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Data-driven process monitoring is an important tool to ensure safe production and smooth
operation. Generally, implicit information can be mined through data processing and
analysis algorithms to detect process disturbances on the basis of historical production
data. In industrial practice, signals with different sources of disturbance show different
distribution patterns along with the time domain and frequency domain, that is, noise and
pulse-type changes are usually contained in the high-frequency portion while most
process dynamic is contained in the low-frequency portion. However, feature
extraction is usually implemented at a single scale in traditional multivariate statistical
algorithms. With this concern, a novel multi-scale process monitoring method is proposed
in this work, by which wavelet packet decomposition is first employed for time-frequency
analysis. After decomposition, multivariate statistical models are established for each scale
to construct process statistics. For the high-frequency part, the classical principal
component analysis (PCA) algorithm is adopted to construct squared prediction error
(SPE) and Hotelling T2(T2) statistics. While for the low-frequency part, the slow feature
analysis (SFA) algorithm is adopted to construct T2, Te2 , S2 and Se2 statistics for the
extraction of the long-term slowly changing trend. Then the monitoring statistics, obtained
from each method at different scales, are integrated by a support vector data description
(SVDD) method to give a final fault detection decision. The performance of the proposed
method is verified on the benchmark Tennessee Eastman Process (TEP) and an industrial
continuous catalytic reforming heat exchange unit by comparing with related multivariate
statistical methods, which only focus on a single scale.

Keywords: wavelet packet decomposition, statistical feature extraction, chemical process monitoring, hybrid
modelling, monitoring index fusion

1 INTRODUCTION

The strict requirement for production safety and operation smoothness in modern chemical industry
has posed high expectations for real-time process monitoring (Severson et al., 2016). In the era of
industry 4.0, signal analysis and data mining technologies have experienced rapid progress and
application (Ghobakhloo, 2020). Under this background, the development of data-driven process
monitoring methods has attracted great attention in both academia and industry (Qin, 2012; Yin
et al., 2014).

Multivariate statistical methods are developed by projecting high-dimensional data into low-
dimensional feature spaces, and then statistics reflecting data features are constructed in each space
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for monitoring. Several multivariate statistical algorithms,
including principal component analysis (PCA) (Wold et al.,
1987), partial least square (PLS) (Geladi and Kowalski., 1986),
independent component analysis (ICA) (Comon, 1994) and
canonical correlation analysis (CCA) (Hardoon et al., 2004),
have been successfully utilized to industry application. These
algorithms are developed on the basis of different assumptions
and suitable for the extraction of different data features.
Specifically, PCA has been widely applied to the analysis of
correlations between variables and has a good performance in
dimension reduction of multivariate samples (Choqueuse et al.,
2011). The data under normal conditions are projected into the
principal subspace and residual subspace through orthogonal
transformation. Then the statistics of squared prediction error
(SPE) and Hotelling T2(T2) are constructed to determine the
alarm threshold. ICA is an effective algorithm for blind source
signal separation (Jutten and Karhunen, 2004). A non-orthogonal
transformation is performed on the original data so that the signal
components are mutually independent. CCA is an effective
algorithm to comprehensively consider the relationship
between input variables and output variables. However, if
these classic multivariate statistical methods are directly
adopted to actual operation data, the real signals may be
buried by noise, thus leading to a long alarm latency. On this
basis, Xiu et al. proposed a Laplacian regularized robust principal
component analysis (LRPCA) framework and a structured joint
sparse canonical correlation analysis (SJSCCA) framework for
process monitoring respectively. A sparse error term is
introduced to improve the robustness of this framework to
sparse noise, and the effectiveness of these two frameworks is
verified on the benchmark Tennessee Eastman Process (TEP)
(Xiu et al., 2020; Xiu et al., 2021). However, process monitoring
models can only be constructed from a single scale in these
multivariate statistical methods, while the practical data with
multi-scale distribution are collected in industrial practice. The
corresponding data features at different scales will be neglected if
a single-scale model is constructed for a multi-scale distribution
dataset, consequently leading to a long alarm latency and a high
false alarm rate.

Process disturbances in complex industrial processes may
appear at different times and frequencies, leading to multi-scale
characteristics of data. Given the defects in traditional time-
domain analysis algorithms, Fourier Transform (FT) is applied
for frequency-domain analysis. The key theory of FT is that
periodic signals can be decomposed into a set of sine waves with
different amplitudes, frequencies and phases. However, only the
frequency components of non-stationary signals can be
obtained through FT, and the corresponding time
coordinates of these components are unavailable. Thus, a
Short-Time Fourier Transform (STFT) is developed with the
introduction of a window function (Portnoff, 1980). And the
time-frequency analysis is realized by the control of window
parameters, including the type of window function, window
length, moving step length and others. However, there are still
limitations in the time-frequency analysis of unsteady signals,
because of its fixed window size. Then, wavelet basis functions
with finite length and attenuation are applied to wavelet

