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Accurate models for pulsed sieve tray extraction columns (PSEs) depend on the
correct prediction of the drop diameter to estimate extractivemass transfer across
the phase boundary. Phenomenologically, the drop diameter is determined by a
balance of drop breakage and coalescence. While for most industrial solvent
systems, coalescence plays a minor role; breakage is mostly the dominant
phenomenon determining the drop diameter. However, most modeling
approaches for drop breakage in PSEs are characterized by a trade-off
between a broad validity range and good prediction accuracy. To overcome
this limitation, we developed a hybrid breakagemodel for drop breakage in PSEs in
which a physical-empirical model basis is enhanced by data-driven parameter
estimator models (PEMs). The hybrid model is based on a revised form of Garthe’s
breakage model, for which we developed a linear PEM for the model parameters
and two data-driven PEMs for dstab and d100, respectively. The hybrid breakage
model was validated on 743 experimental data sets and evaluated based on the
pull metric. In a sensitivity analysis, the model correctly predicted the breakage
probability over a wide range of solvent properties, operating conditions, and sieve
tray geometries. In future studies, the hybrid breakage model can be incorporated
into extraction column models without an initial parametrization.
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1 Introduction

Pulsed sieve tray extraction columns (PSE) are one of the most common process
equipment for industrial extraction, having found application in chemical and
hydrometallurgical processes, in biotechnology, and particularly in nuclear fuel
reprocessing (Lo et al., 1983; Schügerl, 1994; Gameiro et al., 2010). The numerous
industrial applications have motivated intensive research on PSE, including experimental
studies and the development of column models with various degrees of rigor. Particularly,
the wish to limit the number of preliminary column experiments on a technical scale induced
the development of models that correctly depict fluid dynamics and mass transfer over
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several scales. A promising approach for this purpose is based on
population balance models (PBMs), which track the evolution of the
drop swarm along the column height by accounting for key
phenomena such as drop sedimentation and mass transfer by
physical-empirical sub-models (Goedecke, 2006; Weber et al.,
2019). The accuracy of PBMs highly depends on the correct
prediction of the drop diameter, which is crucial for accurate
modeling of fluid dynamics and mass transfer in extraction
columns (Hlawitschka et al., 2020; Weber and Jupke, 2020).
Phenomenologically, the drop diameter is mainly determined by
a balance of drop breakage and coalescence phenomena.
Commonly, drop breakage is considered dominant since many
industrial processes are characterized by significant coalescence
inhibition, e.g., due to mass transfer and/or impurities
(Henschke, 2003). Consequently, considerable research was
conducted to investigate, model, and predict the drop breakage
behavior in PSEs.

Most studies on drop breakage behavior are based on single-
drop investigations in lab-scale devices to limit the experimental
effort. A sketch of a single-drop cell is shown in Figure 1. The cell
consists of a single compartment between two sieve trays, a
pulsation unit, and a periphery to insert and remove single-
drops into/from the cell. The setup in Figure 1 allows the
investigation of organic drops (inserted at the bottom)
submerged in an aqueous continuous phase. Within the single-
drop experiments, the breakage behavior is commonly quantified
based on the breakage probability p(d)—the fraction of drops
breaking, the stable drop diameter dstab—the maximal diameter of
drops that never break (p(d≤ dstab) � 0), and the number of
daughter drops ϑ created during breakage. Usually, up to
50 drops are investigated to determine p(d), dstab, and ϑ for a
set of phase properties, sieve tray geometry, and operating
conditions (Haverland, 1988; Garthe, 2006).

Based on the experimental investigations, several modeling
approaches for either of the breakage properties p(d), dstab, ϑ

were developed in the literature that can be roughly distinguished
between purely empirical and physically motivated models. An early
empirical correlation was introduced by (Haverland, 1988), which
quantifies the breakage behavior based on the breakage probability
p(d) as a function of dstab:

p d( ) � d − dstab

d100 − dstab
( )c

(1 − 1)

with c being an empirical parameter. Apart from dstab, the
correlation also contains d100, which describes the minimal
diameter of drops that always break (p(d≥d100) � 1) while
passing through a sieve tray. The value of d100 is determined in
single-drop experiments the same way as p(d) and dstab. Pursuing a
similar empirical approach, Garthe extended Eq. 1–1 and performed
an extensive experimental study with EFCE standard test systems
(Mísek, 1985) at varying operating conditions and with different
column internals (Garthe, 2006). Based on his investigations, Garthe
introduced a further empirical model:

p � c1π
c2
af

dc3
trans

c4 + dc3
trans

(1 − 2)

dtrans � d − dstab

d100 − dstab
(1 − 3)

πaf � af ·
����������

ρ2c
ηc ρc − ρd( )g3

√
(1 − 4)

Where d is the diameter of the mother drop, ρc and ρd are the
densities of the continuous and dispersed phase, ηc is the viscosity of
the continuous phase, and g the gravitational constant. The model’s
key terms are the droplet term dtrans, which is a linear interpolation
of the drop diameter d between the diameters dstab and d100, and the
solvent-dependent term πaf , which quantifies the influence of the
pulsation intensity af. The parameters c1, c2, c3, c4 account for the
non-linear form of p(d) in the range dstab <d<d100, also visualized
in Figure 2.

FIGURE 1
Single-drop cell for investigating drop breakage on sieve trays.

