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This study seeks to understand the impact of uncertainties in the solvent property
submodel on the design and cost of the solvent-based CO2 capture process.
First, a deterministic model of the MEA-based CO2 capture process using the
CEMCAP reference cement plant case was developed and validated in the
CO2SIM flowsheet simulator. Subsequently, a stochastic approach using the
Monte Carlo simulation framework was applied by coupling the validated process
model andUQLab, aMATLAB-based uncertainty quantification toolbox. Based on
this, the implications of these uncertainties on key performance indicators are
derived: CO2 capture ratio, specific reboiler duty, reboiler duty, condenser duty,
lean rich heat exchanger duty, and lean and rich loading. Finally, the impact of
these uncertainties on equipment design and the CO2 avoidance cost are
assessed and discussed. The results show that heat exchanger duty
uncertainty falls within the overdesign margin commonly used in engineering
practice. However, the CO2 avoidance cost exhibits significant uncertainty linked
to solvent properties (~5.2%) that are mainly linked to uncertainty in the CO2

capture ratio. Hence, a key element in reducing CO2 avoidance cost uncertainty
may be to validate suitable absorber height to guarantee, with a reasonable
confidence, a 90% capture ratio via pilot testing.
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1 Introduction

Process simulation and modeling tools have made a valuable contribution to the
development and deployment of solvent-based CO2 capture systems. They are widely
utilized to simulate and predict key performance indicators (KPIs) within the context of
design and operational possibilities, techno-economic feasibility, and the energy integration
and reduction aspects of the process (Gardarsdottir et al., 2019; Neveux et al., 2013). Despite
the broad implementation of computational tools for this process, the level of confidence in
the evaluation of these KPIs often entails questions due to the presence of inherent
uncertainties in the process models.

Furthermore, many of these modeling activities for solvent-based CO2 capture are
performed under a deterministic setting (i.e., with set values not considering possible
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uncertainties). Although the use of deterministic simulation models
has proven its capability in reasonably predicting process design
performance, it is important to assess and understand the impact of
uncertainties on KPIs, especially for novel systems such as CO2

capture. This is also known as a “stochastic simulation model”
(Diwekar and Rubin, 1991). In the research area of uncertainty
quantification (UQ), a stochastic simulation uses a probabilistic
approach that allows the specification of boundaries for uncertain
inputs, leading to the estimation and display of the probability of
various model KPIs, which is considered more informative. This, in
turn, will not only help to test the robustness of model predictions
but also maximize the knowledge gained specifically for process
performance and cost evaluations of the CO2 capture process.

The application of UQ has been gaining popularity in the field of
solvent-based CO2 capture technologies as described in our
previously published mini-literature review (Kuncheekanna and
Jakobsen, 2023). Based on the existing literature, few studies have
focused on demonstrating the effect of solvent property submodels
on KPIs such as the percentage of CO2 captured and CO2 loading
within the UQ framework (Morgan et al., 2015; Morgan et al., 2017;
Soares Chinen et al., 2018). Meanwhile, very few additional studies
have attempted to demonstrate the impact of solvent property
submodels on the design and cost analysis of absorption units
using a sensitivity analysis approach (Nookuea et al., 2015, 2016;
Øi and Karunarathne, 2021). However, we argue that the reported
literature is lacking; first, a consideration of the possible interaction
and combined effects in solvent property submodels and, second,
performance under the probabilistic modeling approach that allows
prediction in the overall variation in the system behavior when a
range of input uncertainty is accounted for. Additional to these
arguments, the effect of solvent property uncertainty on the
assessment of confidence in the process performance of major
equipment in the full-scale CO2 capture process model, including
economic performance, does not seem to have been evaluated. There
is a need to establish more reliable predictions in economic KPIs of
CO2 capture systems that account for fundamental uncertainties.

