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The chemical process industry (CPI) accumulated a rich data asset through
industrial 4.0. There is a strong drive to develop and utilize effective
approaches for process performance prediction and improvement, process
control, sensor development, asset management, etc. The synergy between
machine learning and first principles models can bring new insights and add
tremendous value to the CPI. This paper reviews various applications of the
synergies towards asset integrity management. An overview of some related
commercial software packages are also provided.
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Highlights

• Motivation and recent resolutions for asset integrity management are discussed.
• Methodologies of first principles models, machine learning models, and hybrid models
for asset integrity management are introduced and reviewed.

• Recent advances in software development and potential applications in the chemical
industry are given.

1 Introduction to asset integrity management

The term asset integrity or asset integrity management (AIM) refers to the ability of an
asset to perform accurately and effectively, as well as to ensure its safety and wellbeing
(Chandima Ratnayake and Market, 2012). AIM applies to an asset’s operation, from its
design phase to its decommissioning and replacement (Oil & Gas IQ Editor, 2019).

Many critical industries, such as utilities, energy, and chemical process industries (CPI),
are always searching solutions to achieve reliable operation, reduce maintenance costs,
improve the performance of those assets and elongate their service life. The accelerant of
information analysis will help the asset owners make better decisions, and gain a competitive
advantage (Chandima Ratnayake and Market, 2012).

Traditional AIM processes, for instance, routine inspection and maintenance, are based
on the fixed time interval’s planning. This traditional approach ignores the asset’s unique
characteristics, condition, or inherent risks when using time-basedmethods, comparing with
risk-based methods (Maguire and Fish, 2019). Capital resources may be wasted by owner-
operators on unnecessary inspections (Maguire and Fish, 2019). However, many dramatic
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cases that the management of asset integrity failed, such as
Deepwater Horizon, 2010 (Klimas, 2010) and Chevron Refinery
Pipe Rupture and Fire, 2012 (Hodgson, 2013).

Moreover, themarket still lacks out-of-the-box catch-all solutions,
even though there are more AIM systems than ever before
(Kusumawardhani et al, 2016; Bokrantz, Skoogh, Berlin, Wuest, &
Stahre, 2020; Beneroso & Robinson, 2022). No inspection plan or
database can handle all the issues that may arise in AIM. In addition to
the lack of resources, suppliers, and training support
(Kusumawardhani et al, 2016; Bokrantz, Skoogh, Berlin, Wuest, &
Stahre, 2020), there are technical challenges like aging equipment,
corrosion, degradation, and cracking (Zha, Lan, Lin, & Meng, 2023),
human error challenges (Elidolu, Akyuz, Arslan, & Arslanoğlu, 2022),
and engineering design challenges (Beneroso & Robinson, 2022). In
the current process industries, material failures, degradation, and
corrosion pose a significant challenge. Wood et al (Wood et al,
2013) reported that approximately 20% of significant refinery
accidents since 1984 were attributed to the corrosion-related
accidents. In the oil and gas industry, much of the infrastructure is
approaching or aging well beyond its operational life span. For many
facilities, AIM is widely used as a strategic plan due to the prohibitively
high cost of replacing assets and the subsequent turnaround time.

New approaches, including hybrid AIM approaches, predictive
maintenance, and even prescription maintenance has gained wide
adoption in the industry as a result of the rapid development of data
analytics and data visualization technologies. Using digital twins,
asset owners are able to improve the design, production, and
management of their assets. First principle models and machine
learning models can be complementary in developing digital twins
and hybrid AIM approaches. In the following sections, the
comparison of different types of models will be presented.

2 First principles models vs. machine
learning models

Imagination, recognizing patterns, creation, memorization and
understanding, making choices, adapting to change, and learning

from experience are all aspects of intelligence (Oksanen, 2018).
Artificial intelligence aims to make computers behave like humans
in a more human manner in a shorter time than a human and in a
more efficient manner in comparison to human behavior (Poole
et al, 1998).

To develop first principles (FP) models, a fundamental
understanding of physico-chemical phenomena is essential. These
include symmetries, conservation laws (mass, momentum, energy,
etc.), thermodynamics, asymptotic behavior, rate equations, reaction
kinetics, etc. Mathematical formulations, such as algebraic
equations, ordinary differential equations, and partial differential
equations, can provide valuable insights into the system’s operating
behavior. In most cases, FP can simulate multiple unit operations
with various constraints, such as monotonicity, convexity, and non-
negativity of variables (Oil & Gas IQ Editor, 2019; Rajulapati et al,
2022).

