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Hydrothermal liquefaction (HTL) has the potential to improve resource recovery
at water resource recovery facilities (WRRF), but the production of a high-
strength aqueous by-product (HTL-aq) is hampering HTL implementation. The
formation of biofilms in anaerobic digestion have been shown to be useful when
degrading recalcitrant compounds present in HTL-aq due to the promotion of
direct interspecies electron transfer (DIET) and increase in themicrobial activity of
syntrophic and methanogenic populations. The Recirculating Anaerobic
Dynamic Membrane Bioreactor (RAnDMBr) was able to degrade 65% of the
chemical oxygen demand (COD) at 1.5 ± 0.2 g COD LR

−1 day−1 and 5.6 ±
2.3 days producing 0.19 ± 0.02 LCH4 gCODfed

−1. However, adding a solution
rich in nutrients on a daily basis was necessary. The system presented microbial
populations able to degrade aromatic compounds (i.e., Anaerolinaceae) to
perform DIET and syntrophy (i.e., Syntrophus) and methanogens
(i.e., Methanobacterium and Methanosarcina) with the biofilm having a higher
relative abundance of methanogens than the suspended biomass. Increasing the
organic loading rate to 2 g COD LR

−1 day−1 caused inhibition in the system by
accumulation of volatile fatty acids, probably due to an increase in phenol,
N-heterocyclic and aromatic compounds. Overall, this research shows that
the RAnDMBr can be used to treat HTL-aq in WRRF without inhibition at OLRs
of 1.5 ± 0.2 g COD LR

−1 day−1 or lower, making HTL-aq treatment more feasible.
Future research should focus co-digestion of HTL-aq with a co-substrate rich in
nutrients and on fouling mitigation strategies that will allow to increase the
recirculation ratio to promote advective substrate transport through the biofilm.
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Introduction

While the energy, nutrients and metals contained in wastewater are valued in
$600 USD/Mgal, the current treatment approach in water resource recovery facilities
(WRRF) is inefficient in terms of energy and materials recovery (Rittmann, 2011;
Mulchandani and Westerhoff, 2016). Sludge management can be seen as an
opportunity to recover the chemical energy from wastewater. Of all the sludge
produced in the US, 22% is being landfilled, 16% is being incinerated and 52% is being
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land applied (with 80% of the sludge being digested before land
application) (Urgun-Demirtas et al., 2022). Anaerobic digestion
(AD) followed by land application can recover electricity and
heat from biogas and introduce nutrients in agriculture.
However, only 5%–7% of the US WRRF have digesters and use
the biogas (Shen et al., 2015). Besides, 50% of the sludge volume still
remains after digestion and needs to be processed through land
application, landfilling or incineration. This results in 6.5 Mt/y of
treated biosolids, which are land applied, incinerated or sent to a
landfill costing $330-$880 USD/t (Seiple et al., 2020). Moreover, new
regulations and concerns about emerging contaminants such as Per-
and polyfluoroalkyl substances in wastewater solids are creating
challenges and new costs for land application that almost guarantee
that solids management will continue to increase in cost (Winchell
et al., 2024). Thus, there is a critical need to implement new
processes to maximize resource recovery and remove emerging
contaminants without increasing overall costs.

Hydrothermal liquefaction (HTL) uses moderately hot water (at
280°C–370°C) and high pressure (1400–3600 PSI) conditions to
convert wet-wastes sewage sludge to biocrude in 30 min or less. HTL
is a promising technology for WRRFs because it can reduce sludge
volume by 90%, recover P in the form of a solid fertilizer and convert
70% of the energy content in the sludge into biocrude, a precursor
for aviation fuel (Basar et al., 2021; Usman et al., 2023). The results of
a U.S. based analysis suggest an estimated minimum fuel selling
price for biocrude from $2.28/gasoline gallon equivalent (GGE) to
$3.45/GGE, and an estimated supply chain greenhouse gas
emissions reduction from 73.4% to 81.8% relative to petroleum-
derived diesel (Jiang et al., 2023). For WRRFs, where solids handling
costs are rapidly increasing due to various factors (fuel cost for
incineration, restrictions on land and landfill disposal), the
integration of HTL could decrease disposal costs by 43% (Seiple
et al., 2020). An HTL-based system could also offer a value
proposition by destroying emerging contaminants (Hao et al.,
2021). Nonetheless, HTL has not yet been implemented at the
full scale. One of the reasons HTL has not been implemented is
because it generates an aqueous by-product (HTL-aq) with a high
concentration of chemical oxygen demand (COD) (50–70 g/L) and
NH4+ (5–8 g N/L) with phenol, N-heterocyclic and aromatic
compounds that makes HTL-aq unsuitable for direct
recirculation to the WRRF headworks (Basar et al., 2023; Zhu
et al., 2023). While multiple options have been proposed to treat
HTl-aq (e.g., microbial fuel cell, microbial electrolysis, membrane
distillation, super critical water oxidation, catalytic hydrothermal
gasification), the processes are not ready to be implemented in
WRRF at the full scale (Watson et al., 2020). The use of AD to treat
HTL-aq can be practical as it presents low operating costs compared
to other technologies, it recovers resources like biogas, and its
operation is well-known. As the AD technology is already
treating 40% of the sludge produced in the U.S. (Shen et al.,
2015), the anaerobic digesters can be utilized for HTL-aq
treatment if HTL is implemented at WRRFs. However, the
treatment of HTL-aq through conventional AD can be
challenging due to the presence of phenol, N-heterocyclic and
aromatic compounds in HTL-aq, that are hard to biodegrade
under anaerobic conditions (Padoley et al., 2008; Poirier et al.,
2016; Kong et al., 2019; Azarmina and Eskicioglu, 2025). For
example, Azarmina and Eskicioglu, (2025) used a conventional

