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Hemicelluloses are amorphous polymers of sugar molecules that make up a

major fraction of lignocellulosic biomasses. They have applications in the

bioenergy, textile, mining, cosmetic, and pharmaceutical industries. Industrial

use of hemicellulose often requires that the polymer be hydrolyzed into

constituent oligomers and monomers. Traditional models of hemicellulose

degradation are kinetic, and usually only appropriate for limited operating

regimes and specific species. The study of hemicellulose hydrolysis has

yielded substantial data in the literature, enabling a diverse data set to be

collected for general and widely applicable machine learning models. In this

paper, a dataset containing 1955 experimental data points on batch

hemicellulose hydrolysis of hardwood was collected from 71 published

papers dated from 1985 to 2019. Three machine learning models (ridge

regression, support vector regression and artificial neural networks) are

assessed on their ability to predict xylose yield and compared to a kinetic

model. Although the performance of ridge regression was unsatisfactory, both

support vector regression and artificial neural networks outperformed the

simple kinetic model. The artificial neural network outperformed support

vector regression, reducing the mean absolute error in predicting soluble

xylose yield of test data to 6.18%. The results suggest that machine learning

models trained on historical data may be used to supplement experimental

data, reducing the number of experiments needed.
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1 Introduction

Hemicellulose is the second most common component in lignocellulosic biomass,

after cellulose, and its content ranges from 25 to 35 wt% (Isikgor and Becer, 2015).

Hemicellulosic polymers are comprised of xyloses, arabinoses, mannoses, glucoses, and

galactoses (Scheller and Ulvskov, 2010). Hemicellulose products, such as derived

monomers and oligomers, have diverse applications in manufacturing (Sella Kapu

and Trajano, 2014), energy (Spiridon and Popa, 2008; Sella Kapu and Trajano, 2014),

OPEN ACCESS

EDITED BY

Debora Alcida Nabarlatz,
Industrial University of Santander,
Colombia

REVIEWED BY

Xianzhi Meng,
The University of Tennessee, Knoxville,
United States
Sasikumar Elumalai,
Center of Innovative and Applied
Bioprocessing (CIAB), India

*CORRESPONDENCE

Yankai Cao,
yankai.cao@ubc.ca
Heather L. Trajano,
heather.trajano@ubc.ca

SPECIALTY SECTION

This article was submitted to
Environmental Chemical Engineering,
a section of the journal
Frontiers in Chemical Engineering

RECEIVED 14 July 2022
ACCEPTED 29 August 2022
PUBLISHED 12 October 2022

CITATION

Wang E, Ballachay R, Cai G, Cao Y and
Trajano HL (2022), Predicting xylose
yield from prehydrolysis of hardwoods:
A machine learning approach.
Front. Chem. Eng. 4:994428.
doi: 10.3389/fceng.2022.994428

COPYRIGHT

© 2022 Wang, Ballachay, Cai, Cao and
Trajano. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Chemical Engineering frontiersin.org01

TYPE Original Research
PUBLISHED 12 October 2022
DOI 10.3389/fceng.2022.994428

https://www.frontiersin.org/articles/10.3389/fceng.2022.994428/full
https://www.frontiersin.org/articles/10.3389/fceng.2022.994428/full
https://www.frontiersin.org/articles/10.3389/fceng.2022.994428/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fceng.2022.994428&domain=pdf&date_stamp=2022-10-12
mailto:yankai.cao@ubc.ca
mailto:heather.trajano@ubc.ca
https://doi.org/10.3389/fceng.2022.994428
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org/journals/chemical-engineering#editorial-board
https://www.frontiersin.org/journals/chemical-engineering#editorial-board
https://doi.org/10.3389/fceng.2022.994428


and the pharmaceutical industry (Spiridon and Popa, 2008; Sella

Kapu and Trajano, 2014). When hydrolyzed, hemicellulose

degrades into its constituents through the breaking of

glycosidic bonds to produce a mixture of oligomers and

monomers. Hydrolysis is catalyzed by protons during

autohydrolysis or dilute acid hydrolysis (Carvalheiro et al.,

2008; Sella Kapu and Trajano, 2014). In addition to acids,

other types of catalysts can be used, including metal salts and

ionic liquids (Delbecq et al., 2018). Industrially, dilute acid

hydrolysis and autohydrolysis processes are preferred owing to

reduced chemical and capital cost (Carvalheiro et al., 2008; Sella

Kapu and Trajano, 2014).

During both dilute acid hydrolysis and autohydrolysis, a

proton catalyzes the breaking of glycosidic bonds. In dilute acid

hydrolysis, these protons are provided by an external source of

acid. During autohydrolysis, protons are provided by the

autodissociation of water at high temperature and the acetic

acid formed by deacetylation of hemicellulose. However, both

phenomena also occur during dilute acid hydrolysis. Classically,

kinetic models of dilute acid hydrolysis and autohydrolysis have

been developed independently but use similar forms. For both

systems, the hydrolysis reaction is typically described by either

monophasic or biphasic kinetic models (Sella Kapu and

Trajano, 2014) derived from Saeman’s model of cellulose

decomposition (Saeman, 1945). Both models assume first

order kinetics with Arrhenius rate constants (Sella Kapu and

Trajano, 2014), and account for operating time, temperature,

and proton concentration. Proton concentration will depend

on: moles of external acid added, moles of acetic acid formed,

amount of neutralization by biomass ash, and three equilibria

(external acid, water dissociation, and acetic acid). Sella Kapu

et al. (2016) demonstrated that when these phenomena are all

accounted for in the chemical reaction pathway, the

experimentally determined proton concentration under both

autohydrolysis and dilute acid hydrolysis conditions can be

described by a single model.

