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We present explainable machine learning approaches for gaining deeper insights
into the solubilization processes of inclusion bodies. The machine learning model
with the highest prediction accuracy for the protein yield is further evaluated with
regard to Shapley additive explanation (SHAP) values in terms of feature
importance studies. Our results highlight an inverse fractional relationship
between the protein yield and total protein concentration. Further correlations
can also be observed for the dominant influences of the urea concentration and
the underlying pH values. All findings are used to develop an analytical expression
that is in reasonable agreementwith experimental data. The resultingmaster curve
highlights the benefits of explainable machine learning approaches for the
detailed understanding of certain biopharmaceutical manufacturing steps.
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1 Introduction

High-level expression of recombinant proteins differs substantially between mammalian
and microbial cells. In addition to missing post-translational modifications like
glycosylation, cells from Escherichia coli (E. coli) also accumulate proteins at high
concentration in aggregated form (Singh and Panda, 2005; Singhvi et al., 2020). Such
inclusion bodies are dense particles of amorphous or para-crystalline protein arrangements
(Freydell et al., 2007) that accumulate either in the cytoplasma or periplasma. The size of
inclusion bodies varies between 0.5 μm and 1.3 μm with an average density of 1.3 mg/mL
(Freydell et al., 2007). Despite further processing steps that are required, impurities such as
host cell proteins or DNA/RNA fragments are significantly reduced in inclusion bodies. In
consequence, nearly 70%–90% of the mass are represented by the recombinant protein, such
that inclusion bodies can be considered as an interesting high-level expression system with
certain advantages (Valax and Georgiou, 1993; Singh and Panda, 2005; Ramón et al., 2014).
However, proteins from inclusion bodies often show missing biological activity due to
denatured states, so further bioprocessing steps such as solubilization, refolding, and
purification are required for efficient recovery.
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Recent articles already studied the microporous structure of
inclusion bodies (Bowden et al., 1991; Walther et al., 2013) and
proposed a potential solubilization mechanism. Solubilization steps
are usually performed in stirred reactors which facilitate the
individual solvation of the proteins (Walther et al., 2014). By
default, chemical denaturants are often used for mild
solubilization conditions. In more detail, standard chemical
denaturants like urea or guanidinium hydrochloride usually
dissolve the protein from inclusion bodies in combination with
reducing agents like mercaptoethanol or dithiothreitol (DTT)
(Clark, 1998; Singh and Panda, 2005). The reducing agents are
mainly used for the reduction of disulfide bonds in terms of protein
refolding aspects (Clark, 1998). Notably, the presence of strongly
denaturing agents at high concentrations results in a further loss of
the native structure (Smiatek, 2017; Oprzeska-Zingrebe and
Smiatek, 2018). The subsequent refolding step usually aims to
improve the low yields of bioactive proteins, such that optimal
conditions from solubilization and refolding were in the center of
research in recent years (Freydell et al., 2007; Walther et al., 2022).
Despite rational design of experiments (DoE) approaches in
combination with machine learning techniques, the underlying
mechanisms and the importance of individual features on the
solubilization process are still only poorly understood (Walther
et al., 2022).

In recent years, the use of machine learning has shifted slightly
from pure prediction to understanding. Hence, more effort was
spent into the understanding of feature importances with regard to
“explainable machine learning” approaches (Holzinger et al., 2018;
Gunning et al., 2019; Kailkhura et al., 2019; Linardatos et al., 2020;
Roscher et al., 2020; Belle and Papantonis, 2021; Burkart and Huber,
2021; Pilania, 2021; Oviedo et al., 2022). In agreement with global
sensitivity analysis for parametric models (Sudret, 2008), recent
methods like Shapley additive explanations (SHAP) (Lundberg and
Lee, 2017), local interpretable model-agnostic interpretations
(LIME) (Ribeiro et al., 2016; Lundberg and Lee, 2017) or the
“explain like I am 5” (ELI5) approach (Agarwal and Das, 2020)
provide model-agnostic evaluations of feature importances with
regard to the model outcomes. Although the purpose and general
goal of these methods is similar, slight differences can be observed in
their concepts. Global sensitivity analysis is mostly used for
parametric models, whereby the weights of individual parameters
are calculated by evaluating Monte Carlo simulations (Sudret, 2008).
An extension of the sensitivity analysis is also the application of
Polynomial Chaos Expansions (Sudret, 2008). However, these
approaches are very computationally intensive, so that these
methods are mostly calculated for parametric models with fewer
than ten influencing variables. In contrast, SHAP analysis is rooted
in game theory, such that it connects optimal credit allocation with
local explanations using the classic Shapley values from game theory
and their related extensions (Lundberg and Lee, 2017). In more
detail, Shapley values are introduced to quantify the contribution of
individual players in a cooperative game. The Shapley values are
determined by a weighted average calculation over all possible player
orders. For each order of players, the marginal contribution of each
player is calculated and multiplied by a weight that depends on the
probability of this order. The Shapley values are then the sum of the
weighted marginal contributions over all possible orders. In terms of
explainable machine learning, the Shapley values are used to