CSTR to treat HTL-aq but the system could only degrade HTL-
aq without inhibition if HTL-aq was diluted 25 times or higher.
Therefore other AD configurations new approaches are necessary to
ensure proper treatment. Batch treatment is the most studied AD
configuration for HTL-aq treatment (Wang et al., 2021; Adedeji
et al., 2023; Zhu et al., 2023; Liu et al., 2024). However, batch
configurations are not a good representation of the reality because
most AD plants are continuous. Studies using continuous AD
systems to treat HTL-aq are still scarce but overall,
configurations decoupling the SRT from HRT have been used
(Chen et al., 2016; Si et al., 2018; Usman et al., 2019; Hao et al.,
2020; Yang et al., 2020; Bueno et al., 2021). For example, Bueno et al.
(2021) used a Horizontal-Flow Anaerobic Immobilized Biomass
reactor and started to experience inhibition when the OLR increased
from 1.6 gCOD LR

−1 day-1 to 3.2 gCOD LR
−1 day−1. Si et al. (2018)

used two different configurations, a UASB and a PBR to treat HTL-
aq at an OLR of eight gCOD LR

−1 day−1, but the test only lasted
8 days. Overall, the formation of biofilms in AD have been shown to
be useful when degrading recalcitrant compounds present in HTL-
aq due to the promotion of direct interspecies electron transfer
(DIET) and increase in the microbial activity of syntrophic and
methanogenic populations (Usman et al., 2019; Zhu et al., 2023).
Furthermore, biofilms can provide protection to microorganisms
again toxic compounds (Mah and O’toole, 2001; Cohen, 2011).
Anaerobic membrane bioreactors are an AD configuration that has
never been tested for HTL-aq treatment. Specially, using of the
recent developed Recirculating Anaerobic Dynamic Membrane
Bioreactor (RAnDMBr) to treat HTL-aq could be very relevant
(Fairley-wax et al., 2022). The RAnDMBR operation enhances
biofilm formation, something was shown to be critical to protect
the microorganisms from the HTL-aq toxic compounds.

Here, a WRRF in the US [Great Lakes Water Authority
(GLWA)] and a national lab [Pacific Northwest National Lab
(PNNL)] created a multidisciplinary partnership to use a new
AD configuration, the RAnDMBR, to treat HTL-aq (Fairley-wax
et al., 2022). The RAnDMBR was used to promote the formation of
an enhanced biofilm, enhance syntrophy between microbial
populations and increase the microbial activity. The goal of this
study is to reduce the COD load of HTL-aq without applying an
excessive dilution factor and keeping a hydraulic retention time
between 5-10 days.

Materials and methods

Inoculum and substrate

The RAnDMBr was inoculated with the effluent coming from a
pilot scale digester treating sewage sludge and food waste at GLWA
WRRF (Detroit, MI, United States). After collecting the inoculum, it
was stored a 4°C for 17 days before its use. A mixture of primary and
secondary sludge (7:1; wet weight) with a 75% moisture content was
collected at GLWAWRRF and transported with a refrigerated truck
to PNNL. At PNNL the sludge was processed through an
engineering-scale HTL system, referred to as MHTLS, at 12 L/h,
350°C, 2900 psig and at a residence time of 15 min in the plug flow
tubular reactor (Marrone et al., 2018; Snowden-Swan et al., 2021;
Cronin et al., 2022). Just downstream of the reactor, the product
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slurry passes into a vessel that captures solids (mostly ash) though
settling and filtration. The solids are intermittently removed from
the process with a blowdown system.With the fine non-volatile solid
removed, pressure letdown is simplified and the aqueous and
biocrude streams are gravity segregated in a conventional oil/
water separator (Supplementary Figures S1A, B). About 200 L of
the separated HTL-aq was analyzed at PNNL through High-
performance liquid chromatography and Ion chromatography
and sent back to GLWA to perform the testing with the
RAnDMBR. During the testing, the HTL-aq was stored in the
fridge at 4°C. A characterization of the inoculum, the HTL-aq
used in this study can be seen in Supplementary Tables S1, S2.
HTL performance and detailed characterization data on the feed,
products and byproduct streams from the HTL test, (Test MHTLS-
15), other product and byproduct of the HTL test are also included
in the study performed by Snowden-Swan et al. (2022).

