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Process monitoring seeks to identify anomalous plant operating states so that

operators can take the appropriate actions for recovery. Instrumental to

process monitoring is the labeling of known operating states in historical

data, so that departures from these states can be identified. This task can be

challenging and time consuming as plant data is typically high dimensional and

extensive. Moreover, automation of this procedure is not trivial since ground

truth labels are often unavailable. In this contribution, this problem is

approached as a multi-mode classification one, and an automatic

framework for labeling using unsupervised Machine Learning (ML) methods

is presented. The implementation was tested using data from the Tennessee

Eastman Process and an industrial pyrolysis process. A total of 9 ML ensembles

were included. Hyperparameters were optimized using a multi-objective

evolutionary optimization algorithm. Unsupervised clustering metrics

(silhouette score, Davies-Bouldin index, and Calinski-Harabasz Index) were

investigated as candidates for objective functions in the optimization

implementation. Results show that ensembles and hyperparameter selection

can be aided bymulti-objective optimization. It was found that Silhouette score

and Davies-Bouldin index are strong predictions of the ensemble’s

performance and can then be used to obtain good initial results for

subsequent fault detection and fault diagnosis procedures.
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1 Introduction

For the successful operation of any process, it is important to detect process upsets,

equipment malfunctions, or other special events as early as possible, and then to find and

remove the factors causing those events. As industrial processes become much more

complex, thousands of process measurements need to be collected by the equipment using

sensors, and analyzed to recognize equipment defects before failure, reduce costs

associated with failure, maintenance costs, and improve productivity. Process

Monitoring aims to ease the work of plant operators by translating high volumes of
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data (i.e., information from the many sensors in the plant) into

readily understandable information.

As proposed byChiang et al. (2000) processmonitoring involves

fault detection, fault identification, fault diagnosis and process

recovery. The first step, fault detection, requires the definition of

a known operating state from which the process is said to deviate.

Here, we explore the issue of identifying such a known operating

state from historical plant data, extended to allow for multiple

known operating states. Therefore, the problem becomes a multi-

mode classification one, which can in turn, at a later stage, be used

for fault detection. If one or more of the known operating states are

labeled as known faults, that is, faults that have been previously

observed in the plant, the multi-mode classification problem can

also be helpful for fault identification.

In order to identify known operating states (be it known faults

or known normal operating conditions), one requires extensive

process familiarity to organize the historical data into groups for

each known operating state. This process, hereafter referred to as

labeling, can be aided by automatic clustering techniques borrowed

from the computer science literature. Clustering can be used to find

intrinsic divisions within a historical dataset, often relating to

separate running states within the process. Once the clustering

has separated the historical data, incoming observations can be

passed through a classifier to assign them to their best-matching

known process state.

Clustering alone is often insufficient to adequately handle real

plant data, as noise, high dimensionality, missing data, and other

issues are present. Hence, clustering is typically performed within a

pipeline ofDatamining and knowledge discovery (DMKD). DMKD

is employed to extract useful information from process data, using

statistical methods and machine learning algorithms (Zhu et al.,

2018; Zhu et al., 2019). The goal of DMKD is to develop a model

which generates knowledge and finds previously unknown patterns

in a given data set without the need for a priori knowledge of the

process. These models can recognize patterns in the data and

provide an interpretable representation of large amounts of

process data by performing dimensionality reduction (DR),

clustering (CL), or a combination of both. DR is the

transformation of high dimensional data into a meaningful

representation of reduced dimensionality (typically 2-D or 3-D)

(Jimenez and Landgrebe, 1998; Zhu et al., 2019). Clustering uses a

measure of similarity to find relationships among the observations

and separates them into meaningful groups.

DMKD methodologies are presented with some challenges

such as: wide variability of mining approaches, dimensionality of

the domain, handling of noise in data, scaling algorithms to large

numbers of samples, and extending an algorithm to new data

types. Furthermore, the tuning of the DR and clustering

algorithms’ hyperparameters has a great impact on

performance and reproducibility (Chiang et al., 2000; Briceno-

Mena et al., 2022a) [6]. Ordinarily, the path to overcome these

challenges would include extensive trial-and-error combinations

of DR and clustering methods and hyperparameters to find a

combination that achieves a clustering of the data that is

consistent with reality. To avoid this burdensome process, we

use a multi-objective optimization approach to automatically

find the method and hyperparameter tuning within the available

combinations that better satisfies the objective functions.

In this contribution, a study of the effect of dimensionality

reduction and clustering methods, as well as hyperparameter

selection over the performance of automatic labeling is presented.