decomposition (Bentley and McDonnell, 1994; Burrus et al.,
1998). The multi-resolution analysis is realized through the
translation and dilatation of this function. Wavelet packet
decomposition (WPD), developed from wavelet
decomposition, can be applied to a finer decomposition of
the high-frequency part (Ye et al., 2003). Wavelet coefficients
at different scales are obtained after decomposition. The main
idea of classic MSPCA algorithm is to establish PCA models on
the wavelet coefficients at various scales and reconstruct the
signal containing fault information to establish an overall PCA
model for monitoring (Misra et al., 2002). The multi-scale
properties of the data are efficiently extracted with this
algorithm, and the idea of multi-scale modeling is extended
to construct more models, such as ensemble empirical mode
decomposition based multi-scale principal component analysis
(EEMD-MSPCA) (Žvokelj et al., 2010), multi-scale kernel
partial least analysis (MSKPLS) (Zhang and Ma, 2011) and
cumulative sum based principal component analysis (CUSUM-
MSPCA) (Nawaz et al., 2021). However, the same internal
algorithm is applied at all scales in above mentioned
methods, without considering the difference in signal features
at different scales. In fact, the long-term slowly changing
features of real signals are mainly contained in the low-
frequency portion obtained by WPD, but traditional
multivariate statistical methods do not take the changing
features of time series into consideration and, thus, tend to
inferior fault detection performance.

Recently, an effective slow feature analysis (SFA) algorithm
has attracted increasing research interests for its good
performance in action recognition (Zhang and Tao, 2012),
blind source signal separation (Minh and Wiskott., 2013) and
speech recognition (Sprekeler et al., 2014). On this basis, SFA is
implemented in the field of dynamic process monitoring
(Huang et al., 2017), aiming to extract the slow features of
the original signals from the rapidly changing data to reflect the
essential information of the data. Shang et al. improved the
monitoring statistics of SFA, in which the slow change of latent
variables was taken into detection for dynamic abnormal
monitoring (Shang et al., 2015). Deng et al. developed a
spatiotemporal compression matrix containing process
dynamic information with the adoption of SFA and Naive
Bayesian (NB). The results applied to Tennessee Eastman
Process (TEP) confirm the effectiveness of the SFA algorithm
in dynamic feature extraction (Deng et al., 2022). All the
aforementioned findings indicate that SFA is conducive to
extracting slowly changing features, thus fit for the
processing of the low-frequency portion that reflects the
long-term slowly changing features of signals.

In this paper, the slowly changing dynamic and multi-scale
problems of industrial data are considered simultaneously. In
order to overcome the limitation of the existing fault detection
technologies in actual industrial data processing, a multi-scale
process monitoring method based on time-frequency analysis
and feature fusion is proposed. The original signals are grouped
into a high-frequency portion and a low-frequency portion with
the adoption of WPD, and wavelet coefficients at different scales
are obtained. In fact, important data features may also be
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contained in the high-frequency portion. Especially for the pulse
signal processing, directly filtering out the high-frequency
portion of signals will lead to the loss of key features, so the
information on all frequency bands is preserved in this work. For
the high-frequency portion containing the pulse and noise, the
classical PCA algorithm is applied to construct squared
prediction error (SPE) and Hotelling T2(T2) statistics. For the
low-frequency part reflecting the long-term trend of signals, SFA
is applied to construct T2, Te2 , S2 and Se2 statistics for the
extraction of slowly changing features on time series data.
Based on the obtained statistical information at different
scales, support vector data description (SVDD) is chosen for
statistical fusion (Tax and Duin, 2004). A hypersphere is
constructed based on the offline data under normal working
conditions, and the fault alarm point is determined by comparing
the radius and the distance from the online point to the sphere
center.

The remainder of the paper is organized as follows. The
algorithms of WPD, PCA, SFA and SVDD are briefly
introduced in Section 2. Then the proposed multi-scale
monitoring methods based on time-frequency analysis and
feature fusion are introduced in Section 3. The effectiveness of
the proposed method is demonstrated on the benchmark
Tennessee Eastman Process (TEP) and an industrial
continuous catalytic reforming heat exchange unit in Section
4 followed by conclusions in Section 5.

2 PRELIMINARIES

In this section, the algorithms of WPD, PCA, SFA and SVDD
applied in the proposed process monitoring method are briefly
introduced.

Wavelet Packet Decomposition
Wavelet decomposition has been widely applied in time-
frequency analysis for its adaptive adjustment ability on signal
resolution in different frequency bands (Burrus et al., 1998).
Given a quadratically integrable function Ψ(t) ∈ L2(R) , if the
corresponding FT Ψ(ω) meets the following requirements in
Eq.1 , Ψ(t) could be applied as a wavelet basis function.

