. JSON is a data format with an easily understandable

architecture JavaScript (2022) which improves readability. It

allows for easy examination by non-programmers due to its

self-evident structure. Therefore, it is an appropriate data format

to store data inside a flexible, reusable, and expandable database.

Furthermore, the JSON data format is also aligned with the FAIR

principles (Section 2.1). A simple example of a JSON file is

presented in Supplementary Material Section 9.1.

The documentation created for the database, and made

available in (https://NyctiDB-sphinx.readthedocs.io/en/

latest/), includes an easy tutorial about how to store data in

JSON format. Other examples of data formats comparable to

JSON (or classified as “human-readable data”) are YAML

Evans (2022), SBML Caltech (2022), and XMLConsortium

World Wide Web (2022).Using a non-relational database

implies a sacrifice: the explicit structure provided by

relational databases is lost. However, this feature can be

obtained by using an ontology that can support the non-

relational database. This limits complexity and organizes the

data based on the enclosed information and knowledge

Wikipedia (2022b). Therefore, in this work, we propose

using an ontology to provide additional data structure and

facilitate future database expansion.

TABLE 1 Main differences between relational and non-relational databases.

Relational Non-relational

Storage of
information

Tabular format. The database is structured through tables
composed of columns and rows

Non-tabular format. A possibility can be the use of documents

Application When accuracy is crucial, and data does not change. For
example, financial applications

It supports many different kinds of data and dynamics databases. Cisco, Google or
the U.S. Immigration and Customs Enforcement Mongo (2022a) are examples of
software used

Preferred
application

Small and medium size applications Gyorödi et al. (2015) Big applications Gyorödi et al. (2015)

Management
system

The SQL family: MySQL, PostgreSQL, SQLite Kimelman et al.
(2013)

IBM Cloud Database, MongoDB, Amazon Dynamo DB.
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3.2 Ontology: A structural support for a
non-relational database

What the saying “it is a small world” truly means is that “it is a

world full of linked data”. Linked data is created through interlinked

information by semantic queries, and due to its interconnected

nature, the data increases its usefulnessWikipedia (2022a). Themost

common way to represent linked datasets is through ontologies. An

ontology has been traditionally defined as a system of categories that

aim to provide a representation of the world Guarino et al. (2009)

based on specifications of a relational vocabulary. Practically, an

ontology-basedmanagement system allows for the representation of

linked datasets by enabling the conceptualization of explicit

specifications. Conceptualization is defined as an abstract,

simplified view of the world that we wish to represent for some

specific purpose Gruber (1993). Therefore, the ontology

development process transforms the initial need (i.e., to create

reusable and shareable knowledge regarding bioprocesses) into a

final product: the evaluated, documented ontology, codified in a

formal language. This work uses the ontology life cycle developed by

Fernandez-Lopez et al. Fernández-López et al. (1997). Hence, the

ontology is accomplished by applying the following stages/steps: i)

specification; ii) knowledge acquisition; iii) conceptualization; iv)

integration; v) implementation; vi) evaluation; and, vii)

documentation. This is achieved by schema mapping, entity

resolution, and data fusion Devanand et al. (2020); Mandreoli

and Montangero (2019). An ontology consists of classes,

properties, individuals, and axioms Gruber (1993). Classes

describe the categorization of individuals and their properties.

Axioms are used to express basic statements in the ontology by

reusing classes and properties. This is schematically represented in

Figure 3. In Figure 3, the class of “bioprocess” contains a property

“fermentation” connected through the axiom “is”. Furthermore, the

class “bioprocess” and the axiom “is” can contain other properties

such as “bioremediation”, “biological nutrient removal in

wastewater”, or “enzymatic hydrolysis”.