quantify the importance of individual features in terms of model
predictions. In contrast to the SHAP approach, LIME attempts to
explain model predictions at an instance level from the data set. An
approximation in terms of a simplified model is developed for each
selected instance (Ribeiro et al., 2016; Lundberg and Lee, 2017).
After that, the model approximations are weighted based on their
similarity to the original instance. All features that are relevant for
the prediction of the model are taken into account. Thus, the
weighted model approximations are used to generate an
explanation for the prediction of the original instance. It thus
enables a local interpretation of the predictions and helps to
understand the decisions of a model on an instance level. In
addition, ELI5 uses various techniques to determine the
importance of each feature for the model predictions (Agarwal
and Das, 2020). This can be done, for example, by calculating
feature weights or by analyzing the feature contributions. Based
on the identified feature importances, a comprehensible explanation
for the model predictions is then evaluated. By avoiding Monte
Carlo methods as used in sensitivity analysis, SHAP analysis, LIME
and ELI5 can evaluate significantly more input features and are more
flexible in terms of their usage for non-parameteric machine
learning models.

In general, all explainable machine learning approaches can be
applied for data-driven and non-parametric approaches which are
systematically evaluated in order to understand the feature-target
value correlations. Although it has to be noted that
biopharmaceutical modelling is still dominated by standard
parametric models (Smiatek et al., 2020), recent machine learning
approaches already revealed the benefits of non-parametric
evaluations for certain process steps (Yang et al., 2020; Smiatek
et al., 2021a; Montano Herrera et al., 2022; Walther et al., 2022).
Hence, it can be expected that the model-agnostic interpretation of
correlations between feature and target values may provide some
further insights into the molecular mechanisms of the solubilization
process.

In this article, we present an explainable machine learning
approach to study the solubilization of inclusion bodies in terms
of molecular mechanisms. A series of experiments with systematic
parameter variations for the total protein concentration, certain co-
solute concentrations and pH values were conducted in order to
evaluate their impact on the final yield values. The corresponding
data are used for the training of different machine learning models.
We show that the best model with the highest predictive accuracy
can be further used for feature importance analysis in terms of SHAP
values. The corresponding results provide meaningful insights for
the development of an analytic theory which is in reasonable
agreement with the experimental outcomes.

2 Experimental and computational
details

The experimental data set included 188 values for the protein
yield after solubilization with systematically varied feature values. A
detailed description of the data set and the experimental protocols
was already presented in Walther et al. (2022). In contrast to the
previous publication, we explicitly focus on one unit operation.
Hence, the consideration and optimization of coupled unit
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operations as studied in Walther et al. (2022) is not the purpose of
this work. Moreover, we aim to provide a reliable description and
further understanding of the molecular mechanisms underlying the
solubilization process due to explainable machine learning
approaches. More details on the experimental procedures can be
found in the Supplementary Material.

The protein yield y is defined as

y � cs
ct

(1)

where ct denotes the total protein concentration and cs the
concentration of solubilized proteins. As varying parameters in a
DoE approach (Politis et al., 2017), we chose the pH value, the urea
concentration cU, the total protein concentration ct, the DTT
concentration cD and the guanidinium hydrochloride
concentration cG. The corresponding parameters were
independently varied from ct = (2–6) mol/L, pH = 6–12, cD =
(0.00–0.01) mol/L, cG = 0–1 mol/L and cU = (4.0–8.5) mol/L. The
resulting yield values showed a range of y = 0.143–0.996. The
pH values were transformed according to the relation
(Landsgesell et al., 2017)

q pH − pI( ) � 1 − 1
1 + 10pI−pH

(2)

which denotes the ratio of protonated titrable groups over the total
number of titrable groups. The considered protein was an antibody
fragment with an isolelectric point of pI = 8.4.

For the choice of the best model, we used different regression
approaches. More detailed information can be found in the
Supplementary Material. We then performed hyperparameter
optimization for the histogram gradient boosting model (HGB)
(Blaser and Fryzlewicz, 2016) which showed the highest prediction
accuracy. The correspondng hyperparameter optimized settings
were a learning rate of 0.1, a maximum number of iterations of
90, meaning the number of individual decision trees and aminimum
number of leaves of 20 in accordance with the nomenclature of
scikit-learn 1.0.1 Pedregosa et al. (2011). The corresponding results
for the hyperparameter optimization procedure are presented in the
Supplementary Material.