In our previous research (Kuncheekanna and Jakobsen, 2023;
Kuncheekanna et al., 2020), the application of Monte Carlo UQ
propagation methodology on a CO2-MEA solvent-based absorber
model was illustrated. This effectively established the foundation for
applying UQ methodologies for the CO2 absorber column process
model to understand the confidence in the CO2 capture ratio (CCR),
taking into account uncertainties in solvent property submodels.
Consequently, a visible range of variation in the prediction of CO2

absorber column sizing and cost was shown. It has thus become
apparent that explicitly quantifying the uncertainties and integrating
uncertainty analysis during the modeling phase for CO2 capture
processes is beneficial. Furthermore, these analyses can profoundly
increase the understanding of the technical and cost performance of
CCS technologies for modeling practitioners as well as for policy and
decision makers (van der Spek et al., 2020). Therefore, this research
intends to build on previous studies by expanding the scope of
research to understand the overall effect of solvent property
uncertainties across a full-scale CO2 capture process model. In
order to achieve this, a Monte Carlo uncertainty analysis
framework using UQLab V2.0 tool (Marelli and Sudret, 2014) is
integrated with the CO2SIM flowsheet simulator (Einbu et al., 2022),
developed by SINTEF Industry, to evaluate the impact of

uncertainties in MEA solvent property submodels on the
performance of the solvent-based capture process. This includes
the design of different parts of the capture process (i.e., condenser,
reboiler and lean-rich heat exchanger), CO2 capture ratio, and
ultimately, the economic KPIs of the overall capture process.

The paper is organized as follows. Section 2 describes the
simulation of the CO2 capture process model employed,
including the key inputs to the simulation, the methodology for
the stochastic approach applied for the uncertainty analysis, and cost
estimation. Section 3 presents the simulation results of the
deterministic process model, stochastic effect of the uncertain
inputs on the selected key performance indicators for the overall
capture performance, and a cost impact analysis. Finally, some
concluding remarks are made in Section 4.

2 Methodology

2.1 Deterministic baseline case for CO2
capture process simulation

This section presents the essential details of the deterministic
baseline case of the CO2 capture process model, simulation
approach, and the process simulator before navigating through
the different elements of implementing the end-to-end UQ analysis.

2.1.1 Process description
In this study, stochastic uncertainty analysis is performed on a

steady-state CO2 capture model of a typical solvent-based full-scale
absorption process (Figure 1). The case consists of removing CO2 in
the flue gas generated from a cement production plant using 30 wt%
monoethanolamine (MEA) solvent. The process consists of five
major pieces of equipment which are assessed in this study; an
absorber column, a stripper column, a lean-rich heat exchanger, a
cooler, and a reboiler. The flue gas received from the cement plant is
first cooled in the direct contact cooler (DCC) to approximately 40°C
and subsequently introduced to the absorber. The flue gas then flows
upwards through the absorber countercurrent to the lean solvent
flow (cold lean amine stream) where the CO2 in the flue gas reacts
with the solvent. The solvent heats as it gradually absorbs CO2, with
the temperature inside the absorber typically being between 40°C
and 60°C and at 1 atm. The treated gas is then sent to a water wash
column and vented to the atmosphere, while the condensed water is
recovered and recycled back to the rich solvent (cold rich amine
stream). The water wash unit is used to control the amount of water
in the entire system as well as to reduce degradation products in the
treated gas. The condensed water from this unit is recycled back to
the rich solvent pump. The rich solvent from the bottom of the
absorber is then transferred to the top of the stripper via a lean rich
heat exchanger. In the stripper, CO2 and MEA solutions were
separated from the rich solvent mixture by heating between
110°C and 120°C and at a slightly higher atmospheric pressure of
1.8–2 atm. Typically, a slightly higher pressure than atmospheric
pressure is selected for the stripper to gain advantage of reducing
energy and sizing requirements. In this study, this pressure is chosen
to match similar operating conditions implemented in the CO2

capture from a cement plant process model for the CEMCAP project
(Voldsund et al., 2019). The stripper is connected to the reboiler,
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providing heat requirements for solvent regeneration. The
regenerated solvent (hot lean amine stream) is then pumped
back to the absorber via the lean/rich heat exchanger that allows
heat recovery from the hot lean solution to the cold rich solution to
reduce the temperature. A trim cooler is used to further cool the lean
solution before entering the absorber. The high-purity CO2 from the
top of the stripper is separated from the solvent in a flash separator
(condenser unit) and is sent for additional conditioning to reach the
transport specifications. The condensate stream (Condenser to
Mix01 stream) from the separation is then recycled back to the
top of the stripper column.