Overall, ontologies can facilitate data reuse, integration, and

maintenance as well as provide less ambiguous interpretation and

reasoning Poveda-Villalón, 2020 and (Ontology Engineering

Group–Universidad Politécnica de Madrid) 2). Based on the

numerous benefits, several ontologies have been developed for

life sciences, such as for biomedical terminology Beisswanger

et al. (2008), and molecular biology Blake (2004); Aranguren

et al. (2008). For example, OntoCAPE Morbach et al. (2009) is a

re-usable ontology created for computer-aided chemical process

engineering and has been successfully used in model generation,

knowledge management, and data integration in this area. Another

example is the ontology developed for searching and inferences of

process monitoring and analysis tools Singh et al. (2010). In

addition, the use of ontologies has now extended to cross-

domain areas of engineering, such as, for example, the study of

interactions in a biodiesel plant Devanand et al. (2020). However,

most of these ontologies face issues [e.g., how to appropriately use

them Soldatova and King (2005)]; thus, international standards, like

ISO 19150-4:2019 Information/Geomatics (2019), have been pushed

forward.When compared to databases, ontology engineering still has

to deal with the same kind of issues that databases faced several years

ago, such as mapping searches, schema alignment, matching

conflicts, etc. Martinez-Cruz et al. (2012). Recent studies have

shown that combining ontologies with databases is a promising

approach to assist non-relational databases for structuring and query

relaxation Gundla and Chen (2016). In other words, using an

ontology as a foundation for database development can bring

several benefits, which are explored in this work.As established in

Section 1 and Section 2, specifically in the area of bioprocess

modeling, there is a scientific and industrial need for an online,

flexible, reusable, shareable, and expandable system to collect and

access data.As previously mentioned, in this work, we propose a

non-relational database–NyctiDB–coupled with an ontology.

NyctiDB is characterized by its flexibility and its online nature,

which assist the introduction of new information and its integration

inside the IoT paradigm.

Based on the information presented here, the approach

selected is the one that combines a non-relational database

implemented in MongoDB with an ontology. Therefore, the

next step is the further collection and structuring of the

information in a comprehensive library of bioprocess

modeling knowledge.

4 NyctiDB: A bioprocess modeling
non-relational database

As previously stated, the main goal of this work is to create a

computer-aided tool for the reuse and sharing of bioprocess

modeling knowledge. Hence, a non-relational database for

FIGURE 3
Schematic example of the different categories that compose
an ontology. This figure shows that a fermentation (property) is
(axiom) a bioprocess (class).
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bioprocesses, supported by an ontology, has been developed and

named NyctiDB. NyctiDB provides a frame for collecting and

storing bioprocesses’ information inside an online platform

which is currently in the proof of concept stage (BioVL).

Furthermore, the online nature of the proposed system

facilitates its implementation in any computational tool. Thus,

NyctiDB can be: i) easily integrated and become a valuable tool in

the digitalization of the biotech industry, as well as b) a future

high-value component of computer-aided bioprocess simulators.

The developed approach is composed of two connected parts: an

ontology and a non-relational database. The corresponding

workflow is presented in Figure 4.

Figure 4 illustrates the different activities which are part of the

workflow. The first activity is conceptualization of the domain

knowledge of the specific bioprocess modeling task. In this step,

one needs to describe the problem and its solution, which is to be

integrated into the ontology. To do so, all useful and potentially

usable domain knowledge is identified. Then, this is categorized and

represented through a knowledge graph (Figure 5). The knowledge

graph is built on four classes. These classes are:

1) A library of mathematical bioprocess models;

2) A library with theoretical knowledge related to the bioprocess

description;

3) A library of common parameters in bioprocess models; and,

4) A problem and solutions library, also known as expert system.

This ontology structure aims to provide a complete overview of

the bioprocess’ characteristics based on its process model. However,

the ontology is designed in such a way that, when found, new and

relevant information is to be included. Thus, only partial

completeness of the ontology can be proved, which corresponds

to the inclusion of the terms, the stopover problem and the term’s

level of granularity Fernández-López et al. (1997). Apart from

completeness, the ontology should guarantee its conciseness and

consistency. Conciseness ensures that there are no duplicated and/or

irrelevant terms, whereas consistency pertains to all terms and

corresponding meaning being sound in the biotech modeling

domain. In this work, Protégé Stanford University (2022) is the

ontology editor used for the development and evaluation of the

ontology. A two-step evaluation is recommended, with a first

knowledge graph validation followed by a second validation once

NyctiDB is populated with data (see Figure 4). In the current study,

the knowledge graph has been tested and validated using the

HermiT reasoner included in Protégé; the ontology was found to

be consistent and coherent. The validated knowledge graph is used

to guide the integration, implementation, and later maintenance of

the data that is performed at the non-relational database level. Lastly,

FIGURE 4
NyctiDB’sworkflow: the link between the ontology and the non-relational database. More information about the knowledge graph can be seen
in Figure 5.
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the structure is made available online as a non-relational MongoDB

database based on a set of documents corresponding to the different

classes, properties, and axioms.