The source code was written in Python 3.9.1 (Van Rossum and
Drake, 2009) in combination with the modules NumPy
1.19.5 (Harris et al., 2020), scikit-learn 1.0.1 (Pedregosa et al.,
2011), XGBoost 1.6.0 (Brownlee, 2016), Pandas 1.2.1 (Wes
McKinney, 2010) and SHAP 0.40.0 (Lundberg and Lee, 2017). If
not noted otherwise, all methods were used with default values.

3 Theoretical background: machine
learning and feature importance
analysis

3.1 Machine learning and regression
algorithms

The considered machine learning approaches can be divided
into individual classes. An important model class includes the
decision tree based models like Decision Trees (DT), Extra Trees
(ET), Random Forests (RF), Gradient Boosting (GB), AdaBoost

(ADA), Histogram-Based Gradient Boosting (HGB), Bagging
(BAG) and Extreme Gradient Boosting (XGB). In general,
decision tree-based models can be seen as non-parametric
supervised learning methods which are often used for
classification and regression. The value of a target variable is
approximated by introducing simple decision rules based on
arithmetic mean values for regression approaches as inferred
from the data that represent the independent variables. The
hierarchy of decision criteria forms different branches in
terms of a tree-like structure. The various methods differ in
their assumption on their underlying models (Wakjira et al.,
2022; Feng et al., 2021). In contrast to a single weak learning
model like DT, ensemble methods like ET, RF, GB, XGB, ADA,
BAG and HGB consider an ensemble of different weak learning
models. The main purpose of ensemble models is the
combination of multiple decision trees to improve the overall
performance. In more detail, ET and RF are both composed of a
large number of decision trees, where the final decision is
obtained taking into account the prediction of every tree. In
contrast to ET, RF uses bootstrap replicas and optimal split
points for decision criteria whereas ET consider the whole
original data sample and randomly drawn split points.
Overfitting is decreased by randomized feature selection for
split selection which reduces the correlation between the
individual trees in the ensemble. In addition, in other tree-
based ensemble methods, a distinction can also be made
between boosting and bagging approaches. Boosting
approaches such as GB, XGB and ADA generate a weak
prediction model at each step which is added sequentially to
the full ensemble model. Such a weighted approach reduces
variance and bias which improves the model performance. In
contrast, bagging methods such as BAG and HGB generate a
weak single DT models in parallel. As follows, Bagging, which
stands for boostrap aggregating trains multiple weak learners in
parallel and independent of each other. The final individual
models are added to the ensemble by a deterministic averaging
process which depends on the weights of accurate or inaccurate
predictions. The individual models also differ in their definition
and consideration of loss or objective functions for predictions in
the training phase.

Statistical estimates for the predictive accuracy of the models
are usually computed by the root-mean-squared error (RMSE) or
the normalized root-mean-squared error (nRMSE) of
predictions. The corresponding predicted values Ŷn are
compared with the actual experimental values Yn where n
denotes the running index in terms of the associated RMSE
value RMSE(Ŷ, Y) as defined by

RMSE Ŷ, Y( ) �
�������������∑S

n�1 Ŷn − Yn( )2
P

√
(3)

with the number of samples P = 188 in our data set. For estimating
the model accuracy in comparison with the standard deviation of the
target values, one can compute the normalized RMSE values
nRMSE(Ŷ, Y) in accordance with

nRMSE Ŷ, Y( ) � RMSE Ŷ, Y( )
σ Y, �Y( ) (4)
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with the experimental standard deviation σ(Y, �Y) ���������������
1/P∑P

n(Yn − �Y)2
√

and the mean experimental target value �Y �
1/P∑Np

n Yn.

3.2 Feature importance analysis

SHAP value analysis as developed by Lundberg and Lee
(Lundberg and Lee, 2017) is closely related to Shapley values
as introduced in game theory (Shapley, 1953). In short, Shapley
values provide estimates for the distribution of gains or pay-outs
equally among the players (Molnar et al., 2020). Thus, SHAP
analysis aims to rationalize a prediction of a specific value by
consideration of the feature contributions. The individual values
of features in the data set can be interpreted as players in a
coalition game (Lundberg and Lee, 2017; Štrumbelj and
Kononenko, 2014). In more detail, the algorithm works as
follows (Lundberg and Lee, 2017). First, a subset S is
randomly selected from all features F. The selected model is
then trained on all feature subsets of S ⊆ F. To estimate the feature
effects, one model fS∪{i} is trained with and another model fS is
trained without the feature. The predictions of the two models are
compared using the current input fS∪{i}(xS∪{i}) − fS(xS), where xS
are the values of the input features in S. Since the effect of
withholding a feature depends on other features in the model,
the above differences are calculated for all possible subsets S ⊆ F
{i}. The Shapley values are then calculated and assigned to the
individual features. In more detail, this can be considered as a
weighted average of all possible differences with reference to

ϕi � ∑
S⊆F i{ }

|S|! |F| − |S| − 1( )!
|F|! fS∪ i{ } xS∪ i{ }( ) − fS xS( )( ) (5)

which shows that this approach assigns each feature an importance
value that represents the impact of including that feature on the
model prediction.