FIGURE 2
Qualitative representation of Garthe’s breakage model.
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For sieve trays, Garthe provides eight parameter sets that
account for four solvent systems toluene/acetone/water, butyl
acetate/acetone/water, toluene/water, butyl acetate/water
(abbreviated by TWA, BWA, TW, BW) and two sieve tray orifice
diameters (dh � 2mm, 4mm). Finally, the model predicts p(d) in
Garthe’s experimental data with good accuracy and was also used in
PBM-based simulations of PSEs (Jaradat et al., 2011a; Jaradat et al.,
2011b).

In the two empirical models by Haverland and Garthe, the
prediction of the breakage probability consists of a single
mathematical expression, wherein dstab is either determined
by extrapolation or by experiments. In contrast, the physically
motivated approaches focus initially on a correlation for dstab
which is subsequently integrated into an overall model for
p(d, dstab). For example, Wagner considered an energy
balance around a drop passing a sieve tray orifice to deduce a
correlation for dstab (Wagner, 1994). Subsequently, the breakage
probability p is estimated based on the ratio d/dstab. Yet,
Wagner’s correlation only accounted for drop breakage during
orifice passage, which is a valid approach for sieve trays with
small free cross-sectional areas but disregards the drop breakage
at the web between the orifices for larger free cross-sectional
areas (Kalem, 2015). A further physically motivated modeling
approach was introduced by (Gourdon et al., 1991). Gourdon’s
model is based on the Weber number We defined according to
Kolmogoroff’s turbulence theory by:

We � ρcε
2/3d5/3

σ
(1 − 5)

with σ as the interfacial tension (Kolmogorov, 1991). The turbulent
dissipation rate ε has to be estimated by further correlations (Kumar
and Hartland, 1995). Subsequently, the breakage probability p is
formulated as a function of We:

p d( ) � exp −c/We( ). (1 − 6)
In the final validation of his model, Gourdon showed that

Eq 1–6 correctly depicts the trend of the breakage probability
over a wide range of operating conditions for the solvent systems
TW and TWA despite some considerable deviations for single
data sets.

In contrast to pursuing a single correlation for dstab as Wagner
and Gourdon, Henschke combined several models for dstab to yield
one functional correlation, which accounts for five different drop
breakage mechanisms, such as during free sedimentation, during
orifice passage, or in turbulent flow (Henschke, 2003). Henschke’s
overall model for p is subdivided into; first, a model predicting the
number of daughter drops as a function of the stable drop diameter
ϑ(dstab) and second, a model predicting the breakage probability as a
function of the number of daughter drops p(ϑ(dstab)). Taking the
three sub-models (dstab, ϑ, and p) into account, the overall breakage
model was fit to experimental data from (Haverland, 1988) based on
seven parameters. Yet, Henschke’s model proved little transferability
when being tested on data it was not parametrized on (Kalem, 2015).
Based on these findings, Kalem extended Henschke’s dstab-model to
account for high-viscous solvents, added terms to account for
pulsation and the web width bs (see Figure 3) into the p-model,
and introduced four further parameters (Kalem, 2015). Finally,
Kalem parametrized and validated his breakage model based on

273 data sets from (Haverland, 1988; Wagner, 1994; Garthe, 2006).
Comparably to (Gourdon et al., 1991), Kalem’s model could predict
the overall trend of the breakage probability with a root mean
squared error of 32.5%.

Most of the modeling approaches for drop breakage in PSE
are characterized by a trade-off between a broad validity range
and good prediction accuracy. Thereby, good prediction
accuracy highly depends on the model’s parametrization,
which can simultaneously limit the validity range to specific
operating conditions, a specific solvent system, and a specific
sieve tray geometry. Consequently, every new application of a
breakage model would demand a re-parametrization to
guarantee good accuracy. In this study, we want to overcome
the need for a re-parametrization by introducing a hybrid
modeling approach for drop breakage in PSEs. For this
purpose, we have chosen a serial hybrid modeling approach
(Thompson and Kramer, 1994) in which a physical-empirical
model basis is enhanced by data-driven parameter estimation
models (PEM). This way, we intend to combine the domain
knowledge incorporated in developing physical-empirical
models with the accuracy of data-driven models (McBride
et al., 2020).

The study is organized as follows. The methods section gives
an overview of the error metrics for model evaluation, the data-
driven modeling approach, the breakage model, and the
database used for model development. In the subsequent
section, the results of the PEM development are presented
and evaluated, and finally, the overall hybrid breakage model
is validated on the breakage database. In a subsequent
sensitivity analysis, we assess the hybrid breakage model’s
ability to predict the breakage behavior for several representative
solvent systems, sieve tray geometries, and operating conditions. The
final section closes with a brief conclusion and outlook on our
future work.

2 Methods

2.1 Error metric

The accuracy of the developed models is evaluated based on
different metrics for the error e (also residue), which quantifies the
deviation between the experimental value û and the predicted value

FIGURE 3
Definition of web width bs.
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u. An overview over the error metrics used in this work is given in
Table 1, a brief review on the strengths and weaknesses of each error
metric is provided in the Supplementary Materials.