A persistent limitation of existing kinetic models is that

the value of the experimentally determined parameters vary

widely depending on feed and reaction conditions (Maloney

et al., 1985; Kim and Lee, 1987; Esteghlalian et al., 1997; Jensen

et al., 2008; Yat et al., 2008). Model structure rarely accounts

for all relevant chemical phenomena such as feedstock

composition (e.g., acetyl content, degree of carbohydrate

cross-linking) or mass transfer effects. This is in part due

to the difficulty of quantifying such phenomena in a substrate

as chemically and structurally complex as woody biomass.

Although a simple model structure gives good fit for

individual cases, such as a single feedstock over a small

range of temperature and time, it cannot give reliable

predictions for a wide range of conditions (Fearon et al.,

2020). Consequently, a unique model is needed for every

feedstock; this approach is expensive and slow due to the

resource and labour intensity of biomass experiments.

One alternative to kinetic models is to develop statistical

models. Machine learning (ML) provides a powerful set of

techniques to extract knowledge from datasets and develop

statistical models. Popular methods include ridge regression,

support vector regression, and artificial neural networks.

Within the field of chemical engineering, ML has been

successfully applied to various applications including

molecular recognition (Cao et al., 2018), thermal

decompositions of polymeric materials (Conesa et al.,

2004), prediction of mass transfer coefficients (Kojić and

Omorjan, 2017), and heat transfer coefficients (Gandhi and

Joshi, 2010). Specifically in the field of reaction engineering

and catalysis, ML techniques have been used to predict

catalytic activity of water-gas shift reaction (Odabaş1 et al.,

2014; Smith et al., 2020), study the kinetics of three-way

catalytic converters (Glielmo et al., 1999), and model the

conversion rates of complex heterogeneous reactions

(Molga et al., 2000). In the field of biomass pretreatment,

ML has been used to predict enzyme catalyzed bioethanol

production from lignocellulosic biomass (Smuga-Kogut et al.,

2021). However, the use of ML techniques in hemicellulose

hydrolysis is quite new.

Hemicellulose hydrolysis has been studied in diverse biomass

agricultural residues, grasses, hardwoods, and softwoods. It is

well-known that the anatomical features of these classes differ;

for example, softwood tissue is composed almost entirely of long,

tapering tracheids while hardwood tissue is composed of long,

narrow libriform fibers and shorter, wider vessels (Chen et al.,

2017). The chemical composition, structure (e.g., molecular

weight, degree of branching) and thus reactivity of

hemicellulose also varies considerably between classes. In

hardwoods, hemicellulose is predominantly in the form of

acetyl-4-O-methylglucuronoxylan, and in softwoods,

hemicellulose is predominantly galactoglucomannan (Scheller

and Ulvskov, 2010). Within hardwood hemicellulose,

differences in reactivity of the xylan backbone and side

residues of arabinose and acetyl groups have been reported

(Garrote et al., 1999). Given the inherent differences between

biomass classes, we chose to limit our modeling efforts to

hemicellulose hydrolysis in hardwoods. While differences in

chemical composition and structure can be observed even tree

to tree within a single species, (Porth et al., 2013), such detailed

data is rarely reported or modeled in hydrolysis studies. As a

statistical method, machine learning cannot explicitly capture the

structural and chemical diversity of species, especially when this

data is not widely available in the literature. We encode the wood

species as an input variable to allow the models to differentiate

the impact of species.

In this study, we use machine learning models to predict

the xylose yield from hardwood hemicellulose hydrolysis in

batch reactors. Specifically, 1955 data points were mined from

the literature (Jensen et al., 2008; Shi et al., 2019; Mittal et al.,

2009b; Morinelly et al., 2009; Jensen et al., 2010; Chen et al.,
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2015; Yan and Liu, 2015; Nitsos et al., 2016; Borrega et al.,

2011; Gladyshko, 2011; Ahmad et al., 2016; Dagnino et al.,

2013; Parajó et al., 1994, 1993; Vázquez et al., 1995; Garrote

et al., 1999, 2001; Canettieri et al., 2007a,b; Garrote et al., 2007;

Yu et al., 2009; Romaní et al., 2010; Chirat et al., 2012; Gutsch

et al., 2012; McIntosh et al., 2012; Wei et al., 2012; Castro et al.,

2014; López et al., 2014; Tunc, 2014; Rangel et al., 2016;

Inalbon et al., 2017; Mateo et al., 2014; Cebreiros et al.,

2018; Peleteiro et al., 2018; Mittal et al., 2009a; Zhang

et al., 2013; Rafiqul and Sakinah, 2012b,a; Rafiqul et al.,

2014; Tunc and van Heiningen, 2008; Kundu et al., 2015;