An optimization approach for classification methods was

implemented and nine different ensembles of dimensionality

reduction, clustering, and kNN methods were optimized and

compared in terms of accuracy and applicability. Unsupervised

performance metrics were tracked to assess the viability of using

them as a proxy for accuracy in cases where labels are not

available, and accuracy cannot be calculated.

The rest of this paper is structured as follows: Section 2

contains a background of the relevant theory and algorithms

tested in this automatic labeling application. Section 3 provides

an overview of the computational method and datasets used for

testing. Section 4 shows two case studies that highlight the

effectiveness of this method for knowledge discovery in

supervised and unsupervised cases. Section 5 is a summary of

conclusions drawn from the results and some suggestions for

future research in continuation of this study.

2 Related methods

2.1 Dimensionality reduction

Dimensionality reduction (DR) is important in many

domains, since it facilitates classification, visualization, and

compression of high-dimensional data by mitigating the curse

of dimensionality and other undesired properties of high-

dimensional spaces (Jimenez and Landgrebe, 1998). Linear DR

techniques such as PCA have historically been the most

commonly used methods, but the importance of nonlinear DR

techniques has recently been recognized. Nonlinear DR

techniques are able to avoid overcrowding of the

representation, wherein distinct clusters are represented on an

overlapping area.

2.1.1 Principal components analysis
Principal Components Analysis (PCA) (Hotelling, 1933;

Jolliffe, 1986) constructs a low-dimensional representation of

the data that describes as much of the variance in the data as

possible. The concept is to reduce the dimensionality of the data

while retaining themaximum “variance”. PCA focuses onmodels

with latent variables based on linear-Gaussian distributions in

which a set of orthogonal and uncorrelated vectors are found and

ordered by the amount of variance explained in their directions

(Chiang et al., 2000). The aim is to find an optimal position for

the best information variance and vector dimensional features
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reduction. However, the disadvantage is that PCA performs

poorly for nonlinear datasets (data present on a curved

manifold). While there are countless nonlinear relationships

in chemical engineering, plants typically operate in regimes

where a linear approximation is appropriate, which is a major

reason for the success of PCA in industrial processing (Joswiak

et al., 2019). PCA relies on a single hyperparameter, the number

of principal components to retain, which is equivalent to the

dimension of the embedding space.

2.1.2 Uniform manifold approximation and
projection

Uniform Manifold Approximation and Projection (UMAP)

(McInnes et al., 2018) is a nonlinear DR technique that generates

a connected graph between the variables in the original high-

dimensional space. Then, the algorithm looks for the topological

manifold that minimizes the reconstruction error while

preserving the relationship among the variables from the high

dimensional space to the low dimensional embedding (McInnes

et al., 2018). The two most commonly used parameters for

UMAP are the number of neighbors and minimum distance,

which are used to control the balance between local and global

structure in the final projection. Having a larger number of

neighbors produces more global views of the structure, which

preserves a more global structure of the data while low values will

push UMAP to focus more on local structure by constraining the

number of neighboring points considered when analyzing the

data in high dimensions. A low (or zero) minimum distance

between observations relaxes the constraints on the placement of

the points in terms of the distance between neighbors. This

typically leads to dense clumps of data. A large minimum

distance typically leads to the observations being sparser in

the low dimensional plane, leading to less emphasis on global

structure. The number of dimensions of the embedding space can

also be specified when training the UMAP.

2.1.3 Self-organizing map
The Self-Organizing Map (SOM) is a neural network that

preserves the high-dimensional topology of the data while

nonlinearly projecting it onto a low-dimensional array of

neurons (Kohonen, 1990). The SOM is trained by

instantiating an array of nodes with PCA, then assigning the

training observations to their most similar node, the best

matching unit (BMU). After a point has been assigned to its

BMU, the SOM uses a decreasing learning rate to update the

values of nearby nodes to be more similar to the new point. Once

the points have been mapped into the low-dimensional SOM

space, we can visualize the SOM U-matrix, which measures the

pairwise distances between nodes in the map.With the U-matrix,

we can group similar observations together in regions with blue

nodes and separate dissimilar data with regions of red and yellow

nodes. This visualization makes SOM valuable for validating the

results of the clustering of unlabeled process data.

2.2 Clustering

Clustering algorithms are presented with a set of data

instances that must be grouped according to some notion of

similarity (Wagstaff et al., 2001). Clustering methods can also be

classified as centroid-based or density-based, depending on how

each cluster is built. Centroid-based clustering methods assume a

certain distribution within the clusters, and create new clusters

around a point (i.e., a centroid) following this distribution. The

number of clusters (centroids) is usually predefined, but it can

also be part of an energy function (Buhmann and Kühnel, 1993).