In the next subsection, the integration and implementation of

NyctiDB is illustrated through a case study on aerobic growth of

Corynebacterium glutamicum under product inhibition

conditions Khan et al. (2005). Other examples are available in

NyctiDB’s GitHub repository as well as on its documentation

webpage (https://github.com/BioVL/Pymongo-Minerva and

https://minerva-sphinx.readthedocs.io/en/latest/)1.

4.1 Library of mathematical bioprocess
models

The mathematical models’ library is the core of the database. As

shown in Figure 5, this library contains information to fully identify

the model. Thus, it contains the name, type of model (e.g., a Monod

equation-based model with product inhibition), the source of the

model, process conditions for which the model is developed, and its

parameters. To highlight the usefulness of NyctiDB, an example of

an implemented model and how it is embedded in the database is

demonstrated. This example describes the aerobic growth of

Corynebacterium glutamicum and can be found in

Supplementary Material Section 9.3. Noteworthy is that the use

of a non-relational database provides the flexibility to add or delete

some information into a specific model without the need to

restructure the database.

FIGURE 5
NyctiDB’s UML-linked knowledge graph. Although included in this graph, the axioms do not have great relevance during the implementation of
the ontology inside the database. The axioms are depicted for the sake of clarity and interpretability of the functional dependencies.

TABLE 2 Matrix presentation of a Monod-Herbert anaerobic biomass
growth model. With variables: substrate concentration, CS; product
concentration, CP; biomass concentration, X. The parameters in the matrix
are: biomass yield on substrate, YSX; biomass yield on product, YPX; decay
coefficient of biomass, kd; maximum growth rate of biomass, μmax; affinity
coefficient for substrate, KS. Based on Gernaey et al. (2010).

Components, n C1 C2 C3 Rates, ρ1

Symbols CS CP X —

Units g ·m−3 g ·m−3 g ·m−3 g ·m−3 ·h−1

Process, m — — — —

Growth -1/YSX 1/YPX 1 μmax · CS
CS+KS

·X

Decay 0 0 -1 kd · X

1 These links will shortly be updated to https://github.com/BioVL/
Pymongo-NyctiDB and https://NyctiDB-sphinx.readthedocs.io/en/
latest/ in order to reflect the name of the database, respectively.
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This library of mathematical process models contains first

principles mechanistic models implemented in Python that can be

freely and easily (re)used. Those models are implemented following

the good modeling practices (GMoP). GMoP aims to provide the

tools to (bravely) face the complexity of building mechanistic models

for bioprocesses Sin et al. (2009). There are many GMoP workflows,

such as the ones proposed in Mears et al. (2017); Kroll et al. (2017);

Kell and Sonnleitner (1995). These previous works have focused on

taking a deeper look into phenomena that occur in large-scale

fermentation processes. Whereas in this work, the primary target

is to provide a straightforward implementation template that other

researchers can use to implement their models inside a computer-

aided tool, following conservation principles and using matrix

modeling notation.

4.1.1 GMoP: Matrix modeling notation
The matrix notation is a well-established system to

mathematically describe complex models Henze et al. (2005);

Noorman et al. (1991). It uses the linear relationships among net

conversion rates to describe the conservation relationships inside

a system. This method has been extensively applied to bioprocess

models, for example to express the growth of Streptomyces

coelicolor Sin et al. (2008) and Saccharomyces cerevisiae

Lencastre Fernandes et al. (2012).