In contrast to the first two, the pull metric epull considers the
measurement uncertainty σe explicitly, standardizing the residue
between experimental and predicted value by σe. Thus, the
prediction u with a pull value of −1≤ epull ≤ 1 can be explained
within the boundaries of the measurement uncertainty.
Considering a whole database where a number of nu predicted
and measured values are compared, the resulting pull
distribution epull can be assessed by its mean �epull and its
standard deviation ~epull. Consequently, a good model is
characterized by a pull distribution with a mean close to zero
(�epull � 0) and a standard deviation smaller than one (~epull < 1).
(Demortier and Lyons, 2008)

2.2 Data flow for machine learning

The development of the data-driven models follows the data
flow introduced by (Brockkötter et al., 2020; Brockkötter et al.,
2021). The data flow consists of five steps, including (i) data
transformation, (ii) data split, (iii) machine learning (ML), (iv)
selection of the data-driven algorithm, and (v) wrapper feature
selection. In the first two steps, the database is transformed by
applying a Min Max scaler and split randomly into a train and a
test part with a ratio of 85/15. The split is performed once before
training and not altered thereafter to ensure comparability of
the following development steps. The transformed and split
data set is used to train six potential machine learning
algorithms, including (i) linear regression, (ii) k-Nearest Neighbor,
(iii) support-vector-regression, (iv) Gaussian processes, (v) decision
tree, and (vi) random forest. In contrast to (Brockkötter et al., 2020),
we did not consider Artificial Neural Networks (ANN) as the
mismatch between the size of our data sets and the model
complexity of ANNs would not justify the use of such a
complex algorithm. The training of all ML algorithms is
divided into two consecutive steps. First, the training of all
ML algorithms is performed based on an exhaustive grid
search with k-fold cross-validation with k � 5. After each k
training step, the ermse (Eq. 4-1) is determined for each combination
of hyperparameters. The combination of hyperparameters
resulting in the lowest ermse is selected for further evaluation.
Second, each algorithm undergoes training using the complete
training data set, followed by testing on the test set. The algorithm
with the lowest ermse on the test set is then selected for further

optimization. In the final optimization step, a sequential feature
selection wrapper method is used to reduce the feature space of the
best algorithm. Since the feature selection is not exhaustive, a
trade-off is made between the size of the feature set and the quality
of the prediction accuracy. This step is necessary to ensure that the
validity range, e.g., convex hull, of the PEM is sufficiently large to
use the PEM in future column simulations (Kahrs and Marquardt,
2007). Finally, in this work, we use the same wording for
differentiating between black-box models (purely data-driven)
and white-box models (based on theoretical considerations) as
(Brockkötter et al., 2020).

2.3 Revised breakage model

The white-box part of the hybrid breakage model is based on a
revised form of Garthe’s breakage model. Garthe’s model was chosen
for this purpose as, in principle, it is not bound to a specific breakage
mechanism, but rather replicates the form of the breakage probability
between the boundary values dstab and d100 (see Figure 2).
Consequently, Garthe’s model should be applicable under various
solvent systems, sieve tray geometries, and operating conditions.
Nevertheless, a revision of Garthe’s model was conducted to
guarantee a physically consistent prediction of p. Particularly, Eq.
1–2 can predict breakage probabilities exceeding p> 1 for large values
of πaf (c2 > 0) or small values of πaf (c2 < 0). Additionally, when the
drop diameter approaches d → d100 the physically consistent
consequence p � 1 is not automatically predicted by Eq. 1–2.
Considering the detected limitations and by preserving Garthe’s
modeling idea, we re-arranged the model yielding:

p c1, c2, c3, c4( ) � πaf

c1 + πaf
( )c2 1−dtrans( )

· dc3
trans

c4 + dc3
trans

· c4 + 1( ) (2 − 1)

For dstab <d< d100 with dtrans � d−dstab
d100−dstab.

The first term on the right side of Eq. 2–1 limits the πaf− term to
1, while the first term’s exponent c2(1 − dtrans) guarantees that the
breakage probability approaches 1 for d → d100. Additionally, Eq. 2–1
is multiplied by (c4 + 1), so that the second term on the right side also
approaches 1 for d → d100. Therefore, the new form of the breakage
model ensures the model’s continuity within the physical constraints
p(d � dstab) � 0 and p(d � d100) � 1 for all parameters
c1, c2, c3, c4 ∈ R> 0.

2.4 Breakage database

The breakage database for PSEs consists of 743 data sets
retrieved from literature (Haverland, 1988; Eid et al., 1991;
Wagner, 1994; Garthe, 2006). One data set corresponds to one
entry in the breakage database which specifies the experimental
value of the breakage probability p (target feature) characterized
by 15 features including the solvent system, the sieve tray
geometry, and the operating conditions. Table 2 provides an
overview over the features and the statistical information of the
database. The complete database is provided in the
Supplementary Materials.

TABLE 1 Error metrics used in this work.