In addition, the Gini feature importance analysis focuses on
the mean decrease in impurity of decision-tree based models. For
this, one calculates the total decrease in node impurity for a
decision tree based model weighted by the probability of reaching
that node. The probability of reaching a node can be
approximated by the proportion of samples averaged over all
trees of the ensemble (Breiman et al., 1984). The Gini index then
estimates the probability for a random instance being
misclassified when chosen randomly. The higher the value of
this coefficient, the higher is the confidence that the particular
feature splits the data into distinct groups.

4 Results

In the first subsection, we study the correlations between the
target and feature values for the experimental data and present
the outcomes of the machine learning approaches. A detailed
analysis of the feature importances in terms of explainable
machine learning approaches is presented in the second
subsection. The corresponding insights allow us to rationalize

a molecular mechanism in combination with an analytic
expression in good agreement with the experimental results.

4.1 Correlation analysis and machine
learning

A heatmap of all experimental correlations in terms of the
Pearson correlation coefficient r between the target value ln y and
all feature values for 188 data points is presented in Figure 1. In
addition to diagonal elements, notable correlations in terms of
|r| > 0.5 can only be identified for the logarithm of the total
protein concentration ln ct. All other values are smaller than |r| <
0.5 in accordance with negligible correlations. Thus, it can be
concluded that cross-correlations between the feature values are
of minor importance. The corresponding correlation coefficients
for the individual feature correlations with ln y are r = −0.69
(ln ct), r = 0.02 (cD), r = 0.09 (cG), r = 0.18 (q(pH − pI)) and r =
0.28 (cU). All values are also visualized in the Supplementary
Material. In consequence, non-vanishing positive correlation
coefficients for ln y can only be identified for the actual urea
concentration and the fraction of protonated titrable groups. In
contrast, the total protein concentration ct shows a strong
negative correlation and the correlations for guandidinium
hydrochloride and DTT are negligible. Thus, it can be
concluded that the total protein concentration dominates the
final yield values. The corresponding p-values from a Spearman
rank-order correlation coefficient analysis are listed in the
Supplementary Material. As can be seen, all values regarding
the correlation between ln y and all features are less than p < 0.05
for q(pH-pI), cU and ln ct. The corresponding values for cG and cD
are quite high, which can be explained by the low concentrations,
so not many settings can be chosen independently. However, one
can conclude that cG and cD have a minor effect on the values of
ln y. In addition, higher p values between the individual feature
correlations are noticeable. This can be understood in terms of
the preparation of the dataset obtained from a design of
experiment study, which focuses solely on the individual
effects of the characteristics on the target values.

As a next step, the corresponding supervised non-optimized
machine learning and standard regression methods are assessed in
order to predict the corresponding ln y values with regard to a k-fold
cross-validation scheme including successive permutations of the
training set (Gareth et al., 2013; Wong, 2015). As can be seen in the
Supplementary Material, the highest predictive accuracy for a
qualitative assessment of the non-optimized models is achieved
for gradient boosting and decision tree-based methods. In more
detail, histogram gradient boosting (HGB), extra trees (ET), gradient
boosting (GB) and random forests (RF) show low nRMSE values
between 0.19 and 0.21. The corresponding coefficients of
determination between predicted and actual values vary between
R2 = 0.72–0.75. Noteworthy, ensemble boosting methods are ideally
suited for non-linear regression problems like solubilization
processes. Potential reasons for the high accuracy of decision
tree-based models were recently published (Grinsztajn et al.,
2022). In more detail, decision-tree based models do not overly
smooth the solution in terms of predicted target values. Moreover, it
was shown that uninformative features do not affect the
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performance metrics of decision-tree based models as much as for
other machine learning approaches. In terms of such findings, it
becomes clear that decision-tree based models often outperform
kernel-based approaches in terms of predictive accuracies. It has to
be noted that ensemble-based methods are also often robust against

overfitting issues (Dietterich, 2000). Hence, time-consuming
hyperoptimization tunings and validation checks are not of
utmost importance.

In contrast to the good predictions of boosting models, standard
linear regression methods like least-angle regression (LARS) or

FIGURE 1
Pearson correlation coefficients r between feature values and ln y from the experimental data. The colors of the individual entries highlight the
corresponding value of the Pearson correlation coefficient from r =1 (blue) via r =0 (white) to r =−1 (red).