The correlations used in science and engineering, including
chemical engineering, are explicit and well-known. Moreover,
they can also be utilized to connect multiple unit operations in a
process flowsheet using mass and heat balance, which are based on
direct relationships within a chemical process (Werner, 2021). The
FP models, however, are dependent on many factors, including the
properties of chemicals and mixtures, chemical kinetics,
thermodynamics, and even equipment manufacturers, catalyst
suppliers, process licensees, and chemical operations. While some
of the necessary data can be found in readily available chemical
engineering literature, more specific data must be obtained through
experiments designed specifically for the described process.
Additionally, accessing the information needed is still
challenging. There can be significant inaccuracies in the final
result due to unknowns or uncertainties, which makes it difficult
to capture the full impact of all factors, both online and in real time
(Werner, 2021).

As a subset of artificial intelligence (AI), the term "machine
learning (ML)" refers to the process of creating models from data
(Haghighatlari and Hachmann, 2019) instead of FP models. The use
of ML is a powerful tool for generating hidden or complex
correlations, patterns, insights, rules, and guidance from data sets

TABLE 1 Summary of the synergy between machine learning and first principles models.

Synergy Explanation

Improved Prediction Accuracy Machine learning models can be used to improve the prediction accuracy of first principles models. Vice versa is also true

Reduced Computational Costs First principles models can be computationally expensive to run, especially for large systems or complex processes. Machine
learning models can be used to reduce computational costs by serving as an efficient surrogate model, allowing for faster

simulations of the same system or process

Handling Complex Systems First principles models are limited by their ability to accurately capture all the complexities of a given system or process. Machine
learning models can be used to handle the complexities that are difficult to capture using first principles models, such as non-

linear behavior, non-stationary systems, and interactions between different parts of the system

Data-Driven Model Development Machine learning models can be used to develop first principles models by learning patterns from data. This can help identify
key features and relationships that can be incorporated into a first principles model

Improved Understanding of System Behavior Machine learning models can be used to identify relationships and patterns in data that are not apparent from a first principles
model alone. By combining machine learning models with first principles models, it is possible to gain a deeper understanding of

the behavior of a system

Robustness and Flexibility Combining machine learning models with first principles models can improve the robustness and flexibility of the overall model.
By incorporating machine learning models, it is possible to handle cases where the first principles model may not be sufficient or

where there the model parameters are highly uncertain
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in a mathematically coherent manner. An ML algorithm builds a
mathematical model on the basis of sample data, referred to as
training data (Bishop, 2006; Khanzode and Sarode, 2020). ML
methods have been applied to various modeling applications,
including a wide range of materials and endpoints (Winkler, 2020).

ML methods can be classified as supervised, semi-supervised,
unsupervised, and reinforcement learning (RL) methods (Sarker,
2021). A key difference between the supervised, semi-supervised,
unsupervised, and reinforcement learning methods is the amount of
information (i.e., labeling, context) that can be obtained for the
target variable for training an ML algorithm (Haghighatlari and
Hachmann, 2019). Traditionally, most chemical engineering related
research has relied on the supervised learning approach, even
though it may result in major uncertainties and prediction errors
due to simplistic and unrealistic assumptions (Haghighatlari and
Hachmann, 2019).

Each of these machine learning approaches has its unique
characteristics and applications, and the pick of a particular
approach depends on the nature of the problem and the
available data.

Supervised learning is a machine learning technique where the
model is trained on labeled data (Caruana & Niculescu-Mizil, 2006).
Labeled data consists of input features (also called independent
variables) and their corresponding output labels (also called
dependent variables or targets). The goal of supervised learning is
to learn a mapping function that can predict the correct output label
for new, unseen inputs (Liu & Liu, 2011). The model learns from the
labeled examples provided during training and generalizes its
knowledge to make predictions on new, unlabeled data. Common
algorithms used in supervised learning include decision trees,
support vector machines (SVM), and neural networks (Liu & Liu,
2011; Zhou, 2018; Sommers, Menkovski, & Fahland, 2023).