RAnDMBR setup and operating conditions

A 5.0 L (working volume including membrane) semi-
continuous RAnDMBR similar the one developed by Fairley-wax
et al. (2022) was used in this study for the treatment of HTL-aq. A
schematic of the RAnDMBR can be seen in Supplementary Figure
S1C. The RAnDMBR temperature was controlled at 37°C through
the use of a recirculating water bath (VEVOR, United States) and
mixing was provided by a magnetic stirrer (Corning, United States).
Hamilton probes EasyFerm Plus PHI Arc 325 and EasyFerm Plus
oxidation-reduction potential Arc 325 were used to continuously
monitor temperature, pH and oxidation-reduction potential. The
RAnDMBR was set up with two peristaltic pumps (Masterflex
07551-20), a three-way valve (REDHAT 120V AC, Grainger,
United States) and a pressure transducer (OMEGA,
United States) to measure transmembrane pressure (TMP). The
design of the RAnDMBr involves a tree-like structure submerged in
the bioreactor which branches were surrounded by a stainless-steel
mesh of 25 μm pore size (Supplementary Figure S1C). The goal of
the tree-like structure is to build a high surface area biofilm to
enhance the degradation of HTL-aq. The branches in the tree-like
structure provided a very high surface area (19.79 m2 mreactor

−3) in
the system where the biofilm (dynamic membrane) was developed.
Contrary to common dynamic membrane bioreactors, the reactor

bulk liquid was not permeated continuously through the dynamic
membrane. In order to generate a biofilm on the branches of the
tree-like structure and promote advective substrate transport, the
bulk liquid was recirculated through the meshes. Therefore, the
RAnDMBR would work under cycles of recirculation and
permeation (Supplementary Figure S1D). For a period of time of
tR, the system would recirculate the bulk liquid through the stainless
steel meshes and for a period of time tP the system would perform
permeation. Permeation would take place by activating a three-way
valve that would switch the direction of the fluid from recirculation
to permeation (Supplementary Figure S1D). Because the dynamic
membrane permeability would not be constant, the time of
recirculation and permeation varied during the study to keep the
reactor at the desired hydraulic retention time (HRT) (5 or 10 days
depending on the experiment stage, see Table 1). To determine how
often the bulk liquid was recirculated through the dynamic
membrane, the recirculation ratio was calculated by dividing the
recirculation flow rate by the effluent flow rate. The RAnDMBR
operated under different organic loading rates by diluting the HTL-
aq with DI water. The operating conditions of this study can be seen
in Table 1. The changes in OLR did not exceed 0.5 g COD LR

−1 day−1

to avoid inhibition of the microbial community by a very high OLR
increase (Zhen et al., 2022). While replicates have not been tested
during this experiment, previous studies have demonstrated that
long-term time-series experiments can provide results similar to
those obtained with anaerobic digesters operated in replicate
(Vanwonterghem et al., 2014; Werner et al., 2014).

Chemical analyses

The inoculum was characterized at the time of inoculation (day
0) and the feedstock samples were analyzed once a week. Suspended
biomass (bulk liquid) and permeate samples were collected three
times a week. Total and volatile suspended solids (TSS and VSS)
were analyzed following standard methods (APHA et al., 2012).
Total, partial, and intermediate alkalinity were determined using an
automatic titrator with hydrochloric acid (Metler Toledo,
United States) (Ripley et al., 1986). Concentrations of volatile
fatty acids (VFAs) from C2 to C7, including iso-forms of C4 and
C5, were determined using an Agilent Technologies 6890N GC-MS
equipped with a Restek stabilwax-DA Column (Restek 11,023)

TABLE 1 Reactor operating parameters.

Time period
(days)

0–25 26–75 76–115 116–166 167–359 360–473 474–521 522–600

Organic loading rate (OLR)
(g COD LR

−1 day−1)
0.5 ± 0.2 0.2 ± 0.0 0.4 ± 0.2 0.9 ± 0.1 0.5 ± 0.2 1.1 ± 0.4 1.5 ± 0.2 2.1 ± 0.3

Hydraulic retention time (HRT)
(days)

6.7 ± 2.1 11.5 ± 2.8 10.7 ± 1.6 10.3 ± 0.9 10.9 ± 2.0 5.6 ± 2.3 6.5 ± 0.6 6.0 ± 1.7

Dilution factor for HTL-AB 30.0 30.0 15.0 7.5 15.0 9.0 7.5 5.6

Feedstock
(g COD L−1)