The steady-state rate-based CO2 capture process model shown
in Figure 1 was simulated using the flowsheet simulator CO2SIM
version 7.1.0.5 (Einbu et al., 2022; Tobiesen et al., 2007). This is
proprietary in-house software developed by SINTEF and NTNU
which is specifically dedicated to model solvent-based CO2

absorption post-combustion. The existing process setup was
adapted as a basis for the MEA-based CO2 capture simulation
model (Tobiesen et al., 2017). While the adopted reference case
in the existing simulation includes a DCC and a flue gas fan, these
are here excluded as they are not impacted by uncertainties in
solvent properties. This current model and the specific flowsheet
tool have been selected for this study as it is an advanced platform
specifically for modeling the CO2 absorption process and for
developing various solvent systems. It is a well-validated process
modeling tool against pilot plant experimental data over a wide
range of operating conditions and with various amine solvents.
Performing uncertainty analysis for a complex model can be
computationally demanding. The process was simulated using the
inbuilt CO2SIM soft model thermodynamic fluid package expressed
as temperature- and loading-dependent polynomial correlations to
account for the vapor liquid equilibrium (VLE). The simulator also
includes other important thermo-physical solvent property
submodels to represent the heat and mass transfer, chemical
reaction kinetics, and internal column hydraulics required to

solve the complex reactive absorption process. More comprehensive
knowledge about the underlying rate-based model implementation,
including the soft model for VLE and property submodels, is described
in detail in Einbu et al. (2022), Kvamsdal et al. (2011), Tobiesen et al.
(2008), and Tobiesen et al. (2007).

2.1.2 Case study and process simulation input
specifications

In the present study, the case of CO2 capture from a cement
plant is considered based on the Horizon 2020 CEMCAP project
(Gardarsdottir et al., 2019; Voldsund et al., 2019). The design of the
CO2 capture plant is thus based on Anantharaman et al. (2017) and
Voldsund et al. (2018). The deterministic baseline case with the flue
gas conditions from the stack during the second part of the year is
used for the equipment sizing and economic evaluation in
Gardarsdottir et al. (2019). Therefore, the flue gas composition
and specification of this scenario will be considered for the
process simulation. The composition is extracted directly from

FIGURE 1
Process flowsheet for the deterministic 30 wt%MEA-based CO2 capture plant modeled using the CO2SIM flowsheet simulator. The dashed lines are
the selected equipment for the stochastic cost analysis.

TABLE 1 Input specifications of the flue gas at the absorber inlet for the
CO2SIM simulator.

Flue gas specification Value Unit

Mass flow rate 388 098 kg/h

Temperature 40 ˚C

Pressure 1.1 bar

Mole fraction (wet basis)

CO2 0.1845

N2 0.6459

H2O 0.0670

Inert 0.1026
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the inlet to the absorber (outlet streamDCC) stream data (Voldsund
et al., 2019). Table 1 shows the specific input data of the flue gas
stream provided in the CO2SIM simulator.

The selected operating parameters for the main units as input to
the CO2SIM simulator are summarized in Table 2. The approach
here is to simulate the process model using the plant design
specification as the CEMCAP simulation case using Aspen
HYSYS V9 (Voldsund et al., 2019), except for some inputs that
need to be adjusted to achieve a similar 90% CO2 capture ratio
scenario since the CO2SIM simulator is used in this study. In
addition, the following specifications and assumptions are
required to solve the developed close-loop flowsheet of the rate-
based model uniquely in the CO2SIM simulator,

a) Sulzer Mellapak 250Y structured packing is adopted for both
absorber and stripper columns in the CO2SIM simulator.

b) The absorber and stripper column packing heights and
diameter are fixed based on the equipment design used for
economic analysis in CEMCAP project specification
(Gardarsdottir et al., 2019).

c) The sizing of the lean rich heat exchanger is defined by
specifying the minimum temperature approach at 10°C
following CEMCAP project specifications, and the pressure
is set to the inlet pressure by default.

d) Lean solvent trim cooler temperature is fixed at 40°C for the
absorber inlet, and the condenser temperature is set to 30°C
following the CEMCAP project specification.

e) As per CEMCAP project specifications, lean and rich
loading of 0.22 and 0.5 mol CO2/mol MEA, respectively,
are required to achieve CCR of 90%. However, in the
CO2SIM simulator, both rich and lean loadings are
calculated for the closed-loop flowsheet where rich
loading is based on overall absorber performance and
lean loading is based on the reboiler duty and solvent
circulation rate (Einbu et al., 2022).

f) For the whole flowsheet simulator to be solved with MEA
concentration and for plant water balance and overall material
balances to be maintained, the lean solvent circulation rate
must be supplied as an input to the control block unit (Einbu
et al., 2022). Therefore, lean solvent flowrate will be tuned to

TABLE 2 Key process specification used for simulating the CO2 capture closed-loop process flowsheet as shown in Figure 1.