Semi-supervised learning is a combination of supervised and
unsupervised learning. In this approach, the model is trained on a
dataset that contains both labeled and unlabeled examples (Hady &
Schwenker, 2013). The labeled examples are used to guide the
learning process, similar to supervised learning, while the
unlabeled examples help the model to capture additional patterns
or structures in the data. The objective is to leverage the unlabeled
data to improve the model’s performance or generalization ability.
Semi-supervised learning can be useful when obtaining labeled data
is expensive or time-consuming. Algorithms such as self-training,
co-training, and generative models like autoencoders are commonly
used in semi-supervised learning (Reddy, Viswanath, & Reddy,
2018; Zhao, Zhou, Duan, Wang, Qi, & Shi, 2022).

Unsupervised learning is a type of machine learning where the
model learns from unlabeled data, without any predefined output
labels (Berg-Kirkpatrick, Bouchard-Côté, DeNero, & Klein, 2010).
The goal is to discover patterns, structures, or relationships within
the data. Unlike supervised learning, the model doesn’t receive
explicit feedback on the correctness of its predictions.
Unsupervised learning algorithms aim to find hidden patterns or
clusters in the data, dimensionality reduction, or discover the
underlying probability distribution of the data. Common
techniques used in unsupervised learning include clustering
algorithms (e.g., k-means, hierarchical clustering), dimensionality
reduction (e.g., principal component analysis), and generative

models (e.g., Gaussian mixture models) (Dike, Zhou,
Deveerasetty, & Wu, 2018; Cabannes, Bietti, & Balestriero, 2023).

Reinforcement learning is a machine learning paradigm that
focuses on learning how to make decisions or take actions in an
environment to maximize a cumulative reward (Kaelbling, Littman,
& Moore, 1996). It is based on the idea of an agent interacting with
an environment, receiving feedback in the form of rewards or
penalties for its actions. The agent’s objective is to learn a policy
that guides its decision-making process to achieve the highest
possible reward over time. Reinforcement learning involves a
trial-and-error learning approach, where the agent explores the
environment, takes actions, observes the outcomes, and adjusts
its policy accordingly. Algorithms like Q-learning and deep
reinforcement learning (using neural networks) are often used in
reinforcement learning (Barto & Sutton, 1995; Brunke, Greeff, Hall,
Yuan, Zhou, Panerati, & Schoellig, 2022; Ladosz, Weng, Kim, & Oh,
2022).

These four learning approaches continue to be actively
researched and applied in various domains due to their
effectiveness and potential for solving complex problems. A brief
comparison of their applications are provided below.

Supervised learning remains in tasks such as image
classification, speech recognition, natural language processing,
and many other applications. As more labeled data becomes
available and computing power increases, supervised learning
techniques can be further refined to improve accuracy and
performance (Aminian, Abroshan, Khalili, Toni, & Rodrigues,
2022; Zhou, Liu, Pourpanah, Zeng, & Wang, 2022; Iman,
Arabnia, & Rasheed, 2023).

Due to the more availability of large amounts of unlabeled data
in many domains, semi-supervised Learning offers the advantage of
leveraging both labeled and unlabeled data, making it attractive
when obtaining labeled data is expensive or time-consuming (Yang,
Song, King, & Xu, 2022). By effectively utilizing unlabeled data,
semi-supervised learning has the potential to improve the
performance of models, especially when labeled data is limited
(Tang & Jia, 2022).

Unsupervised learning is recognized by researchers and
practitioners because of its potential for discovering hidden
patterns and structures in large, unlabeled datasets (Liu, Yoo,
Xing, Oh, El Fakhri, Kang, & Woo, 2022). With the increasing
availability of massive amounts of unlabeled data, unsupervised
learning techniques can help in tasks such as clustering, anomaly
detection, and data exploration. Unsupervised learning is also
valuable in pre-training deep learning models, which can then be
fine-tuned using supervised learning techniques (Wang & Biljecki,
2022).

Reinforcement learning allows agents to learn optimal behaviors
through interactions with their environments, particularly in the
fields of autonomous systems (Moos, Hansel, Abdulsamad, Stark,
Clever, & Peters, 2022) since the agents in RL are trained to take the
optimal actions in order to maximize a cumulative reward signal.
Recent advancements in deep reinforcement learning, where deep
neural networks are combined with reinforcement learning
algorithms, have led to impressive achievements in complex tasks
such as the control of engineering systems, and resource allocation
optimization (Zhang, Seal, Wu, Bouffard, & Boulet, 2022).
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Researchers and practitioners are exploring ways to combine
different learning paradigms, develop more efficient algorithms, and
address challenges such as data scarcity, scalability, and
interpretability. Hybrid models that combine the strengths of ML
models with first principles model can provide solutions to
overcome the disadvantages of a stand-alone approach and
provide a wide range of advantages. In data-driven ML
algorithms, available data is utilized to the fullest, while models
based on first principles can be used to verify whether the data is
reasonable and explore the unknown operating ranges. Through this
synergy, AIM predictions become as accurate as the prediction
model employed and high prediction accuracy can be achieved.