Jeong and Lee, 2016; Springer, 1985; Fernández et al., 2018;

Puentes et al., 2013; Mateo et al., 2014; Martínez-Patiño et al.,

2017; Yan et al., 2013; Yan, 2015; Yan et al., 2016; Negro et al.,

2003; Dai andMcDonald, 2014; Hou et al., 2014; Li et al., 2014;

Kundu and Lee, 2015; Liu et al., 2015; Lee et al., 2017; Liu et al.,

2017; Wen et al., 2019; Jesus et al., 2017; Eklund et al., 1995;

Sassner et al., 2008; Pu et al., 2011; Lim and Lee, 2012; Liu

et al., 2018; Huang et al., 2018; Li et al., 2010; Tunc et al., 2014;

Ma et al., 2017; Kim et al., 2011, 2014; Nitsos et al., 2013) and

used to create the models. We establish baseline model

prediction accuracy by preparing pretreatment and wood

species-specific kinetic models. We then investigate three

machine learning models of differing complexity (ridge

regression, support vector regression, and artificial neural

networks). We train and test the models using the collected

dataset, and compare their performance to the pretreatment

and wood species-specific kinetic models. We find that both

support vector regression and artificial neural networks

outperformed the simple kinetic model, with the artificial

neural network reducing the mean absolute error in

predicting soluble xylose yield of test data to 6.18%. The

results suggest that machine learning models trained on

historical data may be used to supplement experimental

data, reducing the number of experiments needed.

2 Materials and methods

2.1 Data collection and processing

We performed a detailed search on published works dated

from 1985 to 2019, related to batch isothermal dilute acid

hydrolysis and batch isothermal autohydrolysis of hardwood.

Alternate reactor configurations such as flow-through systems

(Mok and Antal, 1992; Trajano et al., 2015) and the Dionex

Accelerated Solvent Extractor (Song et al., 2011) were

deliberately excluded as these systems result in relatively short

residence times of solubilized products and different reaction

regimes compared to classic batch reactors. Out of numerous

articles we inspected, we considered 71 papers, which reported

values for all variables in Table 1 (the remaining articles omitted

some variables), and collected a dataset consisting of

1955 experimental data points. Data was only included if the

source provided all of the variables listed in Table 1, as the

machine learning techniques used require that there are no

missing features in the inputs to the model. All reported

values were converted to the units shown in Table 1. The

dataset contains experiments on 15 different wood species

with an additional mixed wood combination, and 6 acid species.

Out of the variables in Table 1, the predicted variable was

chosen to be xylose yield as a percentage of the initial

hemicellulosic xylose contained in the raw material. Most of

the papers did not directly report the initial proton

concentration, and we compute its value based on the initial

acid concentration, acid species, and the corresponding pKa

values. A number of papers only reported xylose

concentration at the end of the reaction, and we computed

xylose yield using Eq. 1, in which ρW denotes the density of

water and is approximated to be 1000 g/L, C denotes xylose

concentration, and X0 represents the initial hemicellulosic xylose

concentration in the raw material. Several papers report raw

material concentration in xylan basis, and which is converted to a

xylose basis using the anhydrous correction shown in Eq. 2. Total

soluble xylose yield (oligomers + monomers) can be computed

from all 71 papers, however, only 30 of the 71 articles separately

reported monomeric xylose. Of the 1955 experimental data

points collected, only 882 data points contained information

on monomeric xylose. Only 26 data points reported independent

oligomer and monomer yields; this is too few data points for

machine learning models. Therefore, we run two independent

computational experiments. The first experiment is run on the

whole dataset consisting of 1955 data points to build a model for

predicting total soluble xylose yield, while the second experiment

is run on the subset consisting of 882 data points to predict

monomeric xylose yield.

Y � 100% p
C × LSR

ρw × Xo
100

(1)

TABLE 1 Collected variables and their ranges for each experimental
data point.

Variables Units Range

Total reaction time (tT) Minute 0–1,155

Reactor temperature (TR) Kelvin 313–553

Liquid solid ratio (LSR) g liquid/g solid 1.53–50

Initial proton concentration ([H+]_0) mols/L 0–1.22

Particle size (dp) mm 0.117–50

Isothermal reaction time (tI) Minute 0–1,140

Initial hemicellulosic xylose in feedstock (X0) Weight % 11.932–34.9

Wood species Unitless N/A

Acid species Unitless N/A

Xylose yield (Y) % 0–95.1
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Xo � Xxylan

0.88
(2)

The remaining variables in Table 1 are used as feature

variables for predicting xylose yield. Total reaction time is the

sum of the isothermal reaction time and the time it takes the

reactor to ramp to the desired temperature. For 413 data points

across 26 sources, information about ramp rate was not available.