FIGURE 2
Predicted (HGB) and experimental values (Exp) for the logarithm of the yield ln y from the optimized HGBmethod. The straight line has a slope of one
and the corresponding blue dotted lines reveal the experimental standard deviation σ(ln y). The lighter blue shaded regions demark a standard deviation of
2σ(ln y).
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Lasso regression (LAS) show a rather poor performance
(Supplementary Material). Interestingly, also standard artificial
neural networks (ANNs) show a low predictive accuracy. It can
be argued that further optimization of hyper parameters may
improve the results. All other approaches show a reasonable or
even good performance with nRMSE values between 0.26–0.22. As
already discussed, the best performance can be observed for
advanced decision tree-based ensemble models which reveals the
underlying influence of non-linear contributions.

The corresponding predicted and experimental values for ln y
from the HGBmethod are presented in Figure 2. We used a k-fold
cross validation approach, where the training data consists of
each N-1 data samples with one test data point from the total data
set including N samples (Gareth et al., 2013; Wong, 2015). In
more detail, each model Mj is trained with the feature data
including the samples X = [x1, x2, . . ., xj−1, xj+1, . . ., xN] and
the associated target data Y = [y1, y2, . . ., yj−1, yj+1, . . ., yN] and
predicts the corresponding test target sample Yj from Xj. As can
be seen, Xj and Yj are not part of the corresponding training data
for modelMj. This procedure is repeated for all NmodelsM1,M2,
. . ., Mj and the corresponding predictions. Notably, a good
agreement between the predicted and experimental values for
all 0 > ln y > − 1.6 becomes obvious. All values are located within
the experimental standard deviation σ(ln y) as denoted by the
dashed blue lines. The corresponding good agreement can be
rationalized by the large amount of training data in this range.
Notable deviations in terms of one outlier with nRMSE > 1 can
only be observed for ln y ≤ −1.9 due to missing reference training
data. Moreover, the good predictive accuracy is also highlighted
by the reasonable value R2 = 0.75 for the coefficient of
determination. As shown in the supplementary material,
similar conclusions can also be drawn for the prediction of a
training data set of 38 samples using an 80/20 ratio split between
training and test data. The RMSE values are of comparable
quality. In consequence, it can be concluded that

solubilization mechanisms and final yield values can be
predicted with acceptable accuracy using machine learning
approaches.

4.2 Feature importance analysis and
explainable machine learning

Due to the reasonable predictive accuracy of certain machine
learning models, it can be concluded that the evaluation of feature
importances might provide some further insights into the
underlying mechanisms of solubilization. In terms of such
considerations, we evaluated all training data with the HGB and
the ET method in accordance with the SHAP values. The results for
the HGB model are shown in the Supplementary Material. As
expected, the accuracies of the HGB and the ET model for
training data with R2 = 0.91 (HGB), R2 = 0.99 (ET), nRMSE =
0.30 (HGB) and nRMSE = 0.10 (ET) are higher when compared to
the predictions from the k-fold cross-validation approach which
rationalizes the validity of the following feature analysis.

As a first step, the corresponding Gini feature importance values
as calculated from the ET method are presented in Figure 3. As can
be seen, the results confirm the dominant influence of the total
protein concentration ct in accordance with the correlation
coefficients shown in Figure 1, followed by the urea
concentration cU and the fraction of protonated titrable groups
q(pH-pI). With regard to rather low values, the DTT and
guanidinium hydrochloride concentrations have negligible
influences. It should be noted that the protein’s native structure
is characterized by only a very small number of disulfide bonds. This
property explains the vanishing influence as well as the relatively low
concentration of DTT as a reducing agent in this context.
Furthermore, it is well-known that guanidinium hydrochloride is
a very potent destabilizing agent. However, in combination with
urea it shows a rather complex aggregation behavior around the

FIGURE 3
Gini feature importance values for predictions of the extra trees (ET) model for the protein yield ln y.
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protein (Oprzeska-Zingrebe and Smiatek, 2021, 2022; Miranda-
Quintana and Smiatek, 2021). Accordingly, higher concentrations
of guanidinium hydrochloride could probably exert a stronger
influence in terms of feature importance. However, it should be
noted that this effect is represented here by the somewhat milder
denaturation conditions in the presence of urea. In consequence, it
can be concluded that the low feature importance of the
guanidinium hydrochloride concentration can be rationalized by
its corresponding low concentration. These results are also
confirmed by the values from the ELI5 analysis which are shown
in the Supplementary Material.

Similar conclusions can also be drawn in terms of example
decision pathways for an extra trees model with a maximum tree
depth of 4 as shown in the Supplementary Material. It becomes
obvious that the first decision criterion defines a total protein
concentration of ln ct = 1.39. This value separates between high
and low yield branches whereas further criteria based on individual
values of q(pH-pI) and cU are of minor importance and thus lead to
different subclassifications.