2.4 ± 0.2 2.4 ± 0.2 4.7 ± 1.1 8.6 ± 1.7 5.0 ± 0.4 6.0 ± 1.6 9.4 ± 1.3 12.5 ± 0.8

Recirculation ratio
(L LR

−1)a
20.0 3.8–20.0 3.8 3.8–5.5 5.5 1.5 1.5 1.5

aThe recycle ratio shows maximum and minimums used during the specific period (see Figure 2).
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(Supplementary Figure S2). The oven temperature was held at 80°C
for 4 min, then increased to 250°C at 15°C min−1 and held at 250°C
for 2 min. The injector temperature was set to 200°C and helium was
used as the carrier gas with a flow of 1.5 mL/min. Before performing
VFA analysis, all samples were centrifuged at 10,000 g for 10 min,
and the supernatant was filtered through 0.2 μm nylon membrane
filters (TISCH Scientific, North Bend, OH, United States). 500 μL of
the filtrate was mixed with 490 μL of a 0.2% formic acid solution
(Prepared by dilution of 50 μL of Formic acid into 25 mL of
Acetonitrile) and 10 uL of internal standard. The internal
standard was prepared by weighing 10 mg of d7-isobutyric acid
(95.15 g/mol) into a 2 mL vial and diluted with 990 μL of LCMS
grade water. 100 μL of this stock solution was diluted into 900 μL of
LCMS grade water as the final standard solution at 1,000 μg/mL
which is roughly 10 mM. Total and soluble COD (tCOD and sCOD)
analyses were performed using Hach medium-range
(0–1500 mg L−1) COD digestion vials. Before performing sCOD
analyses, all samples were centrifuged at 10,000 × g for 10 min and
the supernatant was filtered through 0.45-μm nylon membrane
filters (TISCH Scientific, North Bend, OH, United States). Total
phosphorus and total nitrogen were determined using Hach vials
TNT 844 and TNT828, respectively, and following manufacturer
instructions. Total ammonia nitrogen was measured by using an
IntelliCAL ISENH3181 Ammonia Ion Selective Electrode from
Hach and following manufacturer instructions, however, to avoid
interferences with solids, bulk liquid samples were centrifuged at
10,000 × g for 10 min and only the supernatant was used for
measurement. Biogas was collected in a Tedlar bag and was
measured daily by using a 100 mL gas-tight glass syringe. The
gas composition (CH4 and CO2) was measured three times a week
using a biogas analyser (SWR 100, MRU). HPLC and Ion
chromatography were performed by PNNL on the HTL-aq
generated. HPLC analyses of samples were carried out using
HPLC equipped with a Waters 2414 refractive index detector. A
Bio-Rad Aminex HPX-87H ion exclusion column (300 mm ×
7.8 mm) was used for analyte separation. Sulfuric acid (0.005 M)
was used as eluent at a flow rate of 0.55 mL/min. Ion
chromatography for anions (fluoride, bromide, nitrate, chloride,
sulfate, and phosphate) was performed with a DIONEX ICS-3000
equipped with an AS11HC (4.0 × 250 mm) column and a
conductivity detector. A gradient from 5.0 to 60 mM hydroxide
at 1 mL/min is used to separate organic and inorganic anions. The
column is held at 30°C. HTL aqueous product samples were filtered
(as needed) and run neat or at 10X, or 100X, depending on analyte
concentration. Detection limits range from 1.0 to 100 ppm. For each
analytical batch, the system is calibrated with standard analyte mix
and calibration is verified with an independent QC check.

Biomass sampling, DNA extraction, and
metagenomics

The microbial community in the inoculum, suspended biomass
(bulk liquid) and biofilm was determined though metagenomics.
When collecting biofilm samples, the reactor was opened and the
tree structure was removed to collect a biofilm sample from the
meshes. All the biomass samples were pelletized by centrifugation at
10,000 × g for 10 min at 4°C immediately after collection. After

centrifugation, the supernatant was decanted, and 1 mL of DNA
shield was added before storing the samples at −20°C. The samples
were shipped with dry ice to Zymo for DNA extraction and
sequencing. The ZymoBIOMICS® -96 MagBead DNA Kit (Zymo
Research, Irvine, CA) was used to extract DNA using an automated
platform. Genomic DNA samples were profiled with shotgun
metagenomic sequencing. Sequencing libraries were prepared
with the KAPA™ HyperPlus Library Preparation Kit (Kapa
Biosystems, Wilmington, MA) with up to 100 ng DNA input
following the manufacturer’s protocol using internal single-index
8 bp barcodes with TruSeq® adapters (Illumina, San Diego, CA). All
libraries were quantified with TapeStation® (Agilent Technologies,
Santa Clara, CA) and then pooled in equal abundance. The final pool
was quantified using qPCR. The final library was sequenced on the
Illumina NovaSeq®. Raw sequence reads were trimmed to remove
low quality fractions and adapters with Trimmomatic-0.33 (Bolger
et al., 2014): quality trimming by sliding window with 6 bp window
size and a quality cutoff of 20, and reads with size lower than 70 bp
were removed. Microbial composition was profiled using sourmash
(Titus Brown and Irber, 2016). The full GTDB database (R07-
RS207) was used for bacterial and archaea identification. The
resulting taxonomy and abundance information were further
analyzed: (1) to perform alpha- and beta-diversity analyses; (2) to
create microbial composition barplots with QIIME (Caporaso et al.,
2010); and (3) to create taxa abundance heatmaps with hierarchical
clustering (based on Bray-Curtis dissimilarity).