Name Equation

Root mean squared error

ermse �
�������������
1
nu

∑
i
ui − ûi( )2

√ 4–1

Coefficient of determination

eR2 � 1 − ∑i ûi − ui( )2∑i ûi − �u( )2
4–2

Pull error metric

epull � u − û

σe

4–3

Frontiers in Chemical Engineering frontiersin.org04

Palmtag et al. 10.3389/fceng.2023.1274349

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2023.1274349


The experimental values for p are determined in single-drop cells
(see Figure 1) which partly differ in diameter and height. Considering
that the drop breakage appears primarily in the direct vicinity of the
sieve tray orifice (Haverland, 1988), we assume that the difference in
diameter and height does not affect the comparability of the
experimental studies with each other. Most of the authors
performed at least 50 single drop measurements to determine p for
one specific solvent system, sieve tray geometry, and operating
condition (Haverland, 1988; Wagner, 1994; Garthe, 2006). The
definition of the experimental values for dstab and d100 vary
throughout the database. After investigating the breakage behavior
for a range of drop diameters, Haverland and Wagner performed
50 additional single-drop experiments to define dstab as p(d) � 0, and
d100 as p(d) � 1. Instead, Garthe defines dstab for p(d)≤ 0.03 and d100
forp(d)≥ 0.97. In principle, Garthe’s definition does not contradict the
previous one, it rather accounts for the stochastic effects in the
experimental determination of dstab/d100. In contrast, Eid et al. did
not explicitly specify their approach to determine either p or dstab/d100
(Eid et al., 1991). Considering that the research groups of (Haverland,
1988; Eid et al., 1991) worked partly together, e.g., (Haverland et al.,
1987), we assume that the experimental approach did not substantially
deviate from (Haverland, 1988; Wagner, 1994; Garthe, 2006).

3 Results and discussion

3.1 Hybrid breakage model

The revised breakage model introduced in section 2.3 poses the
prerequisite for a robust breakage model, due to a physically

consistent prediction of drop breakage between dstab and d100.
Two limitations remaining in the revised model are (i) the
limited availability of experimental data for dstab and d100 and (ii)
the discrete validity of the model parameters c1, c2, c3, c4 which
demand additional experiments and/or re-parametrization for each
new set of solvent properties and operating conditions.

In the following, we address these limitations by introducing
PEM for dstab, d100, and c1, c2, c3, c4,. For this purpose, the breakage
database is split into three parts. First, the database is filtered for
entries with p≤ 0.03 and p≥ 0.97, yielding two data sets for dstab
(235 data sets) and d100 (188 data sets), respectively. The remaining
entries for 0.03<p< 0.97 (320 data sets) constitute the database for
the consecutive parametrization of c1, c2, c3, c4. Figure 4 visualizes
the data split and the approach for PEM development.

In the following, the results of the PEM development for dstab
and d100 (Sec. 3.1.1) and for c1, c2, c3, c4 (Sec. 3.1.2) are presented
and discussed. Finally, the PEMs are incorporated in the model basis
(Eq. 2–1), and the hybrid model is validated on the complete
breakage database (Sec. 3.1.3).

3.1.1 Modeling of dstab and d100

The data sets for dstab and d100 are inserted into the data flow
described in section 2.2 to develop two separate data-driven
PEMs for each diameter. The process was performed several
times, reducing the feature set during each training. The results
are summarized in Table 3. The final models enable the
prediction of the characteristic properties dstab and d100 based
on two reduced feature sets, including one property describing
the operating condition (af), one property describing the
solvent system (σ), and two properties characterizing the

TABLE 2 Statistical information on the breakage database.

Name Unit Mean Std Min 25% 50% 75% Max

Breakage probability, p - 0.48 0.42 0.00 0.00 0.49 0.96 1.00

Density continuous phase, ρc kg/m3 1019.8 73.1 990.9 997.0 998.2 998.8 1204.2

Density dispersed phase, ρd kg/m3 870.9 98.8 726.4 858.3 866.7 877.5 1246.0

Viscosity continuous phase, ηc Pa·s 0.006 0.015 0.001 0.001 0.001 0.001 0.050

Viscosity dispersed phase, ηd Pa·s 0.008 0.018 0.001 0.001 0.001 0.001 0.053

Interfacial tension, σ N/m 0.031 0.010 0.011 0.024 0.035 0.035 0.052

Diameter of mother drop, d m 0.004 0.002 0.0003 0.002 0.004 0.005 0.010

Pulsation amplitude, a m 0.009 0.005 0.004 0.008 0.008 0.010 0.018

Pulsation frequency, f 1/s 2.4 1.4 1.3 1.9 2.5 2.5 10.0

Pulsation intensity, af m/s 0.021 0.008 0.003 0.015 0.020 0.025 0.048

Velocity continuous phase, uc m/s 0.001 0.003 0.000 0.000 0.000 0.000 0.025

Column diameter, Dcol m 0.072 0.008 0.0472 0.07245 0.07245 0.079 0.079

Orifice diameter of sieve tray, dh m 0.004 0.002 0.002 0.002 0.004 0.004 0.012

Relative free cross-sectional area, φ - 0.31 0.12 0.07 0.23 0.26 0.40 0.60

Web width, bs m 0.002 0.001 0.002 0.002 0.002 0.003 0.005

Tray spacing, hst m 0.082 0.032 0.05 0.05 0.1 0.1 0.2

Sieve tray material: 100% stainless steel
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sieve tray geometry (φ and bs/dh, respectively). For both
diameters, Gaussian Process (GP) Regressors were identified
as the best models with ermse of 0.461mm and 0.463mm and eR2
of 0.916 and 0.847, respectively.