The corresponding results for the SHAP value analysis with
regard to the final yield values ln y from a HGB model are shown
in Figure 4. The color-coded beeswarm plot with the associated
contributions of SHAP values are depicted in the top panel. The
beeswarm plot aims to provide an information-dense summary

for the most important features in terms of model predictions for
each data instance. Each data instance is represented by a single
dot on each feature row. The horizontal position of the dot is
determined by the SHAP value of the corresponding feature. In
addition, the color illustrates the original value of a feature. Thus,
the beeswarm plot highlights the importance or contribution of
the features for the whole dataset. As already discussed, it
becomes obvious that the largest influence is represented by
the total protein concentration, followed by the urea
concentration and the amount of protonated titrable groups.
Moreover, it can be seen that the total protein concentration has a
negative influence on the final yield value. Thus, low values of ct
lead to positive SHAP values and vice versa. Such findings are
unique for the total protein concentration while all other factors
show a positive correlation. In terms of a molecular
understanding, it has to be noted that the solubilization
process itself is a rather complex process due to contributions
from interfacial phenomena, the composition of the solution as
well as further intermolecular mechanisms. Moreover, the
individual features and their contributions on the model
predictions are ordered in terms of their importance from top
to bottom. This ordering is calculated from the mean absolute
SHAP value for each feature. In general, such an approach is
strongly determined by the broad average impact of the feature

FIGURE 4
Color-coded heatmap for a beeswarm plot of individual SHAP values for the optimized HGB model (top panel) and mean absolute SHAP values as
calculated for the target value ln y.
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FIGURE 5
SHAP value dependency plot between the total protein concentration ln ct and the final yield value ln y as calculated from the optimized HGB
method.

FIGURE 6
SHAP value dependency plot between the urea concentration cU and the final yield value ln y from the optimized HGB method.
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while rare maximum or minimum values do not contribute
significantly. The corresponding mean absolute SHAP values
are presented in the bottom of Figure 4 for reasons of
consistency. It clearly can be seen that the total protein
concentration dominates the feature importance, followed by
the urea concentration and q(pH-pI). The contributions from cG
and cD are of minor importance in agreement with the p values
from the previous correlation analysis.

For a more detailed analysis, we present the corresponding
SHAP value dependency plots for the total protein concentration
in Figure 5. In general, SHAP dependency plots as shown in Figures
5, 6 highlight the effect of a single feature on the model predictions.
Each dot corresponds to a single prediction from the dataset and the
position on the horizontal axis denotes the corresponding actual
value of the feature. In contrast, the vertical axis shows the SHAP
value for that feature and its impact on the prediction. In general, a
slope along the points in the dependency plots enables to identify
positive, negative or no correlations with the corresponding target
parameter. It clearly can be seen in Figure 5 that the aforementioned
negative correlation (Figure 4) can be interpreted as an inverse
relation between the total protein concentration and the final yield
value ln y. Hence, for increasing total protein concentrations, one
can observe a linear decrease of the SHAP values. The corresponding
mechanism can be explained as follows. In general, the yield is
defined by

y � Nf

Nt
(6)

which corresponds to the ratio between the number of free
(solubilized) protein chains Nf and the total number of chains Nt.
With regard to the fact that inclusion bodies show a rather poor
solubility, one can assume that individual inclusion bodies aggregate
in order to form larger moieties. Hence, the dissolution of free chains
mainly occurs at the solvent accessible surface area of these
compounds in agreement with previous assumptions (Walther
et al., 2013).

The number of free protein chains can be written asNf � cpR2
Id

with the local concentration of proteins in the aggregated inclusion
body cp, the corresponding spherical radius RI of the aggregate and
the penetration or dissolution depth d. Moreover, it is assumed that
the inner region of the compound remains unaffected by dissolution
such thatNt ≈ cpR3

I with RI≫ d. In consequence, we can rewrite Eq.
6 according to

y ~
R2
Id

R3
I

~
d

RI
(7)

which reveals that aggregated inclusion bodies with larger radii
result in lower yield values. Furthermore, it is assumed that d is
constant after a fixed time interval. With regard to the fact that the
radius scales as RI � N1/3

t /c1/3p , one obtains after insertion into Eq. 7
the following relation

y ~
d

R_I
~
dc1/3p

N1/3
t

(8)

which clearly shows that the final yield value depends inversely on
the total protein concentration Nt ~ ct as represented by ln y ~ −
ln(ct) in agreement with Figure 5. Here, we assume that d is constant

after a fixed time interval and that aggregates show a highest packing
fraction leading to fixed values of cp.