Overall, the combination of machine learning and first
principles models can provide a powerful approach for
understanding and predicting complex systems and processes.
The following Table 1 summarizes the synergy between machine
learning and first principle models:

3 Application of hybrid approach
for AIM

Compare et al (Compare et al, 2020) studied oil and gas industry
gas turbine maintenance. They developed a sequential decision-
making approach involvingmaintenance part flowmanagement and
proposed RL as a solution. A case study derived from real industrial
applications was used to test the RL method, with the hybrid
approach of machine learning and first principle model, and it
proved that the hybrid approach was more effective than a rule-
based experience. In the context of gas turbine maintenance, RL can
be used to optimize part flow management by determining the most
efficient way to move parts through the maintenance process. To
apply RL to part flow management, a first principle model of the gas
turbine maintenance process can be developed. This model should
capture the physical and operational constraints of the system, such
as the time required for each maintenance step, the availability of
resources, and the flow of parts through the system. Once the model
is developed, an RL agent can be trained to learn the optimal
sequence of actions to take in order to minimize maintenance
time and maximize resource utilization. The agent should be able
to learn from experience by interacting with the model and receiving
feedback in the form of a reward signal that reflects the efficiency of
the maintenance process. The agent can be trained using simulation
data generated by the first principle model, and its performance can
be evaluated by testing it on new, unseen scenarios. The use of RL in
optimizing part flow management for gas turbine maintenance can
lead to significant improvements in efficiency and cost-effectiveness,
by identifying the most efficient way to move parts through the
maintenance process while minimizing resource utilization.

Ratnayake (2012) proposed an analytical hierarchy process
(AHP) approach as a method for identifying how personnel in an
asset-intensive organization canmake decisions onAIM-related factors
related to “triple bottom line” demands, translating these factors into
numerical values based on their experience, intuitions, and intentions.
The sustainable performance of AIM can be assessed using a
hierarchical model based on the hierarchy of AIM-related factors
(elements). It is important to recognize that AHP has significant
effects on mitigating the occurrence of catastrophic events.

However, the AIM-related challenges can also involve interactions
and feedback dependencies between factors (elements) belonging to
different levels of a hierarchy as well as those affiliated at the same level.

Iqbal et al (2021) developed a risk-based assessment approach
that focuses on the logical connections between AIM components
and their contributions to safety culture maturity (SCM). These
attributes are integrated into the processes of SCM and AIM
assessment. The evaluation of 88 oil and gas pipeline companies
operating in British Columbia was assessed using the risk-based
assessment application, which analyzed the overall performance of
the companies measured by AIM and SCM. Comparison among the
performance of small, medium, and large companies showed that
large companies with more resources (financial and technical)
performed better on AIMs than small companies. In addition,
the large companies tended to focus more on the technical
aspects of AIMs. However, it was evident that most companies
failed to manage their AIM effectively, which is manifested by low
levels of internal audits, competency training, management reviews,
and non-conformance controls.

4 Predictive/Prescription maintenance

The modern chemical industry is transforming from reactive
trouble-shooting to proactive and predictive maintenance in order
to enhance operational availability and efficiency of industrial asset
and infrastructure platforms, which is illustrated in Figure 1 (ABB,
2022). The chemical plants go through different stages (Corrective
Maintenance, Preventive Maintenance, Risk-based Maintenance,
Condition-based Maintenance) of maintenance strategy with the
industrial and technology revolution. In the initial stage of
Corrective Maintenance, once the abnormal situation is detected
or the malfunction is identified, the maintenance job will be
conducted in order to return to normal operation. This strategy
may be effective, but it cannot help the plant to prevent or reduce the
occurrence of catastrophic failures. For Preventive Maintenance, the
plant will follow the time intervals defined by the requirements, such
as industry standards and customer requirements to have regular
maintenance activities so that the risk of performance failure can be