∫+∞

−∞
|Ψ(ω)|2

|ω| dω<∞ (1)

The generation of wavelet sequence through the translation
and scaling of the wavelet basis function is given as follows,

Ψa,b � |a|−1
2Ψ(t − b

a
) (2)

where a, b are the scale factor and translation factor of the wavelet
respectively. The adjustment of a will lead to the scaling of the
wavelet basis function, while the adjustment of b will lead to the
translation of the signal, thus the time-frequency analysis of the
signal is achieved based on the adaptively adjustment of these two
parameters. Give an arbitrary signal f(t) ∈ L2(R), its continuous
wavelet transform is given as follows,

Wf(a, b) � 〈 f ,Ψa,b〉 � |a|−1
2 ∫+∞
−∞

f (t)Ψp
a,b(t − b

a
)dt (3)

where Ψ p
a,b is the complex conjugate function of Ψ p

a,b , f,Ψa,b

represents the inner product of f and Ψa,b. Under the condition
of principle of indeterminism, the original signal f(t) is
adaptively decomposed into different frequency bands, and
then the time-frequency components of f(t) are projected
onto all orthogonal wavelet packet spaces that represent
different frequency bands. Unlike the classical wavelet
decomposition, both the low-frequency components and high-
frequency components are further decomposed based on WPD,
thus improving the time-frequency resolution. In this work,
WPD is utilized to give a multi-scale decomposition for the
convenience of pertinent analysis at different scales.

Principal Component Analysis
PCA is a classic data reduction algorithm, aiming at extracting the
most valuable information based on the maximizing variance
principle (Wold et al., 1987). Given a data matrix _xn×m containing
m variables and n samples, the matrix after normalization is given
as xn×m. Then the singular value decomposition of its covariance
matrix is given as follows,

cov � QΛQT (4)
where Qn×n is a unitary matrix, Λn×n is a diagonal matrix, and the
values on the diagonal are eigenvalues. After the sort of
eigenvalues, the first l(l<m) principal components are
selected according to the principal component contribution
rate. So, the matrix of xn×m is decomposed as follows,

x � APT + AeP
T
e (5)

A � xP (6)
E � xPeP

T
e (7)

where An×l, Pm×l are the principal score matrix and the principal
load matrix respectively, Aen × (m−l), Pem × (m−l) are the residual score
matrix and the residual load matrix respectively, En×m is the
residual matrix. Part of the data information is projected into the
principal subspace, and the rest is projected into the residual
subspace. Then, Hotelling T2(T2) and squared prediction error
(SPE) are constructed in these two subspaces for process
monitoring, respectively. PCA is utilized to monitor the high-
frequency portion in this work for its satisfying feature extraction
performance.

Slow Feature Analysis
SFA is a signal processing algorithm for slowly changing feature
extraction (Huang et al., 2017). The core idea of it is to extract the
slowest-changing components from the changing time series data
as the fundamental features. Given an input vector
y(t) � [y1(t) y2(t) . . .yk(t)]T, t ∈ [t0, t1], the main purpose of
SFA is to find a mapping vector g(t) � [g1(t) g2(t) . . .gk(t)]T
such that the output vector s(t) � [s1(t) s2(t) . . . sk(t)]T varies
slowly in the time domain. The mapping relationship and the
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optimized objective function of SFA are given respectively as
follows,

sp(t) � gp(y(t)), p ∈ [1, 2, . . . , k] (8)
min 〈s2p〉

s.t.〈sp〉〈0; s2p � 1; 〈sps _p〉 � 0, ∀p ≠ _p
(9)

where _sp is the first derivative of sp with respect to time, c is the
expectation of the sequence c. The mapping relationship of linear
SFA is given as follows,

s � Wy (10)
where W � [w1 w2 . . .wk]T, the objective of optimization
solution is transformed into the solution of W. After the
normalization of y, its covariance matrix is decomposed as
follows,

yTy � UΣUT (11)
where Σ � diag(β1, β2, . . . , βk) is a diagonal matrix containing
eigenvalues, U � (γ1, γ2, . . . , γk) is a matrix composed of
eigenvectors corresponding to each eigenvalue. By letting B �
Σ−1

2UT and D � Σ−1
2UTx , after calculating the first derivative of

matrix D with respect to time, the covariance matrix of the
derived matrix is decomposed as follows,

_D _D
T � EΩET (12)

where _D is the derived matrix of D, Ω and E are the eigenvalue
matrix and eigenvector matrix obtained from the second
decomposition respectively. Then the mapping matrix W is
calculated as follows,

W � EΣ−1
2U (13)

where W is the projection matrix of SFA, Σ is applied for the
measurement of the changing slowness. On the basis of the
above calculations, principal component slow features Ωd and
residual slow features Ωe are available, and the four monitoring
statistics which are T2, Te2 , S2 and S 2

e are applied to process
monitoring (Shang et al., 2015). In this work, SFA is utilized to
extract the slowly changing features in the low-frequency
portion.