Results and discussion

The treatment of HTL-aq needs the external
addition of nutrients

Information about the overall performance of RAnDMBr during
the treatment of HTL-aq can be found in Figure 1;
Supplementary Figure S3.

The system had a period of acclimatation of about 37 days before
the COD removal (69.0% ± 6.9% from day 30–115) and methane
yield (0.22 ± 0.03 LCH4 gCODfed

−1 from day 30–115) were stable
(Figure 1A). Such start-up period can happen when the source of
inoculum used is not coming from a reactor treating the same type of
substrate. Due to the lack of AD plants treating HTL-aq, an
inoculum from a nearby AD bioreactor was used instead. This
and the storage at 4°C for 17 days could be the reasons for the 37 days
acclimation period. During the first 25 days, the pH decreased
continuously from 8.1 to 6.9. To avoid inhibition by a low pH,
the organic loading rate (OLR) decreased from 0.5 to 0.2 g COD LR

−1

day−1 by increasing the HRT from 5 to 10 days, making the
pH increase until reaching a stable value of 7.5 on day 85
(Figures 1B, C). The decrease in pH was not due to an
imbalance of the microbial community because the VFA levels in
the reactor were low (<0.09 g VFA as COD L−1), it was due to a
dilution of the NH3 levels in the RAnDMBr caused by the
continuous addition of the feedstock (Figure 1C, Supplementary
Figures S3A, C). The inoculum used in this study came from a
digester with high levels of total ammonia nitrogen (1101.1 ±
12.6 mg NH3-N L−1) while the feedstock used during the first
25 days was diluted by a factor of 30 and had a total ammonia
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concentration of 138 ± 38.3 mg NH3-N L−1

(Supplementary Table S1).
From day 75, the OLR was increased slowly by decreasing the

dilution of HTL-aq in the feedstock and the process presented an
imbalance when the OLR reached a value of 1.0 g COD LR

−1 day−1 on
day 116 (Figure 1). In 40 days (116–166) the COD removal
decreased from 83.2% to 5% and methane production stopped.
Increasing the concentration of HTL-aq in the feedstock generated
an imbalance of the system that reduced the COD removal and
increased the VFA levels from 0.1 g VFA as COD L−1–1.8 g VFA as
COD L−1 in 40 days (Figure 1C; Supplementary Figure S3A). The
increase in VFA levels was mostly due to the inhibition of
methanogenic archaea since acetate represented 65%–68% of the
total VFA. In order to recover the system, the OLR was reduced to
0.5 g COD LR

−1 day−1 by decreasing the concentration of HTL-aq in
the feedstock (see Table 1). This allowed the system to recover
despite another imbalance due to an unexpected accident on day
205 where the reactor remained half empty for 5 days. Going back to
an OLR of 0.5 g COD LR

−1 day−1 allowed the VFA levels to decrease
to 0.02 g VFA as COD L−1 and the COD removal and methane yield
to increase to 62.6% ± 2.4% and 0.11 ± 0.06 LCH4 gCODfed

−1,
respectively (averages calculated from days 260–310) (Figure 1;
Supplementary Figure S3). Inhibition due to the accumulation of
VFAs when treating high concentrations of HTL-aq through AD has
been reported earlier (Fernandez et al., 2018; Si et al., 2018; Watson
et al., 2020; Li et al., 2022; Macêdo et al., 2024). However, other AD

studies using biofilms in AD achieved a COD removal of 60%–80%
with OLRs higher than 1.0 g COD LR

−1 day−1 (close to 2 g COD LR
−1

day−1) (Usman et al., 2019; Chen et al., 2020; Hao et al., 2020; Yang
et al., 2020). One of the reasons the RAnDMBr could not work at an
OLR higher than 0.5 g COD LR

−1 day−1 could be the low nutrients
concentration in the substrate (Supplementary Table S1). As seen in
Supplementary Figure S4 the COD:P of the substrate and the
digester content was not in the ideal range for anaerobic
digestion (400-17) (Thaveesri et al., 1995; Janke et al., 2017). In
this study, the HTL-aq was provided by PNNL and their HTL
system has a settling separation vessel to enhance the separation of
inorganics from the biocrude/HTL-aq mixture. The settling vessel
promotes the separation of phosphates from the HTL-aq, producing
a hydrochar rich in P that can use as fertilizer and an HTL-aq with
very low concentration of P for bioprocesses (Elliott et al., 2016). The
low levels of nutrients in HTL-aq made PNNL researchers to add
trace metals when growing Scenedesmus obliquus DOE 0152.Z and
Chlorella sorokiniana with HTL-aq from PNNL HTL system
(Edmundson et al., 2017). To avoid inhibition in the system due
to the lack of P and trace metals, on day 332 we started to mix the
feedstock with a solution rich in nutrients (details about the nutrient
stock solution can be found in Supplementary Table S4). On days
359 and 473 the OLR could increase to 1.0 g COD LR