The feature set included in the final models agrees well with
most physical-empirical correlations for dstab reported in the
literature. Particularly, the features depicting the operating
conditions (af) and the sieve tray geometry (φ and bs/dh) are
also considered by (Wagner, 1994; Henschke, 2003; Kalem,
2015). In contrast, the characterization of the solvent systems
deviates from most models reported in the literature. While the
wrapper feature selection selects the interfacial tension, the
densities of both phases are disregarded in the final models.
Obviously, the feature selection mirrors the fact that most of the
experiments in the data sets were conducted with water (68.6%)
as the continuous phase and toluene (47,3%)/butyl acetate
(11.9%) as the dispersed phase. A similar trend is investigated
for d100, the according data set is also dominated by water (90.0%)
and toluene (51.1%)/butyl acetate (18.4%). This problem is
compounded by toluene and butyl acetate having comparably
similar densities (compare Table 6). Consequently, the wrapper
feature selection does not detect a benefit in keeping the densities
for the final model. Brockkötter et al. (2020) yielded similar

results and drew the same conclusion for their data-driven
flooding model. Nevertheless, the densities of both phases are
included in the white-box part (Eq. 2–1) of the final breakage
model; hence, the absence of the densities in the feature space of
dstab and d100 is mitigated for the prediction of the breakage
probability after all.

3.1.2 Continuous parameter estimation
for c1, c2, c3, c4

For the development of PEMs for the breakage model
parameters c1, c2, c3, c4, a different approach was pursued than
for dstab and d100. Particularly, the introduction of four black-boxes
or one multi-output black-box for c1, c2, c3, c4 could increase the
feature space furthermore. In order to limit the feature space, we
chose a linear correlation, which predicts the parameters
c1, c2, c3, c4 depending on one characteristic feature. Considering
Garthe’s eight parameter sets for the original model, the
characteristic feature could be a property describing the solvent
system or characterizing the sieve tray geometry. For this purpose,
the interfacial tension σ seems as a consistent choice as it may be
considered characteristic of a solvent system, particularly
regarding the breakage behavior of the dispersed phase.
Implicitly, the influence of the interfacial tension was accounted
by Garthe’s parameter sets which were adapted individually to the
solvent system TW, BW, TWA, and BWA. Specifically, these
solvent systems can be discriminated between each other
mainly due to different interfacial tensions (Mísek, 1985).
Therefore, the fitting parameters are formulated as a linear
function of the interfacial tension σ: ci � mi · σ + ai for
i � 1, 2, 3, 4, creating two degrees of freedom per parameter ci,
which are determined by the optimization problem:

min
mi,ai

p c1, c2, c3, c4( ) − p̂




 



2 (3 − 1)

FIGURE 4
Dataflow for the development of the hybrid breakage model.

TABLE 3 Final data-driven models for dstab and d100. The error metrics refer
exclusively to the test set.

Features ermse
[mm]

eR2 [-] Best algorithm

dstab
[mm]

af, σ, φ, bs 0.461 0.916 Gaussian Process
Regressor

d100 [mm] af, σ, φ, dh 0.463 0.847 Gaussian Process
Regressor
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w.r. ci > 0 with ci � mi · σ + ai for i � 1, 2, 3, 4 , with p̂ being the
experimental breakage probability and p(c1, c2, c3, c4) the
predicted breakage probability by Eq. 2–1. For the
optimization, values for dstab and d100 have to be assigned at
each experimental data set. Data sets where no experimental
values for dstab and d100 have been determined yet are estimated
by the PEMs introduced in the previous section. The
optimization problem in Eq. 3–1 searches for the best
combination of four linear models within the framework of
the breakage model Eq. 2–1, which describes the measurement
p̂. The best set of linear functions c1, c2, c3, c4 is realized by a grid
search in Matlab™. For this purpose, an eight-dimensional
search grid of starting values mi and ai is selected, and the
objective Eq. 3–1 is optimized by the solver fminsearch, which is
based on the simplex method (Lagarias et al., 1998). The
smallest local minimum is selected from the solutions of
the grid.

The results of the parameterization are summarized in
Table 4. The table shows the eight parameters mi and ai of the
linear parameterization for ci and the deviation between the
predicted and the measured breakage probability in terms of
ermse and eR2. In addition to the linear, a constant parametrization
was performed where mi was set to 0; thus, the interfacial tension
is not included in this parameterization (middle row). For
consistency, the data set for parametrization was also
predicted by Garthe’s original model to compare its prediction
accuracy with the new model. The residues given for Garthe in
Table 4 refer exclusively to the solvent systems TW, BW, TWA,
and BWA for which Garthe provided parameter sets. Since the
original parameterization of Garthe’s model depends on
multiple influencing factors, the entries are marked with the
non-zero marker p. The numerical values for p are listed in the
Supplementary Material S1. Despite covering a considerably
wider range of solvent systems and operating conditions, the
parametrization results of the revised models surpass Garthe’s
model on both error metrics ermse and eR2. Even the constant
parameterization shows a significant improvement compared to
Garthe’s model, which is enhanced by including the interfacial

tension in the linear model. The linear parametrization based
on the interfacial tension improves both error metrics by
approximately 30% compared to Garthe’s model. Overall, the
results indicate that the revised model (Eq. 3–1) in combination
with the linear PEM can depict the breakage probability for
0<p< 1 (dstab < d<d100).