In density-based clustering, no centroids are defined and no

distribution of the data within the clusters is assumed. Density-

based clusters are more versatile and powerful but require larger

datasets to perform well (McInnes et al., 2017).

2.2.1 K-Means
K-Means clustering is a centroid-based clustering method

commonly used to partition a dataset into k groups (Hartigan

and Wong, 1979). The K-Means algorithm requires three user-

specified parameters: number of clusters k, cluster initialization,

and distance metric. The most critical choice is the number of

clusters, k. It proceeds by selecting k initial cluster centers and

then iteratively refining them by assigning an instance to its

closest cluster center and updating the cluster center to be the

mean of its constituent instances. The algorithm converges when

there is no further change in assignment of instances to clusters.

K-Means not only seeks for spherical clusters in data (Tan et al.,

2021), but also clusters with roughly equal number of samples.

Therefore, K-Means should never be blindly used to cluster any

data without careful verification of the results. It should also be

noted that as the number of clusters is increased, the number of

samples in clusters decreases, which makes this algorithm more

sensitive to outliers (Vesanto and Alhoniemi, 2000). Even though

K-Means was first proposed over 60 years ago, it is still one of the

most widely used algorithms for clustering. Ease of

implementation, simplicity, efficiency, and empirical success

are the main reasons for its popularity.

2.2.2 Density-based spatial clustering of
applications with noise

Density-based spatial clustering of applications with noise

(DBSCAN) is a density-based algorithm that essentially identifies

regions of high-density and regions of low-density. Unlike

K-Means, density-based clustering does not require that every

observation is assigned to a cluster, since it identifies dense

clusters. Points not assigned to a cluster are considered as

outliers, or noise. The DBSCAN algorithm requires two user-

specified parameters: the minimum number of neighbors a given

point should have and the maximum distance between any two

points. DBSCAN proceeds by computing the distance between all

observations, then identifies each observation as either a core

point, a non-core point (those observations that lie on the
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borders of core point clusters), or noise (those observations that

are non-core points and that are further away from the nearest

core point than the specified maximum distance between points)

(Pedregosa et al., 2011).

2.2.3 Hierarchical density-based spatial
clustering of applications with noise

Hierarchical density-based spatial clustering of applications

with noise (HDBSCAN) is another density-based algorithm.

HDBSCAN uses hierarchical clustering to improve the

density-based approach provided by DBSCAN. With

hierarchical clustering, data can either be processed

individually to initially form multiple clusters and then be

successively combined (agglomerative) or the entire dataset

can initially be assigned to one cluster and then be

successively split (divisive) (Pedregosa et al., 2011). The

HDBSCAN algorithm requires a singular user-specified

parameter of the minimum cluster size, and it proceeds by

selecting clusters of points based on the specified minimum

cluster size then varies the maximum distance between points.

Unlike DBSCAN, HDBSCAN is able to identify clusters with

varying densities (McInnes et al., 2017). In this implementation,

the minimum samples parameter is also selected, which

determines the strength of the noise identification, and the

cluster selection epsilon is also varied to help merge smaller

micro-clusters.

2.3 k-nearest neighbors

The k-Nearest Neighbors (kNN) algorithm is a supervised

machine learning algorithm generally used for classification

tasks, and notably, fault classification tasks (He and Wang,

2007). The kNN algorithm requires one user-specified

parameter: the number of nearest neighbors, k. The algorithm

works by looking at the true classes of the k-nearest neighbors of

a given observation and uses that information to predict the class

of the unlabeled observation. If the specified k number of nearest

neighbors is very small, then the classification model will be

prone to overfitting, giving noise a large impact on the results.

The confidence of the prediction increases as the number of

nearest neighbors increases, however, if the number of nearest

neighbors becomes too large, the classification can become

meaningless.

2.4 Data preprocessing

Before data is sent to the dimension reduction algorithm, it

must first be pre-processed. The primary method of data

preprocessing is known as data normalization. Data

normalization is especially necessary with process data, due to

the dataset’s different units affecting the magnitude of different

features. Both Z-score and Over-mean normalization give each

feature a mean of zero, while Z-score also gives each feature a unit

variance. Both options were tested during the course of this work,

but Over-mean normalization was used due to better preliminary

results.

3 Proposed methodology

Figure 1 shows the overarching methodology for this study.

Each of the labeled datasets described below was partitioned

into a train set and a test set (random splits and shuffled data).