In these data, the isothermal reaction time is taken to be the total

reaction time. Each wood and acid species is represented as a

binary feature, also known as one-hot encoding. The dataset

covers a wide range of wood species including acacia (Shi et al.,

2019), aspen (Jensen et al., 2008; Mittal et al., 2009b; Morinelly

et al., 2009; Jensen et al., 2010; Li et al., 2010; Chen et al., 2015;

Yan and Liu, 2015), basswood (Jensen et al., 2008), beech (Nitsos

et al., 2016, 2013), birch (Li et al., 2010; Borrega et al., 2011;

Gladyshko, 2011; Ahmad et al., 2016), carob (Dagnino et al.,

2013), eucalyptus (Parajó et al., 1994, 1993; Vázquez et al., 1995;

Garrote et al., 1999, 2001; Canettieri et al., 2007a,b; Garrote et al.,

2007; Yu et al., 2009; Romaní et al., 2010; Chirat et al., 2012;

Gutsch et al., 2012; McIntosh et al., 2012; Wei et al., 2012; Castro

et al., 2014; López et al., 2014; Tunc, 2014; Rangel et al., 2016;

Inalbon et al., 2017; Mateo et al., 2014; Cebreiros et al., 2018;

Peleteiro et al., 2018; Ma et al., 2017), maple (Jensen et al., 2008;

Mittal et al., 2009a; Li et al., 2010; Zhang et al., 2013), meranti

(Rafiqul and Sakinah, 2012b,a; Rafiqul et al., 2014), oak (Springer,

1985; Fernández et al., 2018), olive (Puentes et al., 2013; Mateo

et al., 2014; Martínez-Patiño et al., 2017), paulownia (Yan et al.,

2013; Yan, 2015; Yan et al., 2016), poplar (Negro et al., 2003; Kim

et al., 2011; Dai and McDonald, 2014; Hou et al., 2014; Li et al.,

2014; Kundu and Lee, 2015; Liu et al., 2015; Lee et al., 2017; Liu

et al., 2017; Huang et al., 2018; Liu et al., 2018; Wen et al., 2019),

vine (Jesus et al., 2017), and willow (Eklund et al., 1995; Sassner

et al., 2008). Mixed species were either combinations of sweet and

black gum, oak, maple, and southern magnolia, (Tunc and van

Heiningen, 2008; Tunc et al., 2014), oak, black locust, and

Japanese chestnut, (Lim and Lee, 2012; Kundu et al., 2015;

Jeong and Lee, 2016), maple, birch, and oak, (Pu et al., 2011),

or not specified (Kim et al., 2014). Acid species in the collected

data include acetic, formic, malic, oxalic, phosphoric, and

sulfuric.

In addition to the basic descriptors of reaction conditions,

combination features including Severity Factor (Ro), P-Factor,

H-Factor, and their log values are added to features; calculated

using Eq. 3a (Overend et al., 1987), Eq. 3b (Sixta et al., 2006), and

Eq. 3c (Vroom, 1957), respectively. These combination features

are widely used to reflect the trade-offs of temperature and time

on the severity of hydrolysis. Temperature and time in Eq. 3a take

units Celsius and minutes respectively, while temperature and

time in Eqs 3b, 3c take units Kelvin and hours, respectively. In the

event that the combination factors are equal to 0, the log of the

factors are also set to 0.

Ro � tI*e
TR−100
14.75 (3a)

Pf � ∫
tI

o
e40.48−

15106
TR dt (3b)

Hf � ∫
tI

o
e43.2−

16117
TR dt (3c)

For machine learning methods, we need to perform data

preprocessing, since continuous feature variables can range over

orders of magnitude, as in the case of reaction time and particle

size. In this study, feature variables are standardized using a

z-score transformation to ensure that each variable has zero

mean and comparable variance values.

2.2 Computational methods

In this section, we describe several approaches we applied to

predict xylose yield, including kinetic models and three machine

learning approaches, namely ridge regression, support vector

regression, and artificial neural networks. All of the features listed

in Table 1, with the exception of xylose yield, are used as input

features to the machine learning models, corresponding to

9 input features.

2.2.1 Kinetic models
We adopted the simplified Saemen-type kinetic model used

by many, which models hemicellulose decomposition as a

sequence of two first order reactions. In the first reaction,

hemicellulose is hydrolyzed to xylose, and in the second

reaction the xylose is further decomposed to degradation

products. Equations 4a, 4b represent the mass balance

equations that describe the decomposition of hemicellulose,

and Eq. 4c is the analytical solution, where X represents the

hemicellulosic xylose in feedstock with its initial value denoted as

X0, C is the concentration of xylose, k1 and k2 are kinetic

constants for xylose formulation and xylose degradation.

dX

dt
� −k1X (4a)

dC

dt
� k1X − k2C (4b)

C � −k1X0*(e−k1t − e−k2t)
k1 − k2

(4c)

For both dilute acid hydrolysis and autohydrolysis, The

kinetic constants k1 and k2 are described by an Arrhenius

model that accounts for proton concentration as shown in Eq. 5,

k � Ae
−E
RTf([H+]) (5)

Note this formulation is very general in the sense that it

covers both dilute acid hydrolysis and autohy-drolysis. For

autohydrolysis, in which no acid is added, the proton
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dependence function f ([H+]) is set to be one. For dilute acid

hydrolysis, the most common proton dependence function is:

f([H+]) � [H+]M
0

(6)

where [H+]0 is the initial proton concentration. For each of the

two kinetic constants, the activation energy (E), prexponential

factor (A) and proton dependent coefficient (M) need to be fitted,

representing six total kinetic parameters in the system.