3.1.3 Model validation
In the final step of the model development, the revised

breakage model is extended by the data-driven PEM for dstab
and d100 and the linear PEM for c1, c2, c3, c4. The new hybrid
breakage model is validated on the complete breakage database
consisting of 743 data sets and compared to Garthe’s model. The
error metrics assess both models’ prediction accuracy ermse and eR2
as well as the mean �epull and the standard deviation ~epull of the pull
distribution. To calculate the pull, we assume a constant
measurement uncertainty of σe � 0.1 for the experimental
breakage probability. This assumption is necessary as (to the
best of our knowledge) no author has specified a value for the
uncertainty and/or standard deviation of the experimentally
determined breakage probability. The error metrics of Garthe’s
and the hybrid breakage model are compared in Table 5.
Additionally, the pull distributions for both models are
visualized in Figure 5.

Regarding the pull distribution, both models are centered
around 0 and have a qualitatively reasonable spread around the
center point. The hybrid model predicts a larger fraction of the
database within the assumed measurement accuracy, while the
variance is obviously smaller. The qualitative observation is
numerically confirmed: the hybrid model achieves a prediction
accuracy close to the optimal value of 0, underestimating it
slightly (�epull � −0.068), while Garthe’s model tends to
overestimate the breakage probability (�epull � 0.634). A similar
trend is observed for the standard deviation ~epull: the hybrid
model achieves ~epull � 1.315, which is lower than Garthe’s model
with a value of ~epull � 2.116 and closer to optimum. Apart from the
pull metric, the hybrid model surpasses Garthe’s model also
regarding ermse (40.2% lower than Garthe) and eR2 (24.8% higher
than Garthe).

Finally, a qualitative evaluation based on Figure 5 indicates that
both models can correctly depict the experimental breakage
probability in the database. Nevertheless, the hybrid model
achieves better scores in all error metrics and has an extended
validity range due to the PEMs for dstab, d100 and c1, c2, c3, c4. Based
on these results, we deduce that the hybrid breakage model was
successfully validated on the breakage database. Therefore, in the

TABLE 4 Results of constant and linear parametrization of the hybrid breakage model and residues of the hybrid breakagemodel and Garthe’s model. The original
parameterization of Garthe’s model depends on multiple influencing factors. Thus, the entries are marked with the non-zero marker p. The numerical values for p
are listed in the Supplementary Material.

Equation c1 c2 c3 c4 Residue

m1 a1 m2 a2 m3 a3 m4 a4 ermse [-] eR2

1-2 Garthe 0 * 0 * 0 * 0 * 0.198 0.515

2-1 constant 0 2.64 0 0.86 0 1.44 0 0.06 0.148 0.630

2-1 linear −36.07 3.12 30.22 0.06 −5.00 1.55 −4.61 0.24 0.139 0.761

TABLE 5 Error metrics of Garthe’s and the hybrid breakage model for the
prediction of the breakage probability on the complete breakage database.

ermse eR2 �epull ~epull

Garthe (2006) 0.221 0.723 0.634 2.116

Hybrid Model 0.132 0.902 −0.068 1.315
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following result section, the discussion focuses exclusively on the
hybrid breakage model.

3.2 Sensitivity analysis

The purpose of the sensitivity analysis is to test the model’s
ability to predict physically consistent trends of dstab, d100 and
p(d) based on several representative and coherent data sets from

different authors. The data sets cover experiments with the EFCE
systems TW, BW, TWA, BWA by (Haverland, 1988; Garthe,
2006), as well as experiments with deliberately adjusted
viscosities of the solvents by (Wagner, 1994). The according
solvent properties are summarized in Table 6. For a complete
overview of the data sets, the reader is referred to the breakage
database in the Supplementary Material S1. The sensitivity
analysis is primarily based on a qualitative comparison
between experimental data (symbols) and model prediction

FIGURE 5
Pull distribution of Garthe’s (A) and the hybrid breakagemodel (B) for the prediction of the breakage probability on the complete breakage database.

TABLE 6 Properties of the solvents considered in the sensitivity analysis.

Reference Solvent system
Organic/Aqueous
phase

Density [kg/m3] Viscosity [mPa · s] Interfacial
tension
[mN/m]

Mass
transfer
direction

Figure

Aqueous
phase

Organic
phase

Aqueous
phase

Organic
phase

Haverland
(1988)

Toluene/water 998.2 866.7 1.003 0.586 35.40 - Figure 6 a
Figure 7 (a)

Butyl acetate/water 998.2 881.5 1.003 0.730 13.50 - Figure 6 b

Garthe (2006) Toluene/water 998.8 867.5 1.029 0.596 34.31 - Figure 7 (a)
& (b)

Toluene/acetone/water 992.0 863.3 1.134 0.566 24.41 c → d Figure 7 (b)

Butyl acetate/water 996.4 881.3 1.022 0.738 13.97 Figure 7 (b)

Butyl acetate/acetone/
water

990.2 877.5 1.163 0.709 10.96 c → d Figure 7 (b)

Wagner (1994) Paraffin oil (53%) +
n-hexane (47%)/water

999.2 745.6 1.001 1.230 40.08 - Figure 8

Paraffin oil 63.75%,
n-hexane 36.25%/water

999.2 858.3 1.001 53.200 43.70 - Figure 8

Paraffin oil 53%,
n-hexane 47%/water
21.3%, glycerine 78.7%

1204.2 745.6 50.080 1.230 31.00 - Figure 8

Paraffin oil 63.75%,
n-hexane 36.25%/water
21.3%, glycerine 78.7%

1204.2 858.3 50.080 53.200 32.20 - Figure 8
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(lines) in Figures 6–8. Each figure highlights one or several
characteristic features, which are indicated in the figure key.
Additionally, Table 7 summarizes the ermse for the predicted sub-

data sets of each Figure. At first, the discussion of the results
focuses on the EFCE system for which dstab/d100 and p(d) are
visualized in Figures 6, 7, respectively.