FIGURE 1
Maintenance strategy (ABB, 2022).
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reduced, and the equipment degradation can be minimized. With
the help of data analytics and sensor technology, chemical plants can
move to the next stage of Risk-based Maintenance. In this approach,
routine preventive maintenance can rely on sensor measurement,
regular testing, and diagnostic analysis to transform the collected
information of the operation and process condition into asset health
and risk assessment suggestions to optimize the maintenance
program. In addition, if the chemical plants want to achieve
reliability, safety, and efficiency in the long term, they need to
upgrade their maintenance strategy to Condition-based
Maintenance so that the online monitoring of critical equipment
and process parameters will address the indicators or signals of
warning for advanced asset management.

Equipment and critical facilities are the backbones of the energy
and chemical industry. It has become essential to offer suitable models
for proactive and predictive maintenance. This research field has
attracted the attention and effort of many research groups in the
world. Big Data Analytics (BDA) is becoming increasingly important
in the chemical industry, as it enables the discovery of insights from
large volumes of data that can be used to optimize manufacturing
processes, reduce costs, and improve product quality. One approach
to implementing BDA in the chemical industry is to use cloud
manufacturing, which involves the integration of cloud computing
technologies with manufacturing processes. Sebbar et al (2022)
studied a major African Phosphates Company and proposed a
BDA-enabler architecture based on cloud manufacturing to
identify digital opportunities and key benefits regarding
performance management, production control, and maintenance.
To develop a BDA-enabler architecture based on cloud
manufacturing for the chemical industry, a first principle model
can be developed to capture the physical and operational
characteristics of the chemical manufacturing process. This model
should include variables such as temperature, pressure, flow rates, and
chemical composition, and should be capable of predicting the
behavior of the system under different operating conditions. Once
the first principle model is developed, machine learning techniques
can be used to develop data-driven models that can be used to
optimize the manufacturing process. For example, supervised
learning techniques such as regression or classification can be used
to develop models that predict the quality of the final product based
on input variables such as temperature and pressure. Unsupervised
learning techniques such as clustering or anomaly detection can also
be used to identify patterns in the data that may be indicative of
process inefficiencies or quality issues. Reinforcement learning can be
used to optimize the manufacturing process by identifying the best
sequence of actions to take to achieve a desired outcome, such as
minimizing waste or maximizing yield. The BDA-enabler architecture
should be designed to integrate these machine learning models with
the first principle model. This will enable real-time monitoring of the
manufacturing process and the generation of insights that can be used
to optimize the process and improve product quality.

In the rubber industry, proactive maintenance can be critical to
ensuring the reliability of equipment and preventing unexpected
downtime. One approach to implementing proactive maintenance is
to use RL algorithms to develop predictive models that can be used
to identify potential equipment failures before they occur. A
research group in India, Senthil and Pandian (2022), conducted
an investigation into the enhancement of availability of a curing

machine deployed in the rubber company in India. Critical
component identification in curing machines is necessary to
prevent rapid failure followed by subsequent repairs that extend
curing machine downtime. They adopted RL algorithm to prevent
frequent downtime by improving the availability of the curing
machine at the time when unscheduled long-term maintenance
would interfere with operation, due to the occurrence of unspecified
failure of critical components. The agent can then use this
knowledge to predict when equipment failures are likely to occur
and recommend maintenance actions that can be taken to prevent
them. The RL agent can be trained using different algorithms and
methods, depending on the complexity of the model and the desired
performance. The agent’s performance can be evaluated by testing it
on new, unseen scenarios and comparing its predictions to actual
equipment failures. The use of RL algorithms to develop proactive
maintenance models in the rubber industry can lead to significant
improvements in equipment reliability and production efficiency. By
identifying potential equipment failures before they occur and
recommending maintenance actions that can prevent them, the
proactive maintenance model can help reduce downtime, increase
throughput, and improve product quality.

In addition, the software packages, such as AspenTech’s Asset
Performance Management Suite (including Aspen Fidelis, Aspen
Mtell, Aspen ProMV, Aspen Process Pulse, and Aspen
Unscrambler) (Aspen Technology, 2022b), Emerson’s DeltaV
Preventive Maintenance (EMERSON, 2022a) and AVEVA’s
PRiSM Predictive Asset Analytics (AVEVA, 2022), have been
created to enhance the capability and capacity of preventive
maintenance and risk-based inspection by the application of
hybrid models for asset integrity management in the recent years.