Support Vector Data Description
SVDD is an important data description algorithm and has a good
performance in outlier detection and classification (Tax and
Duin, 2004). The basic idea of SVDD is to map the input
object into a high dimensional feature space and find a
minimum-volume hypersphere in high dimensional space.
Abnormal sample points can be identified by comparing the
distance between the test point and the center of the sphere with
the radius of the hypersphere. Given a training data
X � {x1, x2, . . . , xn}. The specific optimization goals are given
as follows,

mina, R, ξR2 + C∑n

i�1ξ i
s.t.

���Φ(xi) − a2
����≤R2 + ξi, ξ i ≥ 0

(14)

where R, a are the radius and center of the hypersphere
respectively, C is the penalty weight which gives the trade-off
between the volume of the hypersphere and the number of errors,
ϕ(xi) represents a nonlinear mapping, and ξi is the relaxation
factor. Then the Lagrange operator and radial kernel function
K(xi, xj) are introduced for solving, and the original
optimization problem is transformed as follows,

max L(αI) � ∑
i
αiK(xi · xi) −∑

i,j
αiαjK(xi · xj)

s.t.∀i � 1, 2, . . . , n,∑
i
αi � 1, 0≤C

(15)

In this work, SVDD is utilized for the fusion of multi-scale
features for its good performance in outlier detection.

3 MULTI-SCALE PROCESS MONITORING
METHOD BASED ON TIME-FREQUENCY
ANALYSIS AND FEATURE FUSION
In this section, a multi-scale monitoring method is proposed for
feature analysis of signals in different time and frequency
domains. The integrated monitoring framework based on PCA
and SFA algorithms and corresponding implementation
procedures are introduced.

Multi-Scale Decomposition Based on
Wavelet Packet Decomposition
The real-time operation state of chemical factories can be assessed
by analyzing the data of variables collected from industrial
practice. However, disturbances may occur in different time-
frequency ranges, which leads to the multi-scale features of the
data. Appropriate multi-scale decomposition is not only assistant
to eliminate random disturbances, but also conducive to local
feature extraction, thus tend to improve the fault detection
performance. Inspired by this, WPD is adopted in multi-scale
decomposition of signals for its effectiveness in time-frequency
analysis, and the schematic diagram of a two-layer wavelet packet
decomposition example is given as in Figure 1.where Vi

j
represents the ith frequency band space of the jth scale. It can
be seen from Figure 1 that the original signals are grouped into a
high-frequency portion and a low-frequency portion with the
adoption of WPD. Among them, only the wavelet coefficients in

FIGURE 1 | The schematic diagram of a two-layer wavelet packet
decomposition.
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the lowest frequency band are assigned into the low-frequency
portion, while the remaining coefficients are assigned into the
high-frequency portion.

Moreover, with the consideration of the online monitoring
requirements in industrial practice, a moving window is
introduced, in which the data in the moving window can be
updated in real time for analysis, and the corresponding edge
values are removed to prevent boundary effects.

Time-Frequency Analysis Based on
Principal Component Analysis and Slow
Feature Analysis
After the multi-scale decomposition introduced in Section 3.1,
the high-frequency portion and the low-frequency portion of the
original signals are obtained for the convenience of further feature
extraction. As a matter of fact, only the low-frequency portion is
reserved in many traditional time-frequency analysis algorithms.
The neglect of the high-frequency portion will lead to the loss of
important features, especially for pulse-type signals. Therefore,
data information at all scales is retained in this research, and the
classical PCA algorithm is applied to construct T2 and SPE
statistics in the high-frequency portion for further feature
extraction. The long-term trend of the original signals is
reflected in the low-frequency portion. With this concern, SFA
is applied to construct T2, Te2 , S2 and S 2

e statistics in the low-
frequency portion, which is assistant to the slowly changing
feature extraction. It is noted that although the original signals
are grouped into two portions, a multivariate statistical model is
constructed for the wavelet coefficients at each scale. That is to
say, taking the two-layer wavelet packet decomposition which is
presented in Figure 1 as an example, one PCA model is
constructed in the V2

0 band space and three SFA models are
constructed in the V 1

2 , V
2
2 and V 3

2 band space, respectively.

Feature Fusion Based on Support Vector
Data Description
After the time-frequency analysis introduced in Section 3.2,
statistics which reflects the fundamental features of the
original signals at different scales are obtained for the
convenience of further fault detection. The statistics obtained
under normal operating conditions are combined as the input of a
SVDD model for training, and the radius of the hypersphere can
be calculated as follows,

R �
�������������������������������������
1 − 2∑n

i�1αiK(xi, xk) −∑n

i�1∑n

j�1αiαjK(xi, xj)√
(16)

The Gaussian kernel function is introduced for its extensive
applicability in this work. Then, the statistics obtained
from the testing dataset are input into the trained SVDD model
to calculated the distance between the testing sample points and
the center of the hypersphere can be calculated as follows,

Dis �
��������������������������������������
1 − 2∑n

i�1αiK(xi, xtest) −∑n

i�1∑n

j�1αiαjK(xi, xj)√
(17)

If Dis ≤R, the sample point is considered as normal.
Otherwise, the point will be indicated as an outlier.