For the kinetic models, we performed two experiments. In

the first experiment, we divide the whole dataset into two subsets,

one for the dilute acid hydrolysis and another one for

autohydrolysis, and then train two models. For each model,

we optimized the six kinetic parameters by minimizing the

mean absolute error between predicted and reported xylose

yield on the training data. In the second experiment, we

partitioned the whole datset based on both the type of

pretreatment and wood species, and then obtained 32 models.

For all experiments, accuracy was evaluated independently using

the remaining test data set. In the evaluation step, we predict

xylose yield based on the corresponding kinetic model with fitted

parameters, and compare the predicted xylose yield with the

reported xylose yield. The fmin function in the SciPy package in

Python was used for parameter estimation.

2.3 Machine learning methods

Predicting xylose yield can be cast as a regression problem.

Here, we aim to find amodel or hypothesis f:Rn→R that maps an

input vector xi ∈ Rn to predict output variables yi ∈ R. The input

vector xi is also called a feature vector (all the variables in Table 1

except xylose yield) while the output yi is the target we aim to

predict (xylose yield in our paper). A pair (xi, yi) is called a

sample. We will use a database ofm samples [(x1, y1),..., (xm, ym)]

that we call a training set to learn the machine learning model.

Diverse regression models have been explored in the literature.

We now describe three popular methods: ridge regression,

support vector regression (SVR), and deep neural networks.

These models are chosen because they differ in complexity

and hypothesis space. Less complex models are more prone to

underfitting, in which the relationships between input and output

do not fit the training data well. In contrast, more complex

models are more prone overfitting, where the model learns

spurious relationships from the training data that do not

generalize well to unseen data (e.g., test data). Ridge

regression is simpler than the other two models, and is less

prone to overfitting, though the simplicity limits the model to

purely linear relationships. Therefore, it is necessary to make use

of the combination features to account for non-linearity. In

contrast, artificial neural networks can fit more complex

relationships between features, at the expense of overfitting

risk. Since a model is evaluated by its accuracy on unseen test

data, not training data, a more complex model is not guaranteed

to perform better than a less complex one. By using these three

models, we are able to assess the trade off between model

complexity and overfitting. For machine learning methods, we

use the Scikit-learn package in Python for ridge regression and

support vector regression, and Keras package to create ANN

models. Other important packages are numpy, scipy, and pandas.

All scripts needed to reproduce the results are available at https://

github.com/edwardwang1/BiorefiningAndMachineLearning.

2.3.1 Ridge regression
Ridge regression, is a type of linear regression, which uses a

hypothesis function of the following form:

f(xi) � wTxi + b (7)

The model parameters to be learned from the training set are

the weights w ∈ Rn and b ∈ R. The learning process consists of

solving an optimization problem to find the optimal feature

weights:

min
w, b

1
m
∑
m

i�1
(yi − wTxi − b)2 + α‖w‖2 (8)

The first term of the objective functionmeasures the accuracy

of the hypothesis on the training set and the second term is a

regularization term that prevents over-fitting. The

hyperparameter α ∈ R+ is a regularization parameter that

determines the balance between how well the hypothesis fits

the training set and how well the hypothesis generalizes to other

data. Large values of α might cause under-fitting while a small

value of α might cause overfitting. This hyperparameter is

determined by a procedure called model selection.

2.3.2 Support vector regression
Support Vector Regression (SVR) is an adaptation of the

popular support vector machine (SVM) classifier for continuous

variables. It uses the same hypothesis function as ridge

regression. However, it solves a different optimization

problem to learn w and b, as shown below.

min
w, b, ζ

C∑
m

i�1
ζ i + ‖w‖2 (9a)

s.t.
∣∣∣∣yi − wTxi − b

∣∣∣∣≤ ϵ + ζ i, (9b)
ζ i ≥ 0, i � 1, ..., m (9c)

The objective of SVR is to penalize the samples falling above

and below the residual threshold ϵ while ignore samples falling

within the residual threshold. Similar to ridge regression, it also

has a regularization term. Here C ∈R+ is a hyperparameter that is

used to prevent over- or under-fitting (as with α). Prior to

optimization, a non-linear kernel is usually applied to

introduce non-linear relations that map the original feature

vector xi ∈ Rn to a new vector of features [K (xi, x1),..., K (xi,

xm)] ∈ Rm, where K (·) is called a kernel function. One common
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choice of a kernel function is the Gaussian kernel K(x1, xi) =

exp(−γ||x1 − xi||
2), which can be viewed as the similarity between

features x1 and xi. The resulting new transformed features are

then feed into linear SVR to generate the hypothesis model. For

non-linear SVR, we also need to decide the value of C, ϵ, kernel
type, and the kernel function parameters (e.g., γ) in the model

selection phase.