The description of a system through this methodology starts

by defining the number of components n and the number of

processes m in the system. This is the foundation for the

stoichiometric matrix, S, the process rate vector, ρ, and finally,

the component conversion rate vector r.

rnx1 � Smxn · ρmx1 (1)

The overall component conversion rate vector is then

coupled to a general mass balance equation. Table 2 presents

a simple matrix notation example of a Monod-Herbert anaerobic

biomass growth model.

The matrix notation presented in Table 2 is mathematically

translated into Eq. 2.

rS
rP
rX

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � −1/YSX 0
1/YPX 0

1 −1
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ · μmax ·

CS

CS +KS
·X

kd ·X
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

The overall component conversion rate vector (Eq. 1) is then

coupled to amass balancewhich results in a set of ordinary differential

equations. This is solved as a set of ordinary differential equations

(ODEs) that contain information related to the behavior of the

process. In this work, Python is used as the software tool to solve

theODEs. By using an open source programming language, we create

a reproducible, open access, and easy-to-use model implementation

template. An implementation example in the formof a fill up template

can be found in Supplementary Material Section 9.2. In addition, the

complete script regarding the modeling of the aerobic growth of

Corynebacterium glutamicum under product inhibitionKhan et al.

(2005) can be found in the supporting material.

The model implementation template benefits from using

Python’s object-oriented properties expressed as classes.

Object-oriented programming (OOP) is characterized by its

encapsulation, abstraction, inheritance, and polymorphism

properties. To sum up, this type of programming allows to

couple systems so that they can work as modules and be

easily expandable without affecting the whole system. Some of

its advantages are as follows Educative, Inc. (2022):

• it allows to embed model complexity into reproducible and

simple structures;

• OOP can be used across programs or functions, such as in

the combination of neural networks and in hybrid

modeling;

• it is easy to debug as all the information is enclosed inside

said program;

• it protects and secures information through encapsulation;

• it allows class-specific behavior through its polymorphism.

These properties have made OOP the most popular coding

structure for programmers and is widely used for software

development. Furthermore, it is increasingly applied when

developing hybrid models for the biotech industry.

4.2 Process description library

NyctiDB, as previously mentioned, enables and facilitates the

collection and storage of relevant process information for which

the model has been created, such as process description, process

conditions, and parameters. Knowledge about the process is

fundamental when using a specific model; for example, when

amodel is selected, researchers will need to compare their process

conditions to know if: the model can directly be used, cannot be

used, or needs to be re-calibrated to the new process conditions.

Therefore, NyctiDB includes this information in the form of a

library. It contains: i) the type of biological system modeled (e.g.,

enzymes, mixed culture, yeast); ii) the type of process (e.g.,

aerobic or anaerobic conditions); and iii) the type of operation

mode in which the data has been obtained (e.g., continuous, fed-

batch, or batch). An example contained in this library in NyctiDB

is presented in Supplementary Material Section 9.5.

One of NyctiDB’s main benefits, and the libraries within, is

that it facilitates the re-use of models in the biotech community.

The inclusion of process description information can have a

positive impact related to the time and resources that it saves in

process design and operation.

4.3 Library of process parameters

First-principles process models commonly consist of: i) a set of

parameters; ii) a set of state variables (e.g., concentrations and
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volume); and iii) a set of mathematical equations that represent the

process rates. The set of parameters depends on the process for

which data has been collected; therefore, the parametersmay need to

be re-calibrated for the new process conditions. This step is known

as parameter estimation, and it is usually one of the most

complicated and time-consuming steps in the development of a

mo del Sin et al. (2009). Since it is computationally expensive and

time demanding, a good starting point for the parameter estimation

can benefit the overall process model development and application.

In summary, the library of process parameters integrated into

NyctiDB includes: i) a collection of common model parameters,

ii) the process conditions under which the model was collected,

iii) the conditions that affect the parameters as well as upper and

lower limits, and finally, iv) the settings that will determine or

define these parameters. An example can be found in

Supplementary Material Section 9.6.

4.4 The expert system library

The last library comprises possible operational problems

based on the type of bioprocess and its characteristics. It

includes a description of the problem, how it could or would

affect the process model parameters, and the process conditions

associated with the presence of such problems. Moreover, within

this library, the problems are complemented with a list of

possible solutions. An example can be found in the

supporting material provided.