Generally speaking, the most concerned issue in fault detection is
the stability of the model and the alarm time of the fault. Inspired by
this, two performance indicators of alarm latency (AL) and false
alarm rate (FAR) are introduced for the model performance
evaluation in this research, which are respectively given as,

AL � (SA − SI) × SF (18)
FAR � FP

FP + TN
(19)

where the fault is introduced at the SA-th sample point and
detected at the SI-th sample point, SF is the sampling frequency of
the original data, FP are the number of normal samples that are
indicated as anomalies incorrectly, FN is the number of fault
samples without indication. 0 min alarm latency and 0% false
alarm rate are expected to allow operators to provide an
immediate treatment. Fault occurrence is determined at the
end of three consecutive positive alarms, which is a common
adopted rule to determine both the alarm time and false alarm
rate, and the first consecutive positive alarm point is recorded.

The Framework of the Multi-Scale Process
Monitoring Method Based on
Time-Frequency Analysis and Feature
Fusion
The complete method is conducted by off-line modeling and on-
line monitoring, and the flowchart is represented in Figure 2. The
corresponding procedures are described as follows.

Off-Line Modeling
Step 1: Select historical data under normal operating

conditions and monitoring variables.
Step 2: Decompose data into low-frequency portion and high-

frequency portion.
Step 3: Normalize the obtained coefficients.
Step 4: Input the high-frequency coefficients into a PCAmodel

to construct T2 and SPE statistics.
Step 5: Input the low-frequency coefficients into an SFAmodel

to construct T2, Te2 , S2 and Se2 statistics.
Step 6: Input the model statistics at all scales into a SVDD

model for training to determine the center and radius
of the hypersphere.

On-Line Monitoring
Step 1: Obtain on-line detection values of monitoring

variables.
Step 2: Decompose data into a low-frequency portion and a

high-frequency portion with decomposition
parameters from off-line modeling.

Step 3: Normalize the obtained on-line coefficients with
corresponding parameters from off-line
normalization.

Step 4: Input the high-frequency coefficients into the PCA
model to obtain T2 and SPE statistics.
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Step 5: Input the low-frequency coefficients into the SFA
model to obtain T2, Te2 , S2 and Se2 statistics.

Step 6: Input the on-line statistics into the trained SVDD
model for testing.

4 CASE STUDY

In this section, the monitoring performance of the proposed
multi-scale method is compared with the PCA and SFA
algorithms at a single scale. Data obtained from the
benchmark TEP and an industrial continuous catalytic
reforming heat exchange unit are applied in this work to test
the performance of the proposed method.

Case Study on Tennessee Eastman Process
4.1.1 Tennessee Eastman Process
EP is a typical chemical process simulation benchmark developed by
Eastman Chemical Company, and has been widely utilized to verify
the performance of process monitoring algorithms. A reactor, a

product condenser, a gas-liquid separator, a product desorption
tower and a circulating compressor are contained in this process and
the corresponding process flow chart is represented in Figure 3.
There are 52 variables in TEP, including 22 continuous process
variables, 19 synthetic variables and 11 manipulated variables.
Considering the long sampling interval of the synthetic variables,
the remaining 33 variables are finally selected in this paper, as shown
in Table 1. A description of 21 preset faults is shown in Table 2, of
which Fault 3, 9, 15, 21 are not taken into consideration in this work.
The standard dataset consists of 500 training samples and 960 testing
samples and the sampling frequency is 3 min. All faults in the testing
dataset are introduced at the 160th sampling point.

4.1.2 Monitoring Results on Tennessee Eastman
Process
In this section, the performance of the proposed method is verified
on the benchmark TEP by comparing with PCA and SFA, which
only focus on a single scale. In the PCA models at a single scale, the
feature contribution parameter is 85%, and the thresholds ofT2 and
SPE statistics are all determined at the 99% confidence level. In the

FIGURE 2 | The flow chart of the proposed multi-scale process monitoring method.

Frontiers in Chemical Engineering | www.frontiersin.org June 2022 | Volume 4 | Article 8999646

Ji et al. Multi-Scale Process Monitoring

https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles


SFAmodels at a single scale, Se2 the thresholds ofT2, Te2 , S2 and Se2
statistics are also all determined at the 99% confidence level, which is
the same as the level in the PCA algorithm to ensure the fairness in
the monitoring effect comparison. In the proposed models, the
width of the on-line moving window is 60 and the corresponding
moving step is 1. The classic db4 wavelet basis function is adopted to
a two-layer wavelet packet decomposition. After the decomposition,
the feature contribution parameter used in the PCA models is also

85%. Then, the statistics constructed by PCA and SFA are processed
by SVDD for process monitoring. The parameters of the penalty
coefficients and variances of the Gaussian kernel function are
optimized according to the alarm latency results.