2.3.3 Artificial neural networks
An artificial neural network (ANN) is composed of an input

layer, hidden layers, and an output layer. Each layer consists of

several basic unit functions called neurons. The input layer are

the features xi and the output layer has only one neuron

representing the predicted value of yi. We denote the total

number of layers as L, the number of neurons in layer ℓ as sℓ,

and the value of j-th neuron at ℓ-th layer as aℓ,j. We denote aℓ: =

[aℓ,1, ..., aℓ,sℓ]. The information of layer ℓ − 1 is fed to j-th neuron

in layer ℓ using the mapping aℓ,j = gℓ(wℓ,j
T aℓ−1 + bℓ,j), here gℓ is an

activation function of layer ℓ. One popular choice of the

activation function is the logistic function. We denote wℓ: =

[wℓ,1, ..., wℓ,sℓ], bℓ: = [bℓ,1, ..., bℓ,sℓ] and aℓ = gℓ(wℓ
T aℓ−1 + bℓ). The

parameters learned in the training process arewℓ and bℓ for all ℓ =

1,..., L. The training process solves the following optimization

problem:

min
w

ℓ
, b

ℓ

1
m
∑
m

i�1
(yi − αL,i)2 (10)

After the wℓ, bℓ are learned, we can predict yi given any new

input xi by using forward propagation. Similar to ridge regression

and SVR, we can also add regularization terms to prevent

overfitting. In this study, we employed a technique called

dropout to combat overfitting. In the dropout layer, a fraction

of weights are forced to be zeros, reducing network complexity.

Choosing the architecture of a neural network is an art and is

commonly based on cross-validation, as discussed in more detail

in the next section. In general, a more complex neural network

with more hidden layers is able to better fit training data, but is

more prone to overfitting.

2.4 Model selection and evaluation

For both kinetic model and machine learning methods, we

partition the entire data set randomly into a training set and a test

set. The training set is used to learn the kinetic and machine

learning models and the test set (also known as hold-out set) is

used to assess the generalization of the learned model. For a

sample (xi, yi) in the test set, the predicted output ŷi = f (xi) is

computed and compared with the true output yi.

For machine learning methods, during the training process,

we need to decide some hyperparameters (e.g., α for ridge

classification, C for SVR, and network layout for ANN). This

procedure is called model selection. We use the popular model

selection method, k-fold cross validation, in which the whole

training set is split into k equal folders. For each specific choice of

hyperparameters, we train the model with k-1 folders and

evaluate this model with the left-out folder as validation set.

This procedure is repeated by cycling through the training set.

Therefore, for each specific choice of hyperparameters, k models

are built and evaluated. The performance of a specific choice of

the hyperparameters is evaluated by averaging the accuracy of

these k models. We decide the optimal hyperparameters by

looping over different hyperparameter choices.

3 Results

For both kinetic models and machine learning methods, we

randomly split the entire data set into a training set and a test set

(80% of the samples for training and 20% for test). In this paper,

mean absolute error (MAE) between predicted and reported

yields for all data points in the test set was used to quantify the

performance of the model. The unit of MAE is percentage points

of yield. Note that the accuracy of the test set depends on the

initial partition of the training set and test set and thus this

procedure is often repeated several times to enhance

predictability. In our study, we repeat each computational

experiment 5 times and then compute the mean and

confidence interval of MAE. We also duplicated each

experiment between the total soluble xylose dataset

(1955 samples) and the monomer only dataset (882 samples).

For the total soluble xylose dataset, the model was trained and

evaluated for its ability to predict total soluble xylose yield,

whereas monomeric xylose yield was investigated for the

monomer-only sub-dataset.

3.1 Performance of kinetic models

In the first kinetic model experiment, we determined model

parameters for two data subsets: the dilute acid hydrolysis data

subset and the autohydrolysis data subset. The mean absolute

errors of predicting the value of total soluble xylose yield and

monomeric xylose yield of the test data are 17.75 ± 0.894 and

9.32 ± 0.73 respectively. In the second kinetic model experiment,

we determined parameters for 32 models, each describing a type

of pretreatment applied to a single wood species. A comparison

of the estimated Arrhenius parameters to values reported in

literature can be found in the Supplementary Material. The mean

absolute errors of predicting the value of total soluble xylose yield

and monomeric xylose yield on test data are 15.49 ± 0.53 and

8.33 ± 0.56 respectively. Comparing the two experiments shows

that wood species play a moderate role in hemicellulose

hydrolysis. Figures 1, 2 shows the predicted value of total

soluble xylose yield and monomeric xylose yield compared

with the yield reported in the literature.
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FIGURE 1
Predicted versus actual yield of total soluble xylose for test data for: (A) kinetic model fit by prehydrolysis type and wood species, (B) ridge
regression, (C) support vector regression, and (D) artificial neural network.

FIGURE 2
Predicted versus actual yield of monomeric xylose for test data for: (A) kinetic model fit by prehydrolysis type and wood species, (B) ridge
regression, (C) support vector regression, and (D) artificial neural network.
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These results demonstrate that a simple kinetic model is

ineffective at predicting yield between experiments. The kinetic

model takes into consideration only five variables: isothermal

reaction time, initial proton concentration, hemicellulosic xylose

in the feedstock, reaction temperature, and wood species (only

for the second experiment). These models are adequate for

scenarios where Liquid Solid Ratio (LSR) and particle size are

constant. In cases where these change, however, a more

comprehensive model is required. Efforts to advance kinetic

modeling are on-going. The biphasic model, which divides

hemicellulose into fast-reacting and slow-reacting fractions, is

commonly used but the rationale for this division is not well-

justified (Negahdar et al., 2016). There is growing recognition

and effort to include additional phenomena such as mass transfer

(Cahela et al., 1983; Krogell et al., 2013), depolymerization,

(Kumar and Wyman, 2008; Hosseini and Shah, 2009; Chen

et al., 2020), and the chemical and structural effects of

biomass (Trajano et al., 2015; Mittal et al., 2019). These

efforts are essential and also provide guidance for the

development of more interpretable machine learning models

(discussed in Future Work).