Specificationa Value In CO2SIMb

Absorber column

Packing height 20 m Fixed

Diameter 7.8 m Fixed

Stripper column

Packing height 9 m Fixed

Diameter 5.2 m Fixed

Lean solvent

MEA concentration 30 wt% Fixed

Molar flow rate 60400 kmol/h Adjusted

Lean loading 0.22 mol CO2/mol MEA Calculated

Rich loading 0.5 mol CO2/mol MEA Calculated

Lean solvent trim cooler

Temperature 40 °C Fixed

Reboiler

Temperature 128 °C Adjusted

Pressure 2 bar Fixed

Lean rich heat exchanger

Temperature approach 10 °C Fixed

Condenser

Temperature 30 °C Fixed

Rich solvent pump

Discharge pressure 6.09 bar Fixed

aListed operating conditions and parameters are based on the specification given in the CEMCAP project.
bParameters fixed similar to CEMCAP, adjusted or calculated in CO2SIM, simulator to achieve a similar 90% capture performance case.

Frontiers in Chemical Engineering frontiersin.org04

Kuncheekanna et al. 10.3389/fceng.2025.1537880

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2025.1537880


achieve the 90% CO2 capture performance, and simulation
convergence can be achieved.

g) As per CEMCAP project specifications, the regenerator
reboiler requires 96–97 MW steam, corresponding to
3.76–3.80 MJ/kg CO2 specific reboiler duty at 128°C.
However, for this closed-loop flowsheet case, the reboiler
temperature will be tuned and given a constraint not
exceeding 128°C while setting the pressure at 2 bar to reach
CCR at 90%. This will allow the study of impact of the
uncertainties in the reboiler duty and its associated cost as
the model output.

h) The discharge pressure of the rich solvent pump is set to
6.09 bar as per CEMCAP project specifications.

2.2 Stochastic uncertainty analysis

In this section, the steps to perform stochastic uncertainty
analysis are elaborated by describing the identification of sources
of uncertainties pertaining to the CO2 capture process model, the
uncertainty propagation methodology, and the defined key
performance indicators (KPIs) as the process model outputs.

2.2.1 Selection of uncertain inputs and key
performance indicators as stochastic output

Solvent characteristics such as absorption capacity, kinetics,
mass transfer, energy performance for solvent regeneration, and
thermal and chemical stabilities are typically sources of uncertainty
for the performances and design of the solvent-based CO2 capture
process, hence impacting its cost (Borhani and Wang, 2019). An
accurate knowledge of solvent properties may thus be essential to
assess CO2 capture processes precisely. Solvent properties are
typically represented using appropriate semi-empirical and
empirical correlations which are then incorporated into the
process model. While numerous correlations are reported in the
literature, these correlations may differ in their accuracy and
applicability depending on the specific solvent-based CO2 capture
system. The accuracy and applicability of these submodel
correlations are induced by uncertainties that can arise from
different sources such as measurement accuracy and regression
uncertainties. By using the different options for solvent property
models in rate-based capture models, significant prediction

variations can be encountered, especially for the CO2 absorption
efficiency which defines overall capture performance (Kvamsdal and
Hillestad, 2012; Luo and Wang, 2017; Mota-Martinez et al., 2017;
Putta et al., 2017a; Putta et al., 2017b).

As we previously discussed (Kuncheekanna and Jakobsen, 2023;
Kuncheekanna et al., 2020), the MEA solvent property submodels
were quantified as the uncertain stochastic parameters of the
planned uncertainty analysis. The corresponding submodels are
based on the correlation models adopted in the CO2SIM tool.
Therefore, this research focused on the characterization and
quantification of the uncertainty in the MEA property submodels
selected based on the solvent property packages applied in this
simulator. The selected list of the stochastic parameters along with
the uncertainty range adopted is shown in Table 3.