The features of the train set (without labels) were used to

obtain a kNN model (top row in Figure 1) using the labels

obtained from the clustering step. The test set was used to

obtain the kNN model accuracy against the ground truth

labels (bottom row in Figure 1). For the kNN model,

9 different ensembles of dimensionality reduction (no-DR,

PCA, UMAP) and clustering (K-Means, DBSCAN, and

HDBSCAN) were studied. The hyperparameters for DR and

clustering as well as the corresponding number of neighbors

for kNN were optimized using a genetic algorithm as

described in Section 3.3. Each of the ensembles then would

have a dimensionality reduction model, a clustering model,

and the corresponding hyperparameters.

3.1 Data

Two datasets are evaluated in this work. The first set of data

that is analyzed is from the Tennessee Eastman Process (TEP),

which was originally developed by Downs and Vogel and is often

used for process control benchmarking (Downs and Vogel,

1993). TEP is a realistic, well-defined simulation with five unit

operations (a reactor, condenser, separator, compressor, and

stripper) that models four gaseous reactants competing in

several reactions to produce two liquid products as well as an

unwanted byproduct in the presence of an inert. The entire

process has 41 measured variables and 12 manipulated variables

for a total of 53 process variables. The complete dataset contains

3,365 samples, and an 80/20 training testing split was used.

The second set of data analyzed in this work is from an

industrial pyrolysis reactor, which is a well-known industrial

process unit that cracks heavy hydrocarbons into higher-value,

lower molecular weight hydrocarbons. This dataset includes

multiple modes of steady-state operation and exhibits process

drifting due to equipment coking. The reaction takes place in a

fired furnace, which is heated by burning fuel gas, as shown in

Figure 2. These data come from a pyrolysis reactor that takes a

feed of naphtha, mixes it with steam, and cracks it into ethylene at

very high temperatures. This entire process has 27 variables,

consisting of overall hydrocarbon flow, steam and hydrocarbon

flow per tube, crossover temperatures and cracking temperatures
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per coil, the tube skin temperature, and the coil outlet

temperature. Additional details about his process can be

found elsewhere (Zhu et al., 2019). The complete dataset

contains 1,482 samples and a 80/20 training testing split

was used.

3.2 Label alignment and automatic
labeling performance

Since the clustering that will be learned by the kNN model

was obtained in an unsupervised fashion, the labels assigned to

FIGURE 1
Flow diagram for the training and testing data. Features from the train set are reduced and clustered to generate labels (unsupervised learning).
The resulting labels are then used to train a kNNmodel and an internal accuracy (kNN accuracy) is computed. The dimensionality reduction and kNN
models are used to predict labels from the test set’s features and a real accuracy is computed by comparing the kNN labels with the ground truth
labels (testing set labels).

FIGURE 2
Pyrolysis Reactor process scheme.
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the test set could be named differently than the ground truth label

(i.e., “cluster 1” in the ground truth label is named “cluster 5” by

the clustering algorithm, while containing the same data).

Addressing this issue manually would be time-consuming and

would hinder the evaluation of many ensembles and their

hyperparameters. Hence, an automatic procedure was

developed to align the labels predicted by the ensembles with

the ground truth labels.

Algorithm 1. Align cluster labels with matching ground truth

labels.

When the number of clusters generated is greater than the

number of ground truth labels, the label alignment step will fuse

some of the clusters as needed to get a match. If, on the other

hand, the number of clusters is less than, the corresponding

ensemble will misclassify the data, hence being penalized in the

optimization step.

3.3 Automatic machine learning and
optimization (non-dominated sorting
genetic algorithm)

A challenge in the comparison of multiple dimensionality

reduction and clustering ensembles is the great search space for

the methods’ hyperparameters. Evolutionary algorithms have

been shown to perform well for multi-objective

hyperparameter optimization of machine learning models

(Vishwakarma et al., 2019; Briceno-Mena et al., 2022b).

Here, the selection of hyperparameters for each ensemble

(see Table 1) is cast as a Mixed Integer Nonlinear

Programming problem and solved using the Non-dominated

Sorting Genetic Algorithm (NSGA-II) (Deb et al., 2002), as

implemented by Pymoo (Blank and Deb, 2020). Additional

details on NSGA-II and its implementation for

hyperparameters tuning can be found elsewhere (Deb et al.,

2002; Blank and Deb, 2020). A population size of 10 and a

number of offspring 5 was used in all cases. For the supervised

learning studies (when labels are available) the objective

function aims to maximize the accuracy while minimizing

the number of clusters. For the unsupervised learning

studies (when labels are not available) the objective function

aims to optimize the clustering metrics described in the

following section. The output of the optimization step for

this implementation is a Pareto front, in which candidate

solutions are mapped according to the values of the

individual objective functions so that the user can manually

select the best solution among a small list of candidates.