3.2 Performance of machine learning
methods

In our study, we first decide hyperparameters based on k-fold

cross validation (k = 5). For ridge regression the best value of α is

found to be zero. For SVR, the hyperparameters includes the

kernel type, kernel coefficient γ, regularization parameter C and

residual threshold ε. The best combination of hyperparameters

was chosen to be: kernel = “rbf”; ε = 1; C = 20,000; γ = “auto”. For

ANNs, the structure of the neural network was chosen to be

6 layers, with 96, 96, 48, 48, and 1 neuron in layers 1 to

6 respectively. There was a dropout layer inserted between the

first and second layer with a dropout value of 0.001. The batch

size, learning rate, and maximum epoch were chosen to be 64,

0.005 and 3,000 respectively.

Figures 1, 2 shows the predicted value of total soluble xylose

yield and monomeric xylose yield versus reported yield of the test

data for machine learning methods and kinetic models. On these

figures, the diagonal line represents theoretical perfect prediction

with ŷi = yi. Therefore points closer to the diagonal line have

smaller prediction errors. These figures visually illustrates that

the kinetic model was outperformed by all three machine

learning models.

Figure 3 summarizes the performance of all computational

methods in terms of mean absolute error of the test data. The

mean absolute errors of predicting total soluble xylose yield of

test data using ridge regression, SVR regression and ANN are

16.54 ± 0.46, 7.86 ± 0.49, and 6.18 ± 0.53 respectively. The mean

absolute errors of predicting monomeric xylose yield of test data

using ridge regression, SVR regression and ANN are 11.05 ± 0.66,

5.20 ± 1.26, and 2.90 ± 0.44 respectively.

4 Discussion

Although the performance of ridge regression is

unsatisfactory, both support vector regression and artificial

neural networks outperform the simple kinetic model. All the

models performed significantly different from each other (p <
0.05) as determined by a Student’s T-test. The results show that

predictive power increases with increasing model complexity.

The limitation of the kinetic model is that it only considers few

features and suffers from non-generalizability. Although the

ridge regression model has access to all features, its limitation

is that it only uses linear relationships between features and thus

suffers from underfitting. Both the SVR and ANNmodels are not

constrained to linear relationships, and the difference in

FIGURE 3
Comparison of different computational methods in terms of mean absolute error of test data for: (A) total soluble xylose yield and (B)
monomeric xylose yield. Mean absolute error was determined from five replicates of the computational experiment. Its units are percentage points
of yield.
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performance between the ANN and SVR models is lower than

the difference in performance between the SVR and ridge

models, illustrating the importance of capturing non-linear

relationships. Overfitting does not become a serious problem

for ANN models, partially because a relatively simple neural

network structure was used. The MAE of the best model (ANN

model) at predicting total soluble xylose yield is 6.18 ± 0.53, while

the MAE at predicting monomeric xylose yield is only 2.90 ±

0.44. This level of error is acceptable, since the model is evaluated

based on the data in the test set that the model has not seen

before, and the reported data is also subjected to measurement

noise.

Comparing Figures 3A,B shows that the performance of the

models are better when predicting monomeric yield rather than

total soluble xylose yield. One reason is that the value of total

soluble xylose yield is usually larger than that of monomeric

xylose yield.

4.1 Impact of feature information

In addition to determining the performance of the models,

we also evaluated the importance of specific input features on

ANN models. Since ANN models use non-linear functions, we

cannot infer the importance of features from weights, and

therefore they act as black boxes. Therefore we conducted a

leave-one-out analysis. That is, a feature or group of features were

iteratively hidden from the model during the training and testing

process. When specific features are omitted (the remaining

dataset has less information than the full dataset), the

corresponding MAE will increase and the MAE increase is

used to assess the impact of the features. Total and isothermal

reaction time are linearly correlated, so the two features were

removed together. All acid species and wood species were

removed in their respective groups. The combination factors

and their logs were removed together. As the combination factors

contain information about both time and temperature, when

those two features are removed, the combination factors must

also be removed.

Figure 4 shows the results of such an analysis. The “No

features removed” column represents the baseline accuracy of the

model with all features available. The figure reveals that the three

most important features with respect to yield for both total

soluble xylose and monomeric xylose are: reaction time,

temperature, and initial proton concentration. Specifically, in

the total soluble xylose dataset, removing operating time,

temperature, and initial proton concentration increases MAE

from 6.18 ± 0.53 to 12.19 ± 0.52, 10.65 ± 0.73, and 7.89 ± 0.54,

respectively. In the monomeric xylose dataset, removing

operating time, temperature, and initial proton concentration

increases MAE from 2.90 ± 0.44 to 10.06 ± 0.53, 7.26 ± 0.76, and

6.08 ± 0.95, respectively. These three variables are all considered

in the classic kinetic models. The results of the leave one out

analysis reinforces the importance of these variables and suggests

that we should focus on optimizing these three variables for

maximum yield. One interesting finding is that, despite having

no information about operating time, the ANN model can still

make a reasonable prediction (more accurate than ridge

FIGURE 4
Effect of dropping features from the artificial neural network on mean absolute error of test data for: (A) total soluble xylose yield and (B)
monomeric xylose yield. Mean absolute error was determined from five replicates of the computational experiment. Its units are percentage points
of yield.
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regression with full feature variables), likely due to the

distribution of reaction times in the dataset.