In this research, two performance indicators of alarm latency and
false alarm rate are introduced for model performance evaluation.
0 min alarm latency and 0% false alarm rate are expected to allow
operators to provide an immediate treatment. Disturbances are all

FIGURE 3 | The flow chart of Tennessee Eastman Process (Bathelt et al., 2015).

TABLE 1 | Variables in Tennessee Eastman Process.

Variable Description Variable Description

F1 A feed (stream 1) T18 Stripper temperature
F2 D feed (stream 2) F19 Stripper steam flow
F3 E feed (stream 3) C20 Compressor work
F4 A and C feed (stream 4) T21 Reactor cooling water outlet temperature
F5 Recycle flow (stream 8) T22 Separator cooling water outlet temperature
F6 Reactor feed rate (stream 6) V23 D feed flow (stream 2)
P7 Reactor pressure V24 E feed flow (stream 3)
L8 Reactor level V25 A feed flow (stream 1)
T9 Reactor temperature V26 A and C feed flow (stream 4)
F10 Purge rate (stream 9) V27 Compressor recycle valve
T11 Product separator temperature V28 Purge valve (stream 9)
L12 Product separator level V29 Separator pot liquid flow (stream 10)
P13 Product separator pressure V30 Stripper liquid prod flow (stream 11)
F14 Product separator underflow (stream 10) V31 Stripper steam valve
L15 Stripper level V32 Reactor cooling water flow
P16 Stripper pressure V33 Condenser cooling water flow
F17 Stripper underflow (stream 11)

Frontiers in Chemical Engineering | www.frontiersin.org June 2022 | Volume 4 | Article 8999647

Ji et al. Multi-Scale Process Monitoring

https://www.frontiersin.org/journals/chemical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering#articles


introduced at the 160th sample, and the detailed monitoring results
are given in Table 3. Models that raise fault alarms frequently would
result in misleading conclusions, thus making them untrustworthy.
It can be seen from Table 3 that the false alarm rates of these faults
are all no higher than 5%, which indicates that the fault detection
effect of the models is stable, and then the performance of these
models can be compared by alarm latencies.

As shown in Table 3, SFA has a generally better monitoring
performance than PCA for its earlier fault detection. The core
idea of SFA is to extract the slowly changing components from

the time-variant data series as the fundamental features.
Moreover, among the performance of these three methods,
the alarm latencies of these three methods are the same in most
step faults, specifically including Faults 4,5,6,7. That’s because
the features of pulse-type signal are extracted in the step fault
detection, which are contained in the high-frequency portion.
SFA is beneficial to the slowly changing feature extraction, but
it has no advantage over PCA in high-frequency feature
extraction. The PCA algorithm is also adopted for the high-
frequency feature extraction in the proposed method,
consequently leading to the same performance when
compared with the PCA and SFA. On the whole, the
proposed multi-scale method performs best among these
three methods. Although the alarm latencies of these three
methods are the same in some faults, faults can be identified
first by the proposed multi-scale method in the others. The
classical PCA algorithm is applied in the high-frequency
portion containing the pulse and noise. And due to the
good performance on dynamic feature extraction of SFA, it
is selected in the low-frequency portion that reflects the long-
term trend of signals. Features at different scales are extracted
by the novel proposed multi-scale method, thus the immediate
alarm of faults is realized.

The monitoring results of Faults 5 and 13 in the standard
TEP dataset are represented in Figure 4 and Figure 5
respectively. It is noted that the process monitoring graphs of
PCA are based on SPE statistics due to the slower alarming of
T2. Fault 5 is generated with a step change in the condenser
cooling water inlet temperature. Using these three methods,
Fault 5 can be identified with a low false alarm rate of 3% in
3 min, because of the same processing capability as the pulse-
type signal. Fault 13 is generated with a slow drift change in the
reaction kinetics. The false alarm rates of Fault 13 in these three

TABLE 2 | Faults in Tennessee Eastman Process.

No. Fault Description Fault Type

1 A/C feed ratio, B composition constant (stream 4) Step
2 B composition, A/C ratio constant (stream 4) Step
3 D feed temperature (stream 2) Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss (stream 1) Step
7 C header pressure loss-reduced availability (stream 4) Step
8 A, B, C feed composition (stream 4) Random variation
9 D feed temperature (stream 2) Random variation
10 C feed temperature (stream 4) Random variation
11 Reactor cooling water inlet temperature Random variation
12 Condenser cooling water inlet temperature Random variation
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown -
17 Unknown -
18 Unknown -
19 Unknown -
20 Unknown -
21 The valve for stream 4 Constant position

TABLE 3 | Fault alarm results of PCA, SFA and the proposed method in the TEP dataset.