−1 day−1 and
1.5 g COD LR

−1 day−1, respectively, without experiencing inhibition
or a change in pH, VFA levels, COD removal or methane yield
(Figure 1; Supplementary Figure S3). The need to add nutrients

FIGURE 1
Chemical oxygen demand (COD) removal and methane yield (A), hydraulic retention time (HRT) and organic loading rate (OLR) (B), and pH and
volatile fatty acids (VFA) accumulation (C). The vertical line indicates changes made to the OLR. The blue vertical line indicates when the nutrient solution
started to be added to the feedstock.
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suggests that co-digestion with a substrate like sewage sludge, sludge
centrate or HTL solids would be necessary to overcome the
deficiency of P and other nutrients in HTL-aq (Edmundson
et al., 2017).

The system was stable until day 521, when the OLR increased to
2.0 g COD LR

−1 day−1 and the COD removal and methane yield
decreased to 20.0% and 0.05 LCH4 gCODfed

-1, respectively. During
the last 79 days, the free ammonia levels were higher than ever
(53.4–63.5 mg NH3-N L−1) as well as the VFA (maximum of 4.3 g of
VFA as COD L−1). Acetate, propionate, butyrate, iso-butyrate, iso-
valerate and caproate contributed to the VFA levels during this
period. Increasing the concentration of HTL-aq in the feedstock
could have led to inhibition due to an increase in concentration of
free NH3 and phenolics, and nitrogen heterocyclic compounds (Si
et al., 2018). Similarly, Li et al. (2022) experienced inhibition of the
reactor when the proportion of HTL-aq in the feedstock increased.
The increase in HTL-aq proportion in the feedstock led to an
increase in the concentration of phenolics, and nitrogen
heterocyclic compounds which inhibited the activity
methanogenic and syntrophic populations (Si et al., 2018;
Watson et al., 2020). While free ammonia is also associated to
inhibition in AD, the values of free ammonia reported here
(53.4–63.5 mg NH3-N L−1) were below the limit of what is
considered inhibitory for AD (Chen et al., 2008). In another
study, the use of HTL-aq in AD after ammonia stripping did not
improve the stability of the digester under mesophilic conditions,
suggesting that ammonia inhibition is not a problem (Cox and
Eskicioglu, 2024). However, the conditions in Cox and Eskicioglu
(2024) (HRT of 20 days and dilution factor of 9.0) were less
aggressive than here (HRT of 6 days and dilution factor of 5.6).

Overall, the RAnDMBr could operate at and OLR of 1.5 ± 0.2 g
COD LR

−1 day−1 and HRT of 6.5 ± 0.6 days without inhibition and
removing 65.0% ± 2.5% of the COD. As mentioned earlier, there
have been reactor configurations that could work without inhibition
at OLR>1.5 g COD LR

−1 day−1 and still remove 60%–70% of the
COD (Usman et al., 2019; Yang et al., 2020). These studies were
using granulated activated carbon to grow biofilms. Granulated
activated carbon have shown the advantage of promoting DIET
and also absorbing recalcitrant compounds (Zhu et al., 2023). While
these two factors were not tested in this study, it is possible that the
RAnDMBr does not absorb recalcitrant compounds, making the
system more susceptible to inhibition when increasing the OLR.

Membrane fouling affects reactor operation
by decreasing the recirculation ratio

One of the challenges in the use of membrane bioreactors is
membrane fouling, which increases cost of maintenance and
operation through increased membrane cleaning, replacement
costs and power requirement (Nabi et al., 2023). Membranes can
get clogged by the accumulation and deposition of microbes, cell
debris, collides and solute on the surface and in the pores of
membranes, increasing TMP or decreasing flux and making it
hard to achieve low HRTs (0–1 day). The dynamic membrane
bioreactor used in this study is different from other systems
because flux from the inside to the outside of the bioreactor was
not continuous. Here, the reactor bulk liquid would be recirculating

through the membrane back into the reactor for a period of time tR.
For a period of time tP the bulk liquid would cross the membrane
and be discharged as permeate (tp + tR = 24 h, see Supplementary
Figure S1D). Values on the recirculation ratio and the reactor flux
and TMP are presented in Figure 2.

For the first 15 days the flux increased gradually from 7.0 to
19.0 Lm−2 h−1 (LMH) by increasing the speed of the peristaltic pump
in order to decrease the HRT to 5 days (Figure 2). When the HRT
was increased back to 10 days the flux was reduced from 19.0 to
7.5 LMH by decreasing the speed of the peristaltic pump. For the
first 38 days the recirculation ratio was constant around 20.0 L LR

−1

but the membrane started to show symptoms of fouling on day 38,
reducing the flux to 3.1 LMH and increasing the HRT to 17–20 days.
To bring the HRT back to 10 days, the flux decreased to 1.4 LMH by
increasing the permeation time (tP). Increasing tP allowed us to
discharge again 0.5 L of permeate per day to keep the HRT at
10 days, but tR needs to decrease when increasing tP, making the
recirculation ratio to decrease from 20.0 L LR

−1–7.0 L LR
−1.