Moreover, it is well known that the presence of urea induces a
structural destabilization of proteins. Recent articles rationalized
this phenomena with preferential binding and exclusion
mechanisms (Smiatek, 2017; Oprzeska-Zingrebe and Smiatek,
2018; Miranda-Quintana and Smiatek, 2021). As can be seen in
Figure 6, one observes increasing SHAP values and thus a positive
trend of ln y for increasing urea concentrations. Moreover, it can
be seen that for urea concentrations larger than 8 mol/L, a
saturation behavior becomes evident. As an explanation, we
refer to co-solute induced destabilization effects as discussed
in Oprzeska-Zingrebe and Smiatek (2018); Smiatek (2017). In
more detail, it is assumed that the ratio of destabilized and stable
proteins Kcs can be written as

Kcs � K0 exp a33Δ]23( ) (9)
with the derivative of the thermodynamic activity a33, the
difference in the preferential binding coefficients Δ]23 and the
ratio of destabilized and stable proteins K0 in absence of any co-
solutes (Smiatek, 2017; Oprzeska-Zingrebe and Smiatek, 2018;
Smiatek et al., 2018). For certain proteins, it was discussed that
the partial molar volumes and the solvent-accessible surface area
upon unfolding do not change significantly according to Δ]23 =
cUΔG23 (Smiatek et al., 2018; Krishnamoorthy et al., 2018a), such
that the previous relation can be approximated by

Kcs ≈ K0 exp a33cUΔG23( ) (10)
with the difference in the Kirkwood-Buff integrals ΔG23

(Oprzeska-Zingrebe and Smiatek, 2018). In addition to stable
and destabilized proteins, one can apply the same relation for the
fraction of dissolved and bound proteins (Smiatek et al., 2018).
Under the assumption that Nf ≪ Nt, it thus follows that Kcs ≈ y
and K0 ≈ y0. For high co-solute concentrations, it was further
discussed that a33 → 0 due to stability conditions
(Krishnamoorthy et al., 2018b). Hence, the exponential factor
in Eq. 10 can be linearized according to

y ≈ y0 1 + a33cUΔG23( ) (11)
which highlights the linear contribution y ~ cU between the urea
concentration and the final yield value in good agreement with
Figure 6.

In our previous discussion, it was also highlighted that the
fraction of protonated titrable groups has a positive influence on
the final yield values. In accordance with Eq. 2, it becomes clear
that q(pH-pI) decreases with increasing pH values. Moreover, it
is known that the isoelectric point with pI = 8.4 corresponds to a
net-uncharged protein. The clear distinction between pH values
below and above the pI value in terms of the SHAP dependency
plot can be seen in Figure 7. In more detail, q(pH − pI) < 0.5 as
represented by pH < 8.4 results in negative SHAP values and thus
lower yields and vice versa. The reason for this observation might
be related to electrostatic repulsion between the charged groups
of the protein (Smiatek et al., 2020). Thus, we assume that for
high or low pH values, depending on the net amount of basic or
acidic groups in the protein, the electrostatic repulsion fosters the
dissolution of the protein in order to minimize non-favorable
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interactions. As also illustrated in Figure 7, significant
contributions for a net-uncharged protein at pH = 8.4 leading
to q(pH − pI) = 0.5 are absent.

The combination of the previous considerations in terms of Eqs
2, 8, 11 results in

y ~ y0 1 + a33cUΔG23( ) q pH − pI( )
c1/3t

(12)

which condenses all previous results in one analytic expression. In
order to assess the validity of Eq. 12, we plotted all experimental data
points onto a master curve as shown in Figure 8. In order to

minimize fluctuating electrostatic repulsions, we chose nearly
constant and high pH values with pH ≥ 10 as well as high urea
concentrations with cU ≥ 7.55 mol/L. The corresponding 27 data
points are then scaled in terms of a normal distribution and
compared to Eq. 12. As can be seen in Figure 8, the theoretically
predicted values nicely follow the proposed scaling relation. It has to
be noted that the corresponding influences for different proteins and
modalities upon solubilization may vary, such that the obtained
results are not generally transferable without proper assessment.
Nevertheless, we have proven strong evidence that explainable
machine learning approaches provide deeper insights into the
molecular mechanisms and correlations of solubilization processes.

5 Discussion of results

In the previous sections, we developed a machine learning model to
predict yield values based on some input features. We were able to show
that an optimized Histogram Gradient Boosting (HGB) model enables
the most accurate predictions. The underlying data for training and
testing of the model were obtained from a Design of Experiments study.
Overall, the model predictions show sufficient accuracy. The general
trends are reproduced despite some minor inaccuracies for certain
outliers. Previous statistical analysis of the experimental data already
showed that the correlation coefficients between the feature and the target
value do not reveal a particularly significant correlation. Accordingly, we
could already assume in advance that the models would only allow
meaningful predictions to a certain extent. To compensate for this
drawback, we applied some methods of explainable machine learning.
Although such approaches cannot increase the accuracy, the results

FIGURE 7
Dependency plot of SHAP values for the fraction of titrable groups q(pH − pI) and the final yield value ln y for the optimized HGB model.