Fault
No.

PCA SFA Proposed Method

Fault
Alarm
Sample
Point

AL
(min)

FAR
(%)

Fault
Alarm
Sample
Point

AL
(min)

FAR
(%)

Fault
Alarm
Sample
Point

AL
(min)

FAR
(%)

1 163 9 1.250 161 3 1.875 161 3 2
2 175 45 0 174 42 0.625 173 39 0
4 161 3 1.250 161 3 0.625 161 3 0
5 161 3 0.625 161 3 0.625 161 3 3
6 161 3 0.625 161 3 0 161 3 0
7 161 3 0 161 3 0 161 3 0
8 180 60 1.250 180 60 2.500 175 45 0
10 209 147 0.625 182 66 0 182 66 0
11 166 18 0 166 18 0.625 166 18 4
12 163 9 0 162 6 0 162 6 2
13 201 123 0.625 201 123 0 196 108 0
14 161 3 0 161 3 0.625 161 3 1
16 182 66 3.125 167 21 0.625 167 21 2
17 182 66 0.625 180 60 2.500 178 54 4
18 244 252 0.625 239 237 1.875 238 234 0
19 346 558 1.250 170 30 1.250 162 6 3
20 246 258 1.250 223 189 1.250 223 189 5

Note: The bold values indicate the shortest alarm latencies in the three models for each fault.
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methods are 1%. Compared with PCA and SFA, the fault can be
identified 15 min earlier in the proposed multi-scale method.
That can be interpreted as that the autocorrelation of sequences
is approximately weakened by WPD, and then several statistics
are constructed at each scale for the local feature extraction after
multi-scale decomposition, which demonstrates that the multi-

scale feature extraction can be better captured by the proposed
method.

Although with the application of the proposed method, these
faults can be detected earlier than the other two algorithms, it is
noted that a higher computational load is consumed for its more
complicated procedures. The proposed method is evaluated using

FIGURE 4 | The Fault monitoring graphs of Fault 5 in the TEP dataset corresponding to three different models: (A) PCA model, (B) SFA model and (C) The
proposed multi-scale model.

FIGURE 5 | The Fault monitoring graphs of Fault 13 in the TEP dataset corresponding to three different models: (A) PCA model, (B) SFA model and (C) The
proposed multi-scale model.
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Intel core TM i5-3470 CPU with 3.20 GHz, and the detailed
computation load results of the TEP dataset, containing the
memory footprint and processing time, are given in Table 4. It
can be seen from Table 4 that, compared with the PCA and SFA
algorithms at a single scale, a higher memory footprint and longer
processing time are consumed in this novel method, within which
more than 75% of the time is consumed on online multi-scale
decomposition. On this basis, how to reduce the computational load
of this proposed method to make it more suitable for online process
monitoring is the focus of future work. In the TEP dataset, the
sampling frequency is 3 min, while the average time consumed in
online processing of a single test dataset is 12.094 s, because of which
it can be deduced that the online processing time of a single sampling
point is less than the sampling frequency of the TEP dataset. In

conclusion, it is feasible to apply the proposed algorithm to this
dataset in terms of the computational load.

4.2 Case Study on an Industrial Continuous
Catalytic Reforming Process
4.2.1 Industrial Continuous Catalytic Reforming
Process
The proposed multi-scale process monitoring method, based on
time-frequency analysis and feature fusion, is applied to an industrial
continuous reforming process. Four reactors, four furnaces and a
plate exchanger are contained in this process and the corresponding
process flow chart is represented in Figure 6. The sampling
frequency is 1 min. There are 27 variables finally selected in this

TABLE 4 | The computational load of PCA, SFA and the proposed method in the TEP dataset.

Fault
No.

PCA SFA Proposed Method

Memory
Footprint (GB)

Process-Ing
Time (s)

Memory
Footprint (GB)

Processing
Time (s)

Memory
Footprint (GB)

Processing
Time (s)

Online
Decomposition

Time (s)

Proportion of
Online

Decompositi-On
Time (%)