3.4 Clustering metrics

Unsupervised performance metrics provide information

about the quality of the clustering ensemble. To investigate

the correlation, if any, between these metrics and the

performance of the ensembles in fault classification, three

unsupervised performance metrics were tracked during the

optimization of the ensembles: clustering, the silhouette score,

the Davies-Bouldin Index, and the Calinski-Harabasz Index. The

silhouette score (S-score) for a single sample represents how well

it lies within the assigned cluster, as opposed to being close to 2 or

more clusters (Rousseeuw, 1987). The silhouette score is

calculated by the formula:

s � b − a

max(a, b) (1)

where a is the mean distance between a sample and all other

samples in its class and b is the mean distance between a sample

and all samples in the nearest other class. To calculate the

silhouette score for a clustering result, we can find the mean

silhouette score of all the samples. Good scores are closer to 1,

where bad scores are closer to −1, indicating misclassification.

The Davies-Bouldin Index (DBI) evaluates the similarity

between clusters and can be computed as (Davies and

Bouldin, 1979):

DBI � 1
k
∑
k

i�1
Rij (2)

Where

Rij � si + sj
dij

(3)

TABLE 1 Dimensionality reduction and clustering methods with their
corresponding hyperparameters.

Method Hyperparameters

PCA Number of components

UMAP Number of components, min_distance, number of neighbors

K-Means Number of clusters

DBSCAN eps, min_samples

HDBSCAN ε , min_samples
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FIGURE 3
Pareto fronts for themulti-objective (accuracy and number of clusters) optimization of the ensembles. The hyperparameters for the accuracies
above 0.70 are shown. Data from the Tennessee Eastman Process dataset with 20 faults. Ensembles: (1) NO DR-KMEANS, nclusters � 50, nkNN

neighbors � 7;
(20) NO DR-HDBSCAN, mincluster size � 2, minsamples � 1, ε � 0.91, nkNN

neighbors � 6; (31) PCA-KMEANS, ncomponents � 10, nclusters � 50, nkNN
neighbors � 1; (51)

PCA-HDBSCAN, ncomponents � 1, mincluster size � 2, minsamples � 1, ε � 0.79, nkNN
neighbors � 5; (52) PCA-HDBSCAN, ncomponents � 1, mincluster size � 4,

minsamples � 1, ε � 0.74, nkNN
neighbors � 10; (53) PCA-HDBSCAN, ncomponents � 1, mincluster size � 4, minsamples � 3, ε � 0.62, nkNN

neighbors � 10; (54) PCA-
HDBSCAN, ncomponents � 1, mincluster size � 23, minsamples � 1, ε � 0.76, nkNN

neighbors � 11; (55) PCA-HDBSCAN, ncomponents � 1, mincluster size � 23,
minsamples � 1, ε � 0.79, nkNN

neighbors � 11; (58) PCA-HDBSCAN, ncomponents � 1, mincluster size � 6, minsamples � 1, ε � 0.50, nkNN
neighbors � 11; (61) UMAP-

KMEANS, nUMAP
neighbors � 9, mindist � 0.15, ncomponents � 5, nclusters � 46, nkNN

neighbors � 4; (66) UMAP-KMEANS, nUMAP
neighbors � 8, mindist � 0.13, ncomponents � 4,

nclusters � 42, nkNN
neighbors � 4; (71) UMAP-DBSCAN, nUMAP

neighbors � 4, mindist � 0.90, ncomponents � 5, eps � 1.34, minsamples � 22, nkNN
neighbors � 12.

FIGURE 4
Evolution of the Silhouette Score, Davies-Bouldin Index and Calinski-Harabasz Index with accuracy during optimization for the Tennessee
Eastman Process dataset with 20 faults.
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FIGURE 5
Pareto fronts for themulti-objective (accuracy and number of clusters) optimization of the ensembles. The hyperparameters for the accuracies
above 0.70 are shown. Data from the Tennessee Eastman Process dataset with faults TEP01, TEP04, TEP07, TEP08, TEP10, and TEP13. Ensembles: (0)
NO DR-KMEANS, nclusters � 48, nkNN

neighbors � 6; (20) NO DR-HDBSCAN, mincluster size � 2, minsamples � 1, ε � 0.91, nkNN
neighbors � 6; (31) PCA-KMEANS,

ncomponents � 40, nclusters � 48, nkNN
neighbors � 2; (51) PCA-HDBSCAN, ncomponents � 1, mincluster size � 2, minsamples � 1, ε � 0.79, nkNN

neighbors � 8; (60)
UMAP-KMEANS, nUMAP

neighbors � 8, mindist � 0.69, ncomponents � 4, nclusters � 39, nkNN
neighbors � 11; (81) UMAP-HDBSCAN, nUMAP

neighbors � 4, mindist � 0.19,
ncomponents � 4, mincluster size � 3, minsamples � 5, ε � 0.34, nkNN

neighbors � 14.