FIGURE 8
Theoretical estimates from Eq. 12 and actual values: The
corresponding data points were selected for high urea concentrations
and high pH values. All values are scaled in terms of normal
distributions.
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provide fundamental insights into the feature importance for the model
predictions. We observed that in particular the total protein
concentration as well as the urea concentration and the degree of
charge of the protein due to the adjusted pH value are of decisive
importance for the yield value predictions. The influence of other co-
solutes is negligible due to their low concentration. As part of the
explainable machine learning approach, we were therefore able to
examine data-driven models on a scientific basis. Accordingly, we
were able to set up scientific hypotheses for the underlying
mechanisms (Smiatek et al., 2021b), which provided a rationale for
the observed feature importance values. These scientific hypotheses were
then merged into Eq. 12, which allows for a formal mathematical
description of the influence of various parameters on yield values.

In general, it cannot be assumed that a single machine learning
model is suitable to predict different yields for different proteins in
different solubilization procedures. The differences in the charges
and the interaction with co-solutes are sometimes so significantly
different that the trends can sometimes even reverse. Accordingly,
the general transferability of machine learning models is usually not
given, so that the gain in knowledge is often very small. Accordingly,
experimental data must be recorded again for new proteins and their
inclusion bodies, so that the reduction in laboratory activities is
usually not given. However, basic principles can be recognized by
means of the analytical equation and the corresponding scientific
hypotheses. These principles may differ slightly for individual
proteins, but can now be estimated in advance using the
analytical description. Hence, important influencing factors can
be postulated, especially when planning the experiments. We
were also able to show that the purely data-driven models can be
subjected to scientific hypothesis formation, which makes the results
more robust and more straightforward to understand.

6 Summary and conclusion

We studied the potential influences of certain process parameters on
the solubilization of inclusion bodies in terms of explainable machine
learning approaches. The corresponding final yield values after
solubilization are crucially affected by the total protein concentration,
the urea concentration and the amount of protonated titrable groups as
affected by the actual pH value. The models with highest predictive
accuracies are boosting ensemble-based approaches with nRMSE values
around 0.19. The corresponding SHAP values show that the total protein
concentration, the actual urea concentration as well as the fraction of
protonated titrable groups dominate the final yield value. All other
contributions like the DTT and guanidinium hydrochloride
concentration are of minor importance. A more detailed analysis of
SHAP dependecies also highlights an inverse relation between the total
protein concentration and the yield values in contrast to the urea
concentration and the amount of protonated titrable groups.

Based on these explainable machine learning observations, we
proposed an analytic expression to rationalize these findings. The
inverse relation for the total protein concentration can be understood
with regard to surface solvation effects which inversely scale with the
total protein concentration. The growing SHAP values for the urea
concentration can be understood by the preferential binding and
exclusion mechanisms for co-solutes. The direct interaction of urea
molecules with the inclusion body thus favors dissolution

mechanisms and hence larger yield values. Finally, larger fractions
of protonated titrable groups result in stronger electrostatic repulsion
effects between the proteins which facilitate the dissolution of the
inclusion body. The corresponding assumptions can be summarized
in terms of an analytic expression which shows a reasonable
agreement with the experimental data. Although it has to be
noted that the corresponding dependencies crucially rely on the
nature of the protein and the inclusion bodies, our approach
demonstrates a meaningful pathway towards a deeper
understanding and optimization of solubilization conditions. It
can be assumed that the underlying mechanisms vary through the
individual contributions of the influencing factors for different
proteins. Typical examples would be the influence of the
pH value on different pI values of proteins as well as the
importance of reducing reagents such as DTT at different
amounts of disulfide bonds. Nevertheless, it can be expected that
the presented machine learning models in combination with feature
analysis can make these slightly varying relationships interpretable
with similar accuracy as in this study. Accordingly, our work
highlights an exemplary and generic approach to understand in
detail the phenomena of solubilization for the individual proteins
and solutions. The use of explainable machine learning approaches
thus allows us to develop models with high predictive accuracy but
also to gain deeper insights into the underlying correlations of the
mechanisms. Hence, it has to be mentioned that the use of
explainable machine learning does not increase the prediction
accuracy of the model. However, there is the possibility that the
results of non-parametric models can be assessed and evaluated in
their justification with regard to individual feature correlations. This
procedure corresponds to the scientific method, so that the results of
purely data-driven models can be translated into scientific
hypotheses and made correspondingly falsifiable (Smiatek et al.,
2021b). In this context, the use of explainable machine learning has
allowed us to derive an analytical equation (Eq. 12). As we have
shown, this analytical equation can also be derived separately from
fundamental principles, with the SHAP analysis being able to
contribute profitably to the identification of these mechanisms.
The advantage of such an equation lies in its falsifiability and its
potential for transfer to other projects. From this it can be assumed
that new projects can be started with prior knowledge, so that
material can be saved and the work can be reduced. In
consequence, explainable machine learning provides a deeper
process understanding and knowledge which is beneficial for
different unit operations in biopharmaceutical manufacturing.
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