The uncertainties in the submodel prediction values are
represented by a probability density function (PDF). Hence, the
characterization of uncertainty may benefit from summarizing all
the experimental dataset and fit distribution profiles for each of the
solvent submodels considered to give a more credible distribution
range. However, this is a challenging and time-consuming
endeavor when multiple model correlations are available for the
specific solvent property. In this study, the uncertainty range for
the dedicated solvent property submodels are selected based on the
literature and expert knowledge. The uncertainty range based on
expert opinion implies that it is based on the degree of belief in the
uncertainty distribution based on existing knowledge. For this
study, this judgment pertains to the collected information from
various experimental studies within the solvent absorption group
in NTNU. Regarding the literature-based uncertainty range, the
range is chosen either based on the maximum absolute percent
deviation (MAD) or average absolute deviation (AAD) values
found in the respective references shown in Table 3. The MAD
and AAD values typically depict the difference between the
experimental dataset and the outputs predicted by the
correlation submodels. We have also previously explained this
(Kuncheekanna and Jakobsen, 2023). The uncertainty in a
submodel is assumed to vary from their nominal
(i.e., deterministic) values estimated in the simulation where a
wider range implies that the solvent property is more uncertain
and a narrower range is less uncertain. It was furthermore assumed
that each uncertain submodel has a normal type of uncertainty
distribution.

TABLE 3 Summary of the uncertain stochastic parameters for 30 wt% MEA solvent model for CO2SIM with their uncertainty range.

Stochastic model parameters Uncertainty range (%) Reference

Density ± 10 Cheng et al. (1996)

Surface tension ± 8 Vázquez et al. (1997)

Viscosity ± 10 Weiland et al. (1998)

Solubility ± 12 Austgen et al. (1989)

Enthalpy flowa ± 10 Cheng et al. (1996)

Heat of absorption ± 13 Mathonoat et al. (1997)

Reaction kinetic rate constant ± 25 Abhoudheir et al. (2003)

Diffusivity ± 20 Versteeg et al. (1996)

aChange in the enthalpy flow will account for the liquid phase heat capacity submodel in the CO2SIM simulator (Tobiesen et al., 2007).
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As our aim is to understand the impact of solvent property
uncertainties on the overall design and cost of the capture process,
the impact of these uncertainties on the following four aspects will
be computed.

• The heat duty of the reboiler, which impacts the required
equipment size and thus the cost;

• The heat duty of the lean-rich heat exchanger, which impacts
the required equipment size and thus cost;

• The heat duty of the condenser, which impacts the required
equipment size and thus cost;

• The CO2 capture ratio, which is the percentage of the CO2

extracted from the flue gas in the absorption column, and is
thus linked to the quantity of CO2 to which cost is normalized.

With the absorber and desorber characteristics being set, these
fours parameters are those with the strongest impact on the plant
design and cost (Gardarsdottir et al., 2019). Further details on how
these parameters are subsequently linked to cost are presented
in Section 2.3.

2.2.2 Uncertainty propagation approach
AMonte Carlo simulation (MCS) approach is employed here in

order to perform the uncertainty analysis. This is done by using the
UQLab software package V2.0 developed by ETH Zurich (Marelli
and Sudret, 2014). This open-source MATLAB-based tool supports
interfaces with existing third-party software in a nonintrusive
approach also known as “black box-type”. As the CO2 capture
process flowsheet built in CO2SIM can be executed in MATLAB
from the GUI functionality, the UQLab tool can be rather easily
integrated with CO2SIM to evaluate the impact of the desired
uncertainties. Based on the UQLab user manual, the model

module (Lataniotis et al., 2015), the coupling of CO2SIM is
achieved using a code wrapper—a plug-in that allows the
execution of the external software as a simple function that
possess a similar input–output format to UQLab algorithms.

By exploiting the different software interfaces, the overall
stochastic modeling framework setup shown in Figure 2 is
employed in this work. The computational setup of the UQLab
tool consists of creating three required modules with specific
configurations: (1) an input module, (2) a model module, and (3)
an analysis module. The first step to create an input module in
UQLab is to define the uncertain variables by assigning a statistical
description using probabilistic distribution. A probability
distribution is expressed in terms of a probability density
function (PDF) that requires the specification of distribution
moments or parameters, such as mean and standard deviation.
The marginal distribution for the selected uncertain stochastic
parameters from Table 3 are estimated based on the 95%
confidence interval of the uncertainty range. The nominal value
(i.e., mean) is determined by the model correlation output, and the
standard deviation value is estimated based on the 95% confidence
interval following a standard normal distribution.

The second step, the computational model created as a
MATLAB m-file, is used as a model module in the UQLab
platform. In the final step, the uncertainty analysis module can
be deployed where the Monte Carlo method is applied. The basic
framework of the Monte Carlo simulation technique consists of
generating sample points (i.e., stochastic values) from the selected
solvent property submodels. In this case, the samples were drawn
from the assumed probability density function (PDF) for each of
the uncertain submodels. The joint probability distribution for all
eight uncertain submodels was constructed with the assumption
that all eight were independent. This implies that the resulting

TABLE 4 Comparison of performance parameters based on the CEMCAP capture reference case using Aspen HYSYS V9 with CO2SIM simulator.