FIGURE 6
Evolution of the Silhouette Score, Davies-Bouldin Index and Calinski-Harabasz Index with accuracy during optimization for the Tennessee
Eastman Process dataset with faults TEP01, TEP04, TEP07, TEP08, TEP10, and TEP13.
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The mean distance between each point and its cluster

centroid is given by si, and the distance between two cluster

centroids is given by dij. Lower values of DBI imply better

clustering, with a minimum value of zero.

The Calinski-Harabasz Index (CHI) is defined by the formula

(Caliński and Harabasz, 1974):

s � tr(Bk)
tr(Wk) ×

nE − k

k − 1
(4)

Where k is the number of clusters, nE is the total number of

samples, tr(Bk) is the between-cluster variance, and tr(Wk) is
the within-cluster variance. Since the variance within the cluster

is desired to be smaller than that among different clusters, a high

CHI is preferred.

4 Results and discussion

4.1 Tennessee Eastman Process

Nine different ensembles were optimized for fault classification

using the Tennessee Eastman Process (TEP) dataset using all

20 faults plus the 1 normal state. This dataset contains

81 observations from each of the 21 states, except fault number

6, which only contains 12 observations. Figure 3 shows the pareto

front for the ensembles optimized for high accuracy and low

number of clusters. The relationship between the accuracy and the

number of clusters follows an exponential behavior, which means

that above certain accuracy, the number of clusters would increase

greatly with only small improvements in the performance of the

ensemble. For this particular dataset, an inflection point is

observed around 0.75 accuracy, where K-means clustering

coupled with either UMAP or PCA shows good performance

with a number of clusters around 45. This number of clusters could

be associated with the identification of a transition region for each

fault, resulting in at least two clusters (transition and new steady

state) for each fault for a total of 40 well-defined regions. These

results suggest that a kNN classifier combined with PCA for

dimensionality reduction and K-means for clustering would

produce a computationally efficient and reasonably accurate

multi-mode classification ensemble with applications in process

monitoring. On the other hand, obtaining a low dimensional space

before the clustering stepwas not found to be a necessary condition

to improve performance. However, it could be inferred that for

K-means, going below 10 dimensions using PCA is detrimental,

while UMAP could potentially allow a reasonable performance in

lower dimensions, with the added benefit of being easier to

visualize.

FIGURE 7
Pareto fronts for the multi-objective (accuracy and number of clusters) optimization of the ensembles. The hyperparameters for 1.0 accuracies
are shown and one for each ensemble. Data from the pyrolysis reactor with 3 labeled faults. Ensembles: (0) NO DR-KMEANS, nclusters � 5,
nkNN
neighbors � 2; (11) NO DR-DBSCAN, eps � 99.67, minsamples � 3, nkNN

neighbors � 7; (20) NO DR-HDBSCAN, mincluster size � 97, minsamples � 32, ε � 0.84,
nkNN
neighbors � 11; (31) PCA-KMEANS, ncomponents � 9, nclusters � 5, nkNN

neighbors � 2; (40) PCA-DBSCAN, ncomponents � 3, eps � 92.51, minsamples � 5,
nkNN
neighbors � 11; (50) PCA-HDBSCAN, ncomponents � 12, mincluster size � 55, minsamples � 42, ε � 0.19, nkNN

neighbors � 11; (61) UMAP-KMEANS, nUMAP
neighbors � 9,

mindist � 0.78, ncomponents � 4, nclusters � 13, nkNN
neighbors � 11; (71) UMAP-DBSCAN, nUMAP

neighbors � 5,mindist � 0.98, ncomponents � 4, eps � 5.01,minsamples � 3,
nkNN
neighbors � 5; (71) UMAP-HDBSCAN, nUMAP

neighbors � 8, mindist � 0.90, ncomponents � 5, mincluster size � 17, minsamples � 21, ε � 0.72, nkNN
neighbors � 15.
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The highest values for accuracy were observed with a much

higher number of clusters, in particular the PCA-HDBSCAN

ensemble. For these combinations, the optimizer finds a solution

set where the average cluster size is very small—only containing a

couple of data samples. The labels alignment step checks the

predicted clusters for homogeneity and gives higher accuracy to

homogenous clusters. Because this step assumes that predicted

clusters can be combined if they are over-specified by the

clustering algorithm, these smaller predicted clusters are often

assigned perfectly to their matching ground truth label. In the

context of DMKD, these solutions would require an engineer to

manually combine several similar clusters which are artificially

split, rendering a solution that is not very useful for exploratory

data analysis. The presence of this type of solution reinforces the

need for a multi-objective optimization problem that minimizes

the number of clusters and finds a more meaningful solution.