Removal of LSR has a moderate influence on model

accuracy, especially for the prediction of total soluble

xylose. This result is somewhat unexpected as this variable

has typically received less attention than the others

considered; 85% of the collected data has a LSR less than

or equal to 10. The detailed review by Mäki-Arvela et al.

(2011) highlights a mere six studies on the topic. Jaramillo

et al. (2013) identify contradictory conclusions on the

influence of liquid-solid ratio on sugar yield and

concentration. Increasing solid concentration seems to

decrease selectivity to hemicellulose dissolution but some

authors report that solid concentration has no effect.

Jaramillo et al. (2013) developed a model which uses

suspension volume, not liquid phase volume, and a void

fraction for biomass packing in the reactor. Consideration

of these parameters enabled good prediction of glucose

concentration from acid hydrolysis of sugar cane bagasse

for initial liquid to solid ratios varying from 10 to 30. This

approach also highlighted the importance of solid particle

wetting and biomass neutralization capacity to the outcomes

of acid hydrolysis. Liquid-solid ratio is important to industrial

biorefining implementation as it will impact equipment sizing

and separation requirements. From the results of past

experimental studies and our leave-one-out analysis, it is

clear that liquid-solid ratio deserves more nuanced

modeling efforts. We highlight that if MAE is insensitive to

the omission of a feature, it does not imply that the feature has

low impact. For example, removal of wood species and acid

species does not significantly change MAE, but this does not

suggest that yield is independent of these features (wood

species was shown to play a moderate role in the kinetic

models). Predictability is not affected by dropping the wood

species mainly because this information is also captured by

other features that are not removed, such as initial

hemicellulose content. Similarly, one possible explanation

for why dropping acid species does not affect MAE is that

its information is already used in the calculation of initial

proton concentration.

4.2 Impact of data size

Finally, we also evaluate the effect of training data size on

the performance of ANN. The number of samples in the

dataset was randomly reduced to 10%, 25%, 50%, and 75%

of the original sample size, and an ANN was trained and

evaluated on each data subset. As shown in Figure 5, the effect

of increasing data sample size is to decrease mean and

variance of mean absolute error. However, the results also

suggest that the decrease in prediction error is asymptotic,

suggesting that increasing the number of samples further will

not significantly improve performance.

4.3 Future work

One limitation of the ANN is its black box nature and lack

of interpretability. The components within the ANN are

related to each other through non-linear equations in a

complex fashion. Though it achieves good performance, it

is difficult to draw insights about the underlying mechanisms.

Unlike simple models such as linear regression, the weights of

the ANN that are determined during training are not directly

applicable to physical relationships. Further work is needed to

increase interpretability. One strategy is to develop a hybrid

model which combines mechanistic insights with machine

learning in order to gain the benefits of both. One way to

construct a hybrid model is to use machine learning to analyze

the residual mean absolute error of kinetics models. Another

way is to use machine learning to predict the dependence of

FIGURE 5
Effect of data size onmean absolute error of test data for the artificial neural networkmodel for: (A) total soluble xylose yield and (B)monomeric
xylose yield. Mean absolute error was determined from five replicates of the computational experiment. Its units are percentage points of yield.
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the kinetic parameters on an array of feature variables (e.g.,

particle size, wood species). These models provide predictions

of how to achieve process outcomes such as maximum sugar

yield and maximum oligomer mass. Development of such a

model should be paired with experimental verification.

Alternatively, models based on decision trees could be used

to increase interpretability. An additional avenue of future

work is to validate the ANN on data published after the data

collection phase of this study was completed.

5 Conclusion

Significant research has been conducted in the field of

hemicellulose hydrolysis, leading to a collection of data that can

be mined and used in machine learning applications. We collected

1955 experimental data points from the literature, going as far back

as 1985, and made the dataset, which to our knowledge, is the

largest andmost diverse of its type, publicly available. In this study,

we train three machine learning models (ridge regression, support

vector regression, and an artificial neural network) on the data to

predict xylose yield, and evaluate them against a monophasic

kinetic model. Both support vector regression and artificial

neural network models outperformed the kinetic model, with

the artificial neural network performing best, achieving a mean

absolute error of 6.18 ± 0.53 percentage points (corresponding to

94% accuracy). This degree of accuracy is surprising given the

diversity of feedstocks and conditions. A more “universal” model

of hemicellulose hydrolysis can be used to reduce experimental

demands. ANN model performance depends strongly on classic

kinetic parameters: temperature, time and proton concentration.

The machine learning models build on historical data can be used

to supplement experimental data and reduce the amount of

experiments needed.
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