CEMCAP using Aspen HYSYS V9 CO2SIM Percentage differencea

CO2 capture ratio (%) 89.9 90 0.11%

CO2 product purity (mol fraction) 0.9686 0.9784 1%

Lean solvent flow rate (kmol/s) 16.78 18 7%

Solvent lean loading (mol CO2/mol MEA) 0.22 0.19 14%

Solvent rich loading (mol CO2/mol MEA) 0.5 0.482 4%

Condenser duty (kW) 32252 32466 0.6%

Reboiler temperature (˚C) 128 119 7%

Reboiler duty (kW) 96259 97521 1.3%

Specific reboiler duty (SRD) (MJ/kg CO2) 3.8 3.83 0.78%

Lean rich heat exchanger duty (kW) 86858 92105 5.9%

P04a (˚C) 49.3 49.1

Hot rich amine to flashb (˚C) 102.3 108.9

Hot lean amineb (˚C) 118.4 118.9

Cold lean amineb (˚C) 40c 40c

aPercentage difference = |(CEMCAP value–CO2SIM value)/[(CEMCAP value + CO2SIM value)/2]| * 100.
bStream name is according to CO2SIM flowsheet setup shown in Figure 1.
cTemperature downstream lean amine cooler directly to absorber column as shown in CEMCAP project and CO2SIM flowsheet setup shown in Figure 1.
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samples are a product of the marginal distribution of each of the
submodels. For the purpose of the analysis, a 1,500 sample size was
used, and a series of repeated simulation evaluations were then
performed to propagate the uncertainties simultaneously across
the full CO2 capture process model. The choice of sampling
strategies is necessary, and as the UQLab tool includes a variety
of sampling strategies, the Sobol sequence strategy was
implemented. According to our previous study (Kuncheekanna
and Jakobsen, 2023), the Sobol sequence strategy was
computationally more efficient to achieve the targeted accuracy
for the KPI. This was measured through convergence analysis
based on the sensitivity of the rate of convergence with sample size.
Therefore, a sample size of 1,500 equivalent to the number of
simulation runs was chosen for this study. To make inferences
about the uncertainty in the model predictions, the resulting model
outputs with respect to statistical outputs (i.e., minimum,
maximum, percentiles, and mean) were then used to construct
the distribution profiles using PDF plot. Subsequently, the lower
and upper uncertainty bounds were then plotted from the
deterministic output values generated from the simulated
baseline capture case.

Additional computational details and functionalities of the
UQLab required to complete the present uncertainty analysis
study are described in Kuncheekanna and Jakobsen (2023).

2.3 Cost estimation methodology

The impact of the solvent property uncertainties on the cost
evaluation of the CO2 capture process is measured via the CO2

avoidance costs (CAC) (Roussanaly, 2019). The evaluation of the
CAC is performed following the CAC definition and the approach
adopted in the CEMCAP evaluations (Gardarsdottir et al., 2019).
The cost of CO2 avoided (CAC), in €/tCO2, is evaluated based on the
cost of clinker and the equivalent specific emissions of the cement
plant with and without CO2 capture, as per Equation 1:

CAC � COC − COCref

eclk,eq,ref − eelk,eq
, (1)

where eclk,eq is specific equivalent emissions per ton of clinker for the
cement plant with and without CO2 capture, eclk,eq,ref , and COC is
the cost of clinker of the cement plant with and without CO2

capture (COCref).
Figure 3 illustrates the steps adopted to evaluate the CAC. First,

based on the duty distributions obtained for the three heat
exchangers (reboiler, lean-rich heat exchanger, and cooler), heat
exchanger areas of these units were calculated (Cinti et al., 2018) for
a wide percentile range of the uncertainty distributions obtained
(min, P2.5, P5, P10, P25, P50, P75, P90, P95, P97.5, max, and the
mean). From these, direct equipment costs can be calculated using

FIGURE 2
Deterministic and stochastic modeling framework setup for design and cost performance analysis.
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the Aspen Process Economic Analyzer and then escalated to a
corresponding total capital requirement (TCR) following the
bottom–up approach presented in Gardarsdottir et al. (2019) for
consistency. Subsequently, a difference compared to the TCR of
these units in the CEMCAP evaluation can be estimated and used to
compute an updated TCR for the complete capture process and,
subsequently, an updated cost of clinker. It is worth noting that the
updated duties are also used to estimate updated utilities
consumptions.