5 Application

Databases are valuable digital resources that can be used

independently for different tasks. Therefore, in this section, two

specific cases are presented of the application of NyctiDB. The

first case, application A, is the integration of NyctiDB as part of

the software architecture of an educational bioprocess simulator.

The second example aims to explain the potential use of the

stored information by using this non-relational database

(NyctiDB) as an input for an artificial intelligence algorithm.

5.1 Application A: Software integration

A database is an intrinsic part of a well-designed simulator

that divides its functions into layers or tiers 201 (2019). The

process simulator can be expandable and customizable

through its database without affecting the previously

established functionalities. Of note is that the development

of this tailored database, and other databases developed

following the same strategy, is a clear step forward in the

research community that focuses on developing a storage

FIGURE 6
Three-tier software architecture of BioVL.
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system, not only to collect mechanistic models for biochemical

processes (the goal of this work) but also other models. Since

knowledge can be shared and distributed, it saves resources. In

this work, NyctiDB is integrated as the data layer (or data tier)

inside the software architecture of BioVL (see Figure 6). This

software architecture allows the independent use of the layers.

As a consequence, the data layer used (NyctiDB) could be used

for other software platforms. In this case study, NyctiDB is

integrated inside a software called Bioprocess Virtual

Laboratory (BioVL–www.biovl.com), previously developed

by the authors de las Heras et al. (2021). Figure 6 shows

the BioVL’s software architecture.

BioVL has been designed as an educational bioprocess

software for undergraduate and graduate students. It focuses

on the modeling part of the discipline through:

1) The design of a learning goal based on Bloom’s taxonomy

Krathwohl (2002) for the use, reuse, and explanation of

bioprocess models; and.

2) A learning design that combines game elements and an agile

microlearning strategy. This involves an IDE for Python and a

small exercise module (e.g., to practice how to implement a

Monod-based equation). Additionally, there are theoretical

and practical questions about selecting the model and which

units correspond to a certain parameter.

BioVL, as documented in de las Heras et al. (2021), involves its

future users through co-participatory design (e.g., chemical and

biochemical engineering students). Currently, its functionalities

include i) a chatbot to encourage collaborative learning de Las

Heras et al. (2020); ii) learning content about the formulation of

bioprocess models; iii) a simulator in which operational problems

take place, and the studentmust propose a solution; and, iv) a library

of mechanistic models. This can be explored in its prototype

platform at www.biovl.com. Furthermore, we hope to encourage

students to learn about GMoP implementation and become

proactive contributors to NyctiDB by actively applying the

proposed template (Section 4.1.1).

5.2 Application B: NyctiDB as AI enabler

An AI model built without discipline has a high

probability of failing. Therefore, a solid frame on which AI

operates is as important to provide as quality input data.

Commonly, first-principles models have been integrated

inside deep learning frameworks or other machine learning

strategies, enhancing the fitting regression of process

variables. Typically known as hybrid models, these systems

have achieved promising results in improving models,

implementing model predictive control strategies or

dynamic optimization, etc. Some examples of such systems

in bioprocesses can be found in Eikens et al. (1999); Gao et al.

(2010); Nazemzadeh et al. (2020); Nielsen et al. (2020); Ning

and You (2019); Cabaneros Lopez (2020). However, even if the

combination of mechanistic models (also known as first-

principle or deterministic models) and machine learning

have demonstrated their benefits, the integration of hybrid

modeling into the bio-manufacturing facilities is still more an

exception than a rule. NyctiDB, with its open source and

online nature as well as its OOP model structure, can be an

exceptional tool to facilitate hybrid modeling implementation

inside the different unit operations (Figure 7).

Nevertheless, deep learning cannot be straightforwardly

applied when a) there is not enough data and/or b) when the

problems involve multiple numbers of objects, and their

FIGURE 7
NyctiDB as first principles models provider for hybrid modeling. Based on Nielsen et al. (2020).
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relationship is intrinsically interconnected. In these cases,

other disciplines under the AI umbrella, such as logic-

based machine learning, might be more suitable Utgoff

et al. (2011); Raedt (2010). Logic-based machine learning

aims to compute intelligible logical programs based upon

given knowledge, being characterized by the use of first-

order logic to represent hypotheses Muggleton and De

Raedt (1994); Law et al. (2015).