AspenTech, Emerson and AVEVA all use first principles based
process simulation software packages for industrial application.
Given a process design and an appropriate selection of
thermodynamic models, these software packages use
mathematical models of material balance and energy balance to
handle very complex chemical reaction and unit operation
processes. Aspen Technology has developed Aspen Fidelis to
enable quantitative risk assessment and derive data-driven
decisions that line up plant performance with operational and
economic goals (Aspen Technology, 2022a). Machine learning
technology is applied to predict equipment failures weeks in
advance so that the user knows how and when to perform the
repair to maximize productivity and minimize risk. It also enables
plant managers to identify the optimum approach for improving
decision agility and throughput at the lowest cost. The approach
behind Fidelis is a risk management/decision making tool to help
engineers and decision makers figuring out how many spare parts
might be needed, and enables plant managers to identify the
optimum approach for improving throughput at the lowest cost.
The applications of Aspen Fidelis Reliability Software extend over
the plant life cycle including the phases of plant design, plant
operation, and maintenance. Emerson, AVEVA and AspenTech
all have similar solutions (Aspen Fidelis, Aspen Mtell, Aspen
ProMV, Aspen Process Pulse, Aspen Unscrambler, DeltaV
Preventive Maintenance, and AVEVA’s PRiSM Predictive Asset
Analytics) on preventive maintenance and asset management
(EMERSON, 2022a; AVEVA, 2022; Aspen Technology, 2022b).
For example, Emerson’s DeltaV Preventive Maintenance integrate
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multiple modules including System Updates and Hotfix,
Controllers, Cabinet, Workstations, I/O Subsystems, Network,
DeltaV SIS Maintenance, Backup and Recovery, Automated
Patch Management, and Virtualization (EMERSON, 2022b).

5 Digital twin

Digital twin technology is a powerful tool for asset integrity
management, as it allows for the creation of a virtual replica of a
physical asset. Machine learning and first principles models can be
used in synergy with digital twin technology to improve asset
integrity management.

5.1 Fundamentals of digital twin

A digital twin (Zhou et al, 2014; Gao et al, 2022) allows the
diagnosis and prediction of the physical twin by relying on a
combination of physics-based (physics from first principles)
models and data-driven analytics (Ma et al, 2022; Tao et al,
2022). The digital twin is built upon the integration of hardware
(the sensor, measurement technologies, industrial Internet of
Things), and software (simulation and modeling, and machine
learning). Using simulations, and other decision-making
technologies, digital twins can help predict the physical system’s
performance under the impact of abnormal situations and help
engineers to come up with a good asset management strategy.

5.2 Types of digital twin

Physics-based models or First Principle Models are derived from
the first principles of physics (material balance and energy balance).
Due to the limited knowledge, a single process model or even
comprehensive model system may only be able to simulate part of
the overall plant operation. Multiple models may be needed to run in
parallel to reflect the various aspects of a physical process. The first
principles models can also take inputs from sensor measurement and
sensory to make the models adaptable to the dynamic environment.

There are different types of digital twins focusing on different
aspects of the engineering system. For example, MATLAB can
mimic the industrial control systems. ANSYS Digital Twin
cannot mimic the control systems, but it can build 2-D or 3-D
geometry. Amazon Digital Twin (AWS IoT TwinMaker) cannot
create 3-D models but it can provide the platform to allow the users
to combine their own existing 3D model with real world data to
create the digital twin model (Viola and Chen, 2020; Amazon, 2022;
Beer and Hahne, 2022).

With MATLAB, a model can be defined by using data from the
connected asset. Matlab can be used to create a physics-based model
by using multi-domain modeling tools. Figure 2 shows that the
understanding of the system’s physics can be used to derive a
mathematical representation in MATLAB through Simscape,
which has the function modules of Fluids, Multibody, Driveline
and Electronics, and Power System. The online first principles
simulation models are the fundamentals to develop simulation-
based digital twins (Valentine and Hahn, 2021). They can be used
for numerous important applications with many advantages in the
industrial adoption of first principles simulation models. For
example, a PID or PLC controller model can be built and
implemented in the mathematical package of MATLAB. The
structure and timing diagrams can be used to describe its
operation. The model may be valuable to decision makers or
multiple stakeholders working in the field of industrial control
systems (Brylina et al, 2020). Then, the system test data can be
used to generate data-driven modeling. In MATLAB, the available
tools for first principles modeling are Simulink, Simscape, Partial
Differential Equation, FEM, and Symbolic Math while the available
tools for data driven modeling include System Identification,
Machine Learning, and Test & Measurement Tools (Valentine
and Hahn, 2021; Mathworks, 2022). Both data-driven and
physics-based models can be tuned with data from the operating
asset. These digital twins can be utilized for prediction, what-if
analysis, abnormal situation detection and management, fault
identification, and more. Data-driven methods available with
MATLAB include Machine Learning (ML), Deep Learning (DL),
Neural Networks (NN), and System Identification (SI). A set of data
can be used to train or extract a model with the rest of data to
validate the models. Digital twins and Artificial Intelligence are