In addition to the final accuracy and number of clusters,

unsupervised metrics were tracked during the optimization for

each ensemble to investigate if there exists a correlation that

could then be exploited in situations where no labels are

available. S-score and DBI (Figure 4) showed a strong

correlation with accuracy for all of the ensembles, suggesting

that aiming for better performance in these unsupervised metrics

(high S-score and low DBI) could produce a reasonable starting

point for unsupervised data analysis in the absence of labels to

measure classification accuracy. It should be noted that for the

PCA-K-means and NO DR-K-means ensembles, the DBI is not a

strong predictor of accuracy. For the Calinski-Harabasz Index, a

strong correlation with accuracy was found for No DR-K-means

and PCA-K-means, but there seems to be no meaningful

correlation for the other ensembles. In general, it is observed

that unsupervised metrics could be good predictors of

performance for fault detection ensembles. However, the

metrics to be used are method dependent and should only be

used as a starting point for the data analysis.

Accuracies for the optimized ensembles with less than

50 clusters for the TEP dataset with all the faults were

reasonable (around 0.75) but still low. However, it should be

noted that the 21-way fault classification problem is considerably

hard. In order to further explore the performance of the

optimization framework, a reduced TEP dataset containing

faults TEP01, TEP04, TEP07, TEP08, TEP10, TEP13 used.

Faults 1, 4, and 7 are step change faults. Faults 8 and 10 are

caused by random variation. Fault 13 is caused by a slow drift in

the process. This selection is a good summary of the different

types of faults present in the full TEP dataset. This dataset

contains 481 observations from each of the 7 states (1 normal

and 6 faults). Results for the selected TEP faults are shown in

Figure 5 shows the performance of the optimization procedure

for the nine ensembles. High accuracies were achieved with a

lower number of clusters compared to the case with all the faults.

These results are consistent with the hypothesis that a greater

number of faults renders a more complex problem, for which

extreme solutions are needed (i.e., a very high number of

clusters).

Figure 6 shows the evolution of the unsupervised metrics.

As with the 20 faults, S-score and DBI are good predictors of

the ensemble performance in the fault classification task while

FIGURE 8
Evolution of the Silhouette Score, Davies-Bouldin Index and Calinski-Harabasz Indexwith accuracy during optimization for the pyrolysis reactor
with 3 labeled faults.
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no clear patterns are observed for the CHI. These results,

along with those for TEP with 20 faults, suggest that S-score

and DBI could be used as objective functions to optimize the

ensembles when labels are not available. An interesting

observation regarding the evolution of DBI during

optimization shown in Figure 6 is that for high DBI values

with high accuracies, the number of clusters also increases.

This could be helpful when optimizing for the unsupervised

metrics since minimizing the DBI not only promotes high

accuracy but also fewer clusters.

FIGURE 9
Pareto fronts for the unsupervised multi-objective (S-score and DBI) optimization of the ensembles. Data from the pyrolysis reactor without
labels. (0) NO DR-KMEANS, nclusters � 3, nkNN

neighbors � 9; (10) NO DR-DBSCAN, eps � 80.27, minsamples � 23, nkNN
neighbors � 11; (30) PCA-KMEANS,

ncomponents � 2, nclusters � 3, nkNN
neighbors � 2; (41) PCA-DBSCAN, ncomponents � 1, eps � 82.34, minsamples � 4, nkNN

neighbors � 15; (59) UMAP-KMEANS,
nUMAP
neighbors � 10, mindist � 0.10, ncomponents � 5, nclusters � 16, nkNN

neighbors � 4; (64) UMAP-DBSCAN, nUMAP
neighbors � 9, mindist � 0.1, ncomponents � 5,

eps � 1.41, minsamples � 3, nkNN
neighbors � 14; (67) UMAP-HDBSCAN, nUMAP

neighbors � 10, mindist � 0.11, ncomponents � 5, mincluster size � 20, minsamples � 6,
ε � 0.66, nkNN

neighbors � 9.

FIGURE 10
Projection of clusters over the self-organizing map for the pyrolysis reactor dataset using No DR-K-means (4 clusters).
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4.2 Pyrolysis reactor

An industrial dataset was also explored to assess the

applicability of the methods here presented in a real plant

setting. Results for fault classification in a pyrolysis reactor

with three known states are shown in Figure 7. This dataset

contains 76 observations from the first operating region,

28 observations from the second operating region, and

1379 observations from the third region. This imbalance is

consistent with the normal operating modes of the process.