Similarly, based on the CO2 capture ratio distribution obtained,
an updated amount of CO2 capture can be computed for the
different percentiles. Subsequently, updated specific equivalent
emissions per ton of clinker can be computed.

Finally, based on the estimated updated TCR, utilities
consumption, and specific equivalent emissions per ton of
clinker, updated CAC values for the percentiles are computed.

3 Results and discussion

3.1 Deterministic analysis and
validation results

In this study, the 30 wt%MEA solvent-based CO2 capture from
cement plant using CEMCAP project specifications were
formulated in a CO2SIM flowsheet simulator. Therefore, for the
purpose of model validation, the predictions from the developed
model using CO2SIM were compared with the outputs generated
from Aspen HYSYS V9 applied in the CEMCAP project while
setting to achieve a similar performance scenario of a 90% CO2

capture ratio. The key process parameters that were assessed and
compared are presented in Table 5 for the deterministic
baseline case.

It can be seen from Table 4 that the CO2SIM process model
predicts the performance of the condenser and reboiler duty with
good agreement while reaching 90% CO2 capture ratio and
producing a slightly higher CO2 product purity (1 %-pt higher).
In terms of heat exchanger duties, the reboiler and cooler result in
virtually identical results between the CO2SIM and the CEMCAP

evaluation, while a reasonable match is found for the lean-rich heat
exchanger (approximately 6% difference).

While equipment characteristics show good accord between the
CO2SIM and CEMCAP evaluation, some small discrepancies in
operational values can be noted. The reboiler temperature was
required to be set at 119°C instead of 128°C (at the fixed pressure
of 2 bar). With regard to rich and lean loadings, discrepancies in the
order of 0.02–0.03 mol CO2/mol MEA are observed. However, the
increase between lean and rich loading is nearly the same in both
evaluations.

The small difference observed between the two evaluations could
be influenced by the use of a different set of mass transfer principle,
physical property, and thermodynamic correlations for the MEA
solvent which may have had a significant impact on hydraulic
parameters and on overall absorption efficiency. Furthermore, the
different process configurations and the numerical solution applied
for the performance of the close loop flowsheet setup in CO2SIM
might also explain the difference. However, considering the aim of
the study, the CO2SIM simulation seems to lead to quite similar
results at the original CEMCAP evaluations. This comparison
provides enough confidence in the CO2SIM model reproduction
of the CEMCAP evaluation before it is integrated with the
uncertainty methodological framework.

3.2 Stochastic analysis

3.2.1 Effect on key performance indicators
The uncertainties in the eight solvent property submodels were

propagated simultaneously through the CO2 capture process model
built in the CO2SIM flowsheet simulator. The stochastic nature of
the influenced submodel property values was quantified based on a
95% confidence interval for the standard normal distribution. As a
result, the distribution profiles for all the KPIs are statistically
visualized in the PDF plot shown in Figure 4. On the generated
PDF, the mean, 2.5th, and 97.5th percentile lines which are the two
extremities for a 95% confidence interval are also shown in the figure
to describe the performance characteristics of the distribution. The
figures also display the different key percentile, the deterministic

FIGURE 3
Approach adopted to obtain the impact of solvent uncertainties on equipment design and cost, as well as CO2 avoidance cost estimation.
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baseline described in Section 3.1, and the kernel fit1 represented by
the fitted red line. In addition, Table 5 shows the resulting statistical
indicator values (i.e., mean, minimum, maximum, range width, and
percentiles) which can be inferred from the PDF output. The
minimum and maximum values signify the lower and upper
bounds of the derived PDF plot with a range width value
computed as the difference between the maximum and
minimum value.

Overall, significant uncertainty exists in predicting all
performance parameters based on the ranges obtained. This
denotes that the larger the density distribution spread, the larger
the impact of uncertainties on the model predictions. However,
there was a varying extent of uncertainty found in the different
targeted outputs. In general, based on the minimum to maximum
range values examined, the lowest impact of solvent property
uncertainty is shown for a reboiler duty parameter with a range
of 94.4–100.2 MW (i.e., 3.28% lower and 2.72% higher than the
deterministic value of 97.5 MW), while the highest impact was