Although it has proven its value in areas such as bio- and

chemo-informatics Agrafiotis et al. (2007); Ando et al.

(2006); Begam and Kumar (2012), natural language

processing Muggleton (1993), or web mining Lisi (2007),

inductive logic programming is still a relatively unexplored

territory.

Therefore, the information in NyctiDB, as well as the logic

connections embedded in its ontology, can be used as

background knowledge for inductive-logic programming. An

example could be the use of the problem and solutions library

for the development of an expert system (ES). An ES is an

interactive and reliable computer-based decision-making system

that uses both facts and heuristics to solve complex decision-

making problems. Hence, ES is generally composed of “if . . . ,

then . . . ” statements obtained from process experts Lennox et al.

(2002). Consequently, the combination of the information inside

the libraries in NyctiDB can be used as the support system on

which to build an automatized ES through AI. Such a system

could be beneficial for the ES development, a traditionally very

costly and time-consuming process. In summary,NyctiDB can be

used to facilitate applications within the fields of both numerical

and symbolic AI.

6 Limitations and future perspectives

Currently, NyctiDB includes a selection of mechanistic

models as a demonstration. However, this database is under

continuous development, where new data, models, and

relationships are being included and integrated. These

capabilities will enable researchers to access real-world data to

train both mechanistic and data-driven models on an online

platform. This possibility will empower research across fields and

the use of this database within digitalization efforts, in which

having a cloud-based data storage system, as presented in this

work, is fundamental. For example, see Park et al. (2021) and

Gargalo et al. (2020b) for details concerning the flow of

information under the digitalization paradigm. Moreover, the

data and models included in the database will also have a peer-

review cycle allowing other users to edit the information

currently available in the database and, at the same time, add

new information. Noteworthy is that the authors will review this

information. Hence, the goal behind this approach is twofold: i) it

ensures the growth of the data stored in the database, which

grows exponentially with the number of users, and ii) it

guarantees the quality of the stored data through a peer-

review process.

7 Concluding remarks

This work aims to investigate and propose a frame for

collecting and storing information related to process models,

specifically in the area of bioprocesses. This is particularly useful

for developing an online repository compatible with digitalized

biomanufacturing. To this end, NyctiDB, a non-relational

database supported by an ontology, has been developed

(https://minerva-sphinx.readthedocs.io/en/latest/)2. The data

within NyctiDB is subdivided into libraries, and they are: i) a

process models library; ii) a parameters library; iii) a process

description library, and iv) an expert system library. These

libraries can support the implementation of good modeling

practices, potentially decrease the resources used on model

development and contribute to a better understanding of

bioprocesses and their models.NyctiDB is a digital asset

applicable to different projects and functionalities. Its

usefulness has been exemplified and detailed through two

examples. In application A, the database is integrated as the

data layer of a three-tier software architecture of an education

bioprocess simulator (BioVL). Application B explores the use of

the information collected in the database for supporting machine

learning algorithms. It is furthermore explained how the

relationships inside the ontology could be used to apply logic-

based machine learning. Although full of potential, logic-

machine learning (and inductive logic programming) is, to

some extent, an unexplored AI branch in the biotech area.To

conclude, we believe that NyctiDB can be an important tool

assisting and enabling the biotech industry for an active

transition towards implementing the Internet of Things and,

consequently, empowering the digitalization of the bio-

manufacturing industry.
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Publicly available datasets were analyzed in this study. This

data can be found here: NyctiDB GitHub repository as well as on

its documentation webpage https://github.com/BioVL/

Pymongo-Minerva3 and https://minerva-sphinx.readthedocs.io/

en/latest/. Note that these links will shortly be updated to https://

github.com/BioVL/Pymongo-NyctiDB and https://NyctiDB-

2 This link will shortly be changed to https://nyctidb-sphinx.
readthedocs.io/en/latest/ in order to reflect the name of the database.

3 This link will shortly be changed to https://github.com/BioVL/NyctiDB
in order to reflect the name of the database.
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