With this being a simpler classification problem (only

3 classes), all ensembles achieved the maximum accuracy,

with variability in the number of clusters. For this dataset,

PCA for dimensionality reduction seems to have a better

performance (same accuracy with fewer clusters) than UMAP.

This could be explained by the global nature of the changes in the

process. As discussed before, UMAP in general offers higher

resolution which in this case is not needed. It is worth noting the

importance of comparing multiple ensembles to find the more

adequate combination for a particular application, and

consequently the usefulness of an automated tuning

framework which can ease the process of data analysis.

The evolution of the unsupervised metrics during the

optimization procedure for the pyrolysis process exhibited a

similar behavior to that of the TEP. In general, a higher

S-score and a lower DBI lead to better accuracy. Furthermore,

for the CHI, some patterns are distinguishable with higher values

being linked to higher accuracies.

4.3 Pyrolysis reactor: Unsupervised
optimization

The results discussed in the previous sections for the

optimization of ensembles for process monitoring are

encouraging. However, this optimization requires the

availability of labels to measure accuracy, which may not be

the case for many industrial applications. Hence, the usefulness

of unsupervised clustering metrics to predict the performance of

the ensembles in the process monitoring task is highly valuable

and was investigated. In this implementation, the S-score

(maximize) and the DBI (minimize) were defined as objective

functions (Figure 8). The Calinski-Harabasz Index was not

included given the unclear results for the TEP. Figure 9 shows

the pareto front for the pyrolysis reactor. The preferred solutions

lie in the lower-right corner of the plot, with high accuracies and

low DBI. In this region, the K-means (either combined with PCA

or with no DR) appears as a good initial solution. It is worth

noting, however, that if more resolution is needed (i.e., quick

transition states between well slowly changing states) K-means

may find difficulties in providing an adequate labeling and a

density-based method such as DBSCAN might be better suited.

In any case, the approach proposed here is only meant to give the

user an initial solution that can be further improved either by

inspection or by using additional methods. To visualize and

compare these results, a SOM for the pyrolysis reactor dataset

was produced (Figure 10). The initial solution for No DR-K-

means resulted in 3 clusters which corresponded to the regions

marked in the SOM (dark regions separated by bright lines).

Further inspection of the SOM reveals a subregion near the

higher right corner of the map (Figure 10C) which corresponds

to the startup of the plant. Increasing the number of clusters in

K-means from 3 to 4 readily reveals this cluster. This shows that

the optimization of the ensembles using the unsupervised

clustering metrics can be effective to provide an initial

solution for the process monitoring task.

5 Conclusion and future work

Performance of nine dimensionality reduction and clustering

ensembles for process monitoring using a kNN classifier was

investigated using an automatic Machine Learning framework

based on a genetic algorithm. Results for a simulated data set and

an industrial dataset showed that optimization of

hyperparameters is possible and that this framework enables

the fast exploration of ensembles and direct comparison, which is

a useful tool for the unsupervised exploration of unlabeled plant

data. In general, the number of clusters needed to represent the

data distribution increases exponentially as the accuracy

approaches 100%. However, reasonable accuracies can be

obtained with fewer clusters. The effectiveness of unsupervised

clustering metrics was explored by observing their evolution with

accuracy during optimization. Results showed that Silhouette

score and Davies-Bouldin index are strong predictors of the

ensemble’s performances in the process monitoring task. For the

Calinski-Harabasz index results are inconclusive. S-score and

DBI were used for the optimization of ensembles for the

industrial dataset (pyrolysis reactor), and it was shown that

good initial results for the process monitoring task can be

achieved in the absence of labeled data.

The research in this paper establishes the groundwork for

several process monitoring research directions. First, more

testing on the unsupervised optimization problem should be

done. The goal of finding a good set of hyperparameters and

methods to establish good clustering depends heavily on its

ability to be reproduced, and the stochastic nature of some of

these algorithms could make that difficult. Establishing a

constant seeding in random number generation should be

sufficient to reproduce the results, but some testing is required

to confirm this. Another continuation is the expansion of this

problem to other methodologies. One benefit of the automation

of the optimization is that testing more methods becomes easier,

so expanding the combinations to include more DR, clustering,

and classification methods is natural. For this study,

preprocessing normalization was done by subtracting features
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mean values from each term, but there are other options for

techniques here as well. Additionally, the effect of distance metric

selection could also be observed. For this study, only Euclidean

distance is used for all similarity measures, but there are some

other appropriate distance metrics such as the KL-divergence

and Kantorovich distance that could be tested. Adding these

selections as options in the optimization problem could lead to

additional benefit in the clustering results.
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