shown for a lean loading parameter with a range of 0.165–0.223 mol
CO2/mol MEA (i.e. 14% lower and 16% higher than the
deterministic value of 0.19 mol CO2/mol MEA). Beyond these
two ends of the spectrum, the tested output going from the
lowest to the highest impact in uncertainties are the condenser
duty (between −4.5 and +1.8% compared to the deterministic value
of 32.5 MW), the specific reboiler duty (between −4.3% and +5.6%
compared to the deterministic value of 3.83 MJ/kgCO2), the rich
loading (between −5.5% and +3.7% compared to the deterministic
value of 0.482 mol CO2/mol MEA), the CO2 capture ratio
(between −5.2% and +3.7% compared to the deterministic value
of 90%), and the lean rich heat exchanger duty (between −7.3% and
+3.4% compared to the deterministic value of 92.1 MW). These
results indicate that given the prescribed uncertainty in the solvent
property submodels, it is possible that the process model is not able
to precisely predict all the KPIs, and the actual model predictions
falls between the bounds for some targeted values.

Furthermore, while the lean rich heat exchanger duty showed a
significant variability range (Figure 4e), it also exhibits a substantial
negatively skewed distribution profile. The skewness for a
probability distribution describes the degree of asymmetry
observed for the given dataset. A median value corresponding to
a 50th percentile output of 92.9 MW establishes that the distribution
is indeed negatively skewed (also known as “left skewed” for
statistical notation) as the mean value for the duty of 92.5 MW

TABLE 5 Tabulated results of statistical outputs computed from stochastic analysis of the CO2 capture process model.

Statistical
outputs

Key performance indicators

CO2

capture
ratio

Specific
reboiler duty

Reboiler
duty

Condenser
duty

Lean rich heat
exchanger duty

Lean
loading

Rich
loading

% MJ/kg CO2 MW MW MW mol CO2/
mol MEA

mol CO2/
mol MEA

Deterministic
baseline

90 3.83 97.52 32.47 92.105 0.19 0.482

Stochastic approach

Mean 89.34 3.86 96.94 32.44 92.50 0.194 0.479

Minimum 85.51 3.67 94.38 31.03 85.63 0.165 0.456

Maximum 93.43 4.05 100.2 33.06 95.28 0.223 0.500

Range width 7.92 0.38 5.83 2.02 9.66 0.058 0.044

2.5th 86.47 3.75 95.03 31.67 89.02 0.168 0.461

5th 87.20 3.77 95.46 31.80 90.27 0.170 0.465

10th 87.92 3.80 96.02 32.03 91.54 0.174 0.470

25th 88.86 3.83 96.61 32.24 92.58 0.187 0.477

50th 89.49 3.86 96.97 32.47 92.91 0.196 0.480

75th 89.98 3.90 97.34 32.71 93.00 0.198 0.482

90th 90.43 3.94 97.73 32.85 93.03 0.212 0.488

95th 90.88 3.97 98.15 32.91 93.04 0.216 0.493

97.5th 91.51 4.00 98.56 32.98 93.05 0.219 0.496

1 Kernel fit indicates the nonparametric visual representation of the random

variable distribution. In other words, the overall shape of the probability

curve for a data sample can be defined approximately without a predefined

distribution
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is lesser than the median value. In a symmetrically distributed
profile, the mean and median should hold an equivalent value.
Therefore, in practice, the uncertainties are unlikely to result in a
significantly larger duty than the deterministic value but could result
in a significantly smaller duty.

On the other hand, the distribution profiles for all the other KPIs
present almost non-skewed profiles, where the distribution curves
are not distorted more toward the right or left, such as for the lean

rich heat exchanger duty profile. While the specific reboiler duty,
lean, and rich loading shown in Figures 4c, f,g exhibit symmetrically
distributed profiles which are demonstrated through their similar
mean and median value (i.e., at 50th percentile), the rest of the
parameters (CCR in Figure 4a, reboiler duty in Figure 4c, and
condenser duty in Figure 4d) present a marginal difference
between mean and median value of 0.18%, 0.03%, and 0.07%
respectively, which are statistically insignificant. Therefore, these

FIGURE 4
Probabilistic distribution estimates as stochastic output for selected key performance indicators. (a) CO2 capture ratio, (b) specific reboiler duty, (c)
reboiler duty, (d) condenser duty, (e) lean rich heat exchanger, (f) rich loading (mol CO2/mol MEA) and (g) lean loading (mol CO2/mol MEA).
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distributions can be concluded to be as symmetrically distributed as
the rest. Although all the uncertain inputs are characterized with a
normal distribution profile, it can be concluded