FIGURE 2
Methods for digital twins: first principles model and data-driven model (Valentine and Hahn, 2021; Mathworks, 2022).
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connected to optimize the yield increase and enhance PID control
with the adoption of hybrid control strategy (Andrade et al, 2021).

ANSYS is a multi-dimensional engineering simulation software
which can be used to create digital twins. Digital twins from ANSYS
can help to schedule predictive maintenance and optimize the asset
performance. ANSYS has the module of Hybrid Analytics which can
combine machine learning (ML)-technique with a physics-based
methodology to achieve the desired accuracy, as shown in Figure 3,
this new version makes the design of many engineering systems
easier (ANSYS, 2022). A machine learning model can be merged
with physical modeling from 3D Geometry and 3D Model with the
guidance of Engineering Specs and System Model to generate gray
box models (Calibrated Model and ROMs) and improve the quality
of real time simulation.

5.3 Digital twin for asset integrity
management

Machine learning and first principles models can be used in
synergy with digital twin technology for asset integrity management.
Some benefits are listed below.

• Improved predictive maintenance: By combining machine
learning models with digital twin technology, it is possible
to predict the probability of failure and the remaining useful
life of an asset. This can help in scheduling maintenance
activities before a failure occurs, reducing downtime and
increasing asset availability (You, Chen, Hu, Liu, & Ji, 2022).

• Reduced downtime and costs: First principles models can be
used in combination with digital twin technology to optimize
maintenance schedules and reduce downtime. By simulating
different maintenance scenarios and predicting their
outcomes, it is possible to identify the optimal maintenance

schedule for an asset, reducing downtime and costs (Wright &
Davidson, 2020).

• Improved anomaly detection: Machine learning models can be
used to detect anomalies in asset data, such as vibration or
temperature readings, that may indicate the potential for
failure. By combining machine learning with digital twin
technology, it is possible to simulate the behavior of an
asset under different conditions, identifying potential
anomalies before they become a problem (Trauer, Pfingstl,
Finsterer, & Zimmermann, 2021).

• Improved design and optimization: First principles models
can be used in combination with digital twin technology to
optimize the design of an asset and its components. By
simulating different designs and predicting their
performance, it is possible to identify the optimal design
for an asset, reducing costs and improving its overall
performance (Lim, Zheng, Chen, & Huang, 2020).

• Improved risk assessment: Machine learning models can be
used in combination with digital twin technology to predict
the likelihood of a failure occurring and its potential
consequences. This can help in identifying high-risk assets
and prioritizing maintenance activities accordingly (Melesse,
Di Pasquale, & Riemma, 2021).

Overall, the synergy between machine learning and first
principles models with digital twin technology can provide a
powerful approach for asset integrity management, improving the
accuracy of predictions and reducing downtime and costs.

6 Conclusion

This paper reviewed the recent contributions towards various
applications that merges the physics-based and data driven

FIGURE 3
Digital twin builder in ANSYS (2022).
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knowledge for asset integrity management. The efficient integration
between machine learning and the first principles models is essential
to achieve asset health and sustainability. In this paper, the method
and application of these hybridization techniques are reviewed.
Synergies between machine learning and the first principle
models in the software platform (AspenTech’s Asset Performance
Management Suite, Emerson’s DeltaV Preventive Maintenance,
AVEVA’s PRiSM Predictive Asset Analytics, MathWorks’s
MATLAB, ANSYS’ Twin Builder) is also reviewed and compared.
All these efforts led to the continuous improvement of preventive
maintenance for the asset integrity management. Anifowose et al,
2012; Matsuo et al, 2022; Sattari et al, 2022.
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