When the COD removal started to decrease on day 116 it was
decided to increase the recirculation to 5.5 on day 155 in order to
give more opportunity to the microbial community in the biofilm to
degrade COD further (Figure 2). This strategy was not successful
because, as mentioned in the previous section, nutrients needed to
be added to the feedstock. From days 155–359 the reactor operated
at a recirculation ratio of 5.5, a TMP of 69.6 ± 5.27 kPa and a flux of
1.1 ± 0.3 LMH (Figure 2). On day 359 it was decided to decrease the
HRT to 5 days by increasing tP and decreasing tR, which made the
flux, the recirculation ratio and the TMP to decrease (averages from
days 359–472, see Figure 2). Increasing the OLR made the TMP to
increase to 73.4 ± 2.8 kPa keeping the flux (0.6 ± 0.1 LMH) and
recirculation ratio (1.5 L LR

−1) to similar values (average from
days 473–600).

For most of the days, the RAnDMBR operated at fluxes of
0.5–1.5 LMH, which would be considered very low for typical
dynamic membrane bioreactors that usually operate at HRTs
lower than 1 day (Fairley-wax et al., 2022; Nabi et al., 2023;
Samaei et al., 2023). In this study the RAnDMBR could work at
an HRT of 5.6 ± 2.3 days without the need of fouling mitigation
strategies. However, having such a low flux made the RAnDMBR to
operate at a low recirculation ratio too (1.5 L LR

−1). The purpose for
using the RAnDMBR is to promote biofilm growth and extent the
contact between substrate and microorganisms by providing
advective substrate transport. Increasing the recirculation ratio
would promote advective transport and biofilm growth.
Therefore, it could be possible to increase the OLR and operate
the RAnDMBr without inhibition by applying recirculation ratios
higher than 1.5 L LR

−1. However, this would require the
implementation of a fouling mitigation strategy. There are
different fouling mitigation strategies that have been tested in
anaerobic membrane bioreactors. Some of them are physical
methods (e.g., gas sparging and vibration), chemical methods
(e.g., cleaning the membrane with hypochlorite, ozonation or
UV), biological methods (e.g., quorum quenching and
bacteriophages) or electrochemical methods (e.g., electro-
coagulation or reactive electrochemical membranes). Some
reviews have been published having more information about the
different methods (Tomczak et al., 2023; Min et al., 2024). Future
research should focus on comparing fouling mitigation strategies
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that are not cost-intensive (like relaxation) to increase the
RAnDMBR recirculation ratio and prove this hypothesis (Samaei
et al., 2023).

The RAnDMBR had a microbial community
with aromatic degraders, syntrophs and
methanogens with a higher relative
abundance of methanogens in the biofilm

Figure 3; Supplementary Figure S5 show the microbial
community composition in the biofilm and suspended biomass
(bulk liquid) samples collected from the reactor. We were able to
get resolution of our microbial community up to the genus level.

While this is not enough to have a very thorough detail of the
mechanisms taking place in the reactor it gives information about
some of the microbial reactions that were taking place during our
experiment. Overall, we see populations that are crucial for the
degradation of HTL-aq such as genera able to degrade aromatic
compounds (Pseudomonas_C, Anaerolinaceae_T78, Acinetobacter
and Syntrophorhabdus) able to perform DIET and syntrophy
(Syntrophosphaera, Cloacimonas, Syntrophus) and methanogens
(Methanothrix, Methanobacterium, Methanosarcina and
Methanospirillum). Such populations have also been identified in
other studies where HTL-aq was degraded through AD (Chen et al.,
2017; Si et al., 2018; Usman et al., 2019; Yang et al., 2020; Mao et al.,
2021; Wang et al., 2022). Figure 4 shows a Principal Coordinate
Analysis (PCOA) of the suspended biomass and biofilm samples.

FIGURE 2
Transmembrane pressure (TMP), flux and recirculation ration. The vertical line indicates changes made to the OLR. The flux and recirculation ratio
are reported since day 0 but TMP was only measured from day 92–600.