FIGURE 6
(A)Comparison of dstab, and d100 for toluene/water for different orifice diameters dh and pulsation intensities af; and (B) comparison of dstab, and d100

for toluene/water and butyl acetate/water. Experimental data: symbols, prediction: lines. The upper lines indicate d100. Figures according to (Haverland,
1988).

FIGURE 7
Breakage probability for toluene/water for (A) different orifice diameters, (B) different orifice diameters and pulsation intensities, and (C) for different
interfacial tensions. Experimental data: symbols, prediction: lines. Figures according to (Haverland, 1988; Garthe, 2006).
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Three overall t rends can be deduced from the experimental data:

- Trend 1: Higher af values lead to a decrease in dstab, and d100,
thus the p(d) curve is shifted to the left (Figure 6A, B;
Figure 7B)

- Trend 2: Lower σ values lead to a decrease in dstab, and d100,
thus the p(d) curve is shifted to the left (Figure 6B; Figure 7C)

- Trend 3: Higher dh/φ values lead to an increase in dstab, and
d100 thus the p(d) curve is shifted to the right, the slope of the
p(d) curve decreases (Figure 6A; Figure 7A, B).

Trends 1 and 2 can be accounted for by a force balance of
stabilizing and disruptive forces acting on the drop surface and
deforming the shape of the drop. In principle, the force balance is
incorporated in the We number, which represents the ratio of the
fluid’s inertia compared to its surface tension (compare 1-5). Hence,
an increasing energy input (increasing af) shifts the equilibrium
towards the disruptive forces, e.g., increasing We (trend 1), while a
decreasing interfacial tension σ reduces the stabilizing forces, e.g.,
increasing We (trend 2). Trend 3 can be attributed to an increasing
steric hindrance for small dh/φ values, causingmore drop breakage if
the drop diameter surpasses the orifice diameter.

Considering the prediction of dstab, d100 and p(d), the
experimental trends are correctly predicted by the according

PEM and the overall hybrid breakage model, which is also
reflected in the ermse values, respectively. The experimental trends
are also reflected in the features for the PEM, e.g., af, σ, and φ,

FIGURE 8
Comparison of (A) dstab, (B) d100, and (C) the breakage probability for varying viscosities. Experimental data: symbols, prediction: lines. Figures
according to (Wagner, 1994).

TABLE 7 Root mean squared error ermse of the predictions in Figure 6, Figure 7,
and Figure 8.

Diagrams Property Unit ermse

Figure 6A dstab [mm] 0.100

d100 [mm] 0.117

Figure 6B dstab [mm] 0.145

d100 [mm] 0.258

Figure 7B p(d) [-] 0.082

Figure 7B p(d) [-] 0.083

Figure 7C p(d) [-] 0.072

Figure 8A dstab [mm] 0.277

Figure 8B d100—total [mm] 0.692

d100—high ηc [mm] 0.880

d100—low ηc [mm] 0.367

Figure 8C p(d) [-] 0.114
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which were detected as pivotal to model drop breakage of the EFCE
systems in previous works (see also Section 3.1.1).

In contrast, Wagner’s data sets include rather unconventional
solvent systems, which can be distinguished primarily based on the
viscosities ηc, ηd and not as commonly in extraction research based
on the interfacial tension σ. It is worth highlighting that neither the
PEM for dstab nor the PEM for d100 include ηc, ηd as features.
Regarding solvent properties, the distinction is based only on the
interfacial tension σ, which varies betweenWagner’s solvent systems
too, but not as distinctively as for the EFCE systems (see Table 6).
The according experimental values for dstab, d100 and p(d) and their
prediction are visualized Figure 8.

Apart from the trends already discussed for the EFCE systems,
one additional trend can be deduced from Wagner’s experiments.

- Trend 4: Higher ηc values lead to a decrease in dstab, and d100.

Wagner argues that a highly viscous continuous phase increases
the shear stress on the drops during orifice passage, increasing the
tendency to drop breakage (see dstab in Figure 8 (a)). In contrast, a
high viscous dispersed phase rather stabilizes the drop. Thus, the
combination of a high ηd and a low ηc leads to the largest dstab, and
d100 values, which is comparable to the conclusions drawn from
fluid dynamic studies in agitated systems (Stamatoudis and
Tavlarides, 1985; Kraume et al., 2004; Maaß et al., 2012; Hasan,
2017).

Although both viscosities ηc, ηd are not included in the feature
set for the PEM the qualitative experimental trends are predicted
correctly. In comparison to EFCE systems, the dstab/d100 prediction
is obviously less accurate. However, while the prediction of dstab is in
a comparable range as for EFCE systems (ermse � 0.277mm), the
prediction of d100 deviates significantly (ermse � 0.692mm),
particularly for high ηc (ermse � 0.880mm, see Table 7).
Potentially, the ratio of Wagner’s solvent system in the training
data for d100 does not suffice to depict the physical effects
determining d100. Afterall, in the d100 database, only 30% (56/
188) of the data sets are not EFCE systems, while in the dstab
database at least 43% (103/235) of the data sets are not EFCE
systems.