1 0.194 0.217 0.193 0.165 0.794 19.272 15.055 78.119
2 0.196 0.213 0.192 0.171 0.818 18.911 15.152 80.122
4 0.194 0.209 0.190 0.198 0.824 18.892 15.144 80.162
5 0.196 0.210 0.193 0.172 0.832 18.762 15.027 80.091
6 0.192 0.200 0.192 0.166 0.825 19.183 14.918 77.766
7 0.192 0.209 0.192 0.177 0.826 19.031 15.077 79.225
8 0.192 0.216 0.190 0.176 0.827 18.957 14.974 78.990
10 0.195 0.226 0.193 0.167 0.829 18.957 14.998 79.118
11 0.193 0.213 0.192 0.162 0.830 19.087 15.16 79.428
12 0.192 0.225 0.192 0.167 0.831 19.047 15.028 78.899
13 0.192 0.208 0.192 0.171 0.829 18.964 15.013 79.166
14 0.192 0.208 0.192 0.178 0.833 19.295 15.320 79.400
16 0.195 0.193 0.192 0.170 0.833 19.261 15.274 79.300
17 0.193 0.210 0.192 0.171 0.833 19.160 15.181 79.236
18 0.186 0.218 0.193 0.164 0.833 19.471 15.510 79.657
19 0.191 0.221 0.193 0.171 0.834 19.045 15.101 79.291
20 0.194 0.206 0.193 0.165 0.833 18.961 14.987 79.043
Average 0.193 0.212 0.192 0.171 0.827 19.074 15.113 79.236

FIGURE 6 | The flow chart of the industrial continuous catalytic reforming heat exchange unit.
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paper, as shown inTable 5. The pressure drop of the plate exchanger
is an important monitoring variable, which is affected by various
factors such as production load and ambient temperature. The
increase in pressure drop is difficult to detect in time due to its
slow changing rate. It is necessary to establish a monitoring model
for this process.

4.2.2 Monitoring Results on the Industrial Continuous
Catalytic Reforming Process
In this section, the performance of the proposed method is verified
on a slow changing pressure drop of the plate exchanger by
comparing with PCA and SFA. In the PCA and SFA models
which only focus on a single scale, the feature contribution
parameter is 85%, and the thresholds of all statistics are all
determined at the 99% confidence level to provide a fair
comparison of fault detection effects. In the proposed models, the
width of the on-line moving window is 60 and the corresponding
moving step is 1. The classic db4 wavelet basis function is adopted to
a two-layer wavelet packet decomposition. After the decomposition,
the applied feature contribution parameter is also 85%. Then, the

statistics constructed by PCA and SFA are combined and processed
by SVDD for fault detection. The parameters of the penalty
coefficients and variances of the Gaussian kernel function are
optimized according to the alarm latency results.

The detailed monitoring results of these three methods are
presented in Figure 7, which reveals that all these three data-
driven algorithms have achieved to detect the pressure drop fault
on the industrial continuous catalytic reforming unit. The FARs,
based on PCA, SFA and the proposed method, are 6.175, 5.873
and 0.338%, respectively, which indicates that the stability of
these three methods applied to the industrial data is acceptable,
thus demonstrating that the corresponding fault detection results
are reliable. The faults are identified at the 665th, 665th, and
652nd sampling points, which indicates that the proposed multi-
scale method exhibits the best monitoring performance and the
fault can be identified 13 min earlier than the other two methods
at a single scale, thus demonstrating the existence of multi-scale
features in an industrial process. That’s because the original signal
is decomposed into a low-frequency portion and a high-
frequency portion, and features are extracted separately with

TABLE 5 | Process variables in the industrial continuous catalytic reforming unit.

Variable Description Variable Description

T01 Outlet temperature at cold side PD10 Outlet pressure at cold side
T02 Inlet temperature at hot side PD11 Pressure drop at hot side
T03 Inlet temperature at cold side PD12 Pressure drop at cold side
T04 Outlet temperature at hot side PD13~16 Reactor pressure drop 1
F05 Naphtha feed flow T17~20 Furnace outlet temperature
F06 Circulating hydrogen flow T21~24 Reactor outlet temperature
PD07 Inlet filter pressure drop at cold side T25~28 Furnace temperature drop
PD08 Inlet pressure at cold side PD29 Reactor inlet pressure
P09 Circulating hydrogen pressure

FIGURE 7 | The fault monitoring graphs of the industrial continuous catalytic reforming heat exchange unit corresponding to three different models: (A) PCAmodel,
(B) SFA model and (C) The proposed multi-scale model.
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this proposed method. Not only the interpretability of the model
is improved, but also more effective slowly changing information
is extracted with this multi-scale monitoring method.

5 CONCLUSION

In this paper, a multi-scale process monitoring method based on
time-frequency analysis and feature fusion is proposed. Considering
that process disturbancesmay occur in arbitrary time and frequency,
wavelet packet decomposition is utilized for multi-scale data
decomposition. Then the classical PCA algorithm is applied for
the high-frequency portion, and the SFA algorithm is applied for the
low-frequency portion to extract the slowly changing features of the
original signals. With the application of the SVDD algorithm,
statistics at different scales are fused to provide an overall fault
detection result. Case studies on the TEP and an industrial
continuous catalytic reforming heat exchange unit show the
superiority of the proposed method compared with the
corresponding multivariate statistical feature extraction
algorithms, which only focus on a single scale. The proposed
method provides a multi-scale perspective for solving practical
industrial process monitoring problems. However, more research

on the computational load optimization and the effect of different
levels of noise needs to be carried out in future.
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