FIGURE 3
Relative abundance of dominant groups in the inoculum and biofilm samples collected from the recirculating anaerobic dynamic membrane
bioreactor over time. Only genera present at relative activities greater than 1% in at least 6 samples or present at a relative abundance of 5% at least once
are shown.
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Changes in the OLR/HRT (days 25, 75, 115, 166, 359, 473, 521,
and 600), the inhibition episodes (days 162 and 212) and the addition
nutrients (day 332) could be a cause for the microbial community to
change. However, only inhibition had the most drastic effect on the
microbial community structure. The increase in VFA during the
inhibition of the reactor caused changes in the methanogenic
populations. For example, methanogens that are more resistant to
high VFA levels (Methanobacterium) increased while Methanothrix
decrease. After the reactor recovered on day 239 the microbial
community structure did not go back its previous composition
(Figure 4). In the suspended biomass and biofilm samples there
was an increase in relative abundance of Bacteroidales_TTA-H9,
Brachymonas, and Methanosarcina and a decrease in Methanothrix
(Figure 3; Supplementary Figure S5). Brachymonas has been
associated with the degradation of alicyclic hydrocarbons like
phenol and production of EPS under anoxic conditions (Zheng
et al., 2020). However, since the reactor operated under anaerobic
conditions, it is unclear if this was its role. This is not the first time that
Brachymonas is present at high relative abundance in AD and its
function is still unresolved (Pervin et al., 2013). The increase in VFA
levels (specially acetate) changed the methanogenic pathway from
hydrogenotrophic to acetoclastic in the suspended biomass and
biofilm samples between days 253–331. Before the inhibition event
took place, the reactor probably produced methane by combining
Syntrophosphaera, a syntrophic propionate oxidizer, with
hydrogenotrophic methanogens (Methanothrix, Methanobacterium
and Methanospirillum) (Figure 3; Supplementary Figure S5). These
two types of population were already present in the inoculum which
presented high levels of ammonia (125.1 mg NH3-N L−1), a condition
that would favor acetate and propionate syntrophic oxidation and
hydrogenotrophic methanogenesis. The increase in acetate during the
inhibition period increased the relative abundance ofMethanosarcina
to 4.4%–17.6% in the suspended biomass and in the biofilm. After day
331 the relative abundance of Methanosarcina decrease to 1.7% in the

suspended biomass and biofilm samples, suggesting that the
hydrogenotrophic pathway was again the dominant for methane
production.

The addition of nutrients in the system from day 331 did not present
a significant change in the microbial community. After that, the OLR
increased to 1.1 g COD LR

−1 day−1, 1.5 g COD LR
−1 day−1 and 2.0 g COD

LR
−1 day−1. The increase in OLR caused changes in the microbial

community, especially when the OLR increased to 2.0 g COD LR
−1

day−1, although not as drastic as when the systemwas previously inhibited
(Figure 4). The increase in VFA when the OLR increased to 2.0 g COD
LR

−1 day−1 increased the relative abundance of Methanosarcina to 5.5%.
However, the relative abundance of methanogens in the biofilm and in
the suspended biomass decreased, which could explain the decrease in
COD removal (Supplementary Figures S6, S7).

The PCOA plot shows that the microbial community structure
in the reactor changed with time and that the microbial community
in the biofilm and suspended biomass samples collected on the same
day were different (Figure 4). In comparison to the biofilm, the bulk
liquid presented a higher relative abundance of genera able to
degrade aromatic compounds (Supplementary Figure S7), a
similar relative abundance of genera able to perform syntrophy
or DIET (Supplementary Figure S8) and a lower relative abundance
of genera able to perform methanogenesis (Supplementary Figure
S6). It is common to see in anaerobic membrane bioreactors biofilms
with a higher relative abundance and activity of methanogens
(Smith et al., 2015). In fact, the high activity and presence of
microbial populations in biofilms makes membrane bioreactors a
very suitable technology to perform resource recovery at low HRTs
(Smith et al., 2015; Fairley-wax et al., 2022; Shrestha et al., 2022). The
fact that the RAnDMBr had a higher relative abundance of
methanogens in the biofilm could be the reason that 65% of the
HTL-aq COD was degraded at a low HRT (5 days). However, RNA-
based analyses would be necessary to further confirm that the
biofilm had a higher methanogenic activity as well. Moreover,

FIGURE 4
Principal coordinate analysis (PCOA) plot based on Bray-Curtis distance of microbial community in inoculum, biofilm and suspended biomass
samples over time. The numbers represent the days of sampling.
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determining if DIET took place in the biofilm would require more
analysis than studying relative abundance only.

The results from this study provide information for process
development and future applications. Future work should focus on
the use of a co-substrate to supply the lack of P in the HTL-aq, and
on the possibility to increase the OLR through the increase of the
recirculation ration. Moreover, the RAnDMBR could be
implemented in AD facilities by implementing an external
membrane similar to the one used in this study.

Conclusions

The RAnDMBr was able to treat diluted HTL-aq (dilution factor of
7.5) and degrade 65% of the COD at 1.5 ± 0.2 g COD LR

−1 day−1 and
5.6 ± 2.3 days producing 0.19 ± 0.02 LCH4 gCODfed

−1. The system
presented severe inhibition after the OLR increased to 2.0 g COD LR

−1

day−1. During this study it was necessary to add a solutionwith nutrients
in our feedstock to overcome P deficiency in HTL-aq. Future research
should focus on the addition of a co-substrate to provide P and study
the impact of the co-substrate addition on the reactor performance and
on the microbial community structure and activity. Future research
should also focus on increasing the recirculation ratio in the system by
implementing fouling mitigation strategies. This could enhance
advective substrate transport and enhance the degradation of
recalcitrant compounds, allowing the system to operate at higher OLRs.
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