The validity of the p(d) trend is more difficult to assess since the
experimental data shows a certain degree of ambiguity, e.g., in some
cases, the data sets overlap for different solvent systems. Considering
these limitations, the prediction of p(d) covers at least the same
range and reflects the same trends as the experimental data.

Overall, the prediction of the hybrid breakage model is
consistent with the trends in the experimental data for dstab, d100
and p(d). Therefore, we conclude that the hybrid breakage model
correctly depicts the underlying physical effects that cause drop
breakage. Regarding the EFCE systems, the prediction of the key
properties describing drop breakage dstab, d100 and p(d) can be
assessed as quantitatively and qualitatively good for the considered
operating conditions and sieve tray geometries. For highly viscous
solvent systems, the prediction accuracy is worse than for the EFCE
systems. Considering the smaller share in the training databases for
dstab/d100, the prediction can still be considered as reasonable for
dstab and for d100 at low ηc, and moderate for d100 at high ηc and for
p(d). To improve the prediction of d100 and p(d), future
experimental studies of drop breakage should focus on solvents

beyond the EFCE systems to increase their share in the PEM
training data.

4 Conclusion

Within this study, we have developed a hybrid breakage model
for PSEs based on a serial hybrid modeling approach. The hybrid
breakage model consists of an empirical model basis which is
enhanced by data-driven PEMs. For the model basis, Garthe’s
breakage model was revised to guarantee a physically consistent
prediction of the breakage probability p. To establish the data-
driven PEM, an experimental database for breakage in PSEs was
retrieved from the literature, including data sets for dstab, d100 and
p(d). The database consists of 743 data sets, including various
solvent systems and sieve tray geometries and covering PSE-typical
operating conditions. Based on according subsets of the database,
two data-driven PEMs based on GPs were developed to predict the
experimental parameters dstab and d100. The feature space of both
PEMs could be limited to only four features while achieving a good
accuracy of eR2 � 0.916 for dstab and eR2 � 0.847 for d100. In addition
to that, the four model parameters c1, c2, c3, c4 were formulated as a
linear function of the interfacial tension σ. Finally, the linear and the
data-driven PEMs were incorporated into the model basis to form
the hybrid breakage model.

For validation purposes, the complete breakage database was
predicted by Garthe’s and the hybrid breakage model, respectively.
Subsequently, the accuracy of both models was compared based on
the pull distribution of their predictions. Thereby, the hybrid model
not only surpassed Garthe’s model regarding the prediction error
(hybrid: eR2 � 0.9, Garthe: eR2 � 0.72), but also achieved pull scores
close to optimum, e.g., mean �epull � −0.068 and standard deviation
~epull � 1.315. A sensitivity analysis demonstrated that the hybrid
breakage model correctly predicts the experimental trends of dstab,
d100 and p(d) indicating that the underlying physical effects are
accurately considered. In future studies, we plan to integrate the
hybrid breakage model into a PBM-based PSE model.

Regarding the research on drop breakage, we would suggest two
aspects to be considered for future studies. As demonstrated in Section
3.2, a limited variety in the training data of the data-driven PEM can
substantially affect the quality of the model. Consequently, future
studies should focus on solvent systems beyond the EFCE solvents.
Special effort should be put in the investigation of highly viscous
solvents as was done for agitated systems in recent years. The
second aspect we would suggest concerns the model development
itself. In this study, we focused primarily on the reduction of the
number of features considered for the PEM development. The
reduction of the feature space addresses the problem that every
additional feature in a data-driven model improves the error
metrics, yet simultaneously reduces the validity range, e.g., convex
hull. In future studies, a reduction of the number of parameters should
be considered as a possible objective too. For example, the breakage
probability might be expressed by a simpler breakage model eventually
with fewer parameters than c1, c2, c3, c4. Additionally, instead of
linearizing all parameters c1, c2, c3, c4, the linearization could also be
limited to only one parameter. Consequently, the final objective should
be a trade-off between a broad validity range, a good model accuracy
and a simple model for drop breakage at sieve trays.
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Nomenclature

Symbols

a [m] Amplitude of pulsation

af [m/s] Pulsation intensity

bs [m] Orifice spacing

c [-] Constant model parameter

d [m] Drop diameter

dstab [m] Maximal stable diameter

dh [m] Orifice diameter in sieve tray

dtrans [m] Linear interpolation of the d between the dstab
and d100

d100 [m] Characteristic drop diameter due to a breakage
probability of 100%

D [m] Diameter of column

epull [*] Pull error metric

�epull [*] Mean of pull distribution

~epull [*] Standard deviation of pull distribution

ermse [*] Root mean squared error

eR2 [-] Coefficient of determination

f [1/s] Frequency of pulsation

g [m/s2] Gravitational constant

GP [-] Gaussian process

p [-] Breakage probability

u [*] Predicted values

û [*] Experimental value

We [-] Weber number

ε [m2/s2] Turbulent dissipation rate

η [Pa·s] Viscosity

ϑ [-] Number of daughter drops

πaf [-] Pulsation term in breakage model

ρ [kg/m3] Density

σ [N/m] Interfacial tension

σe [-] Measurement uncertainty

φ [-] Free cross-sectional area of sieve tray

*Unit depends
on property.

Sub- and Superscripts

c Continuous phase

col Column

d Dispersed phase

exp Experimental

i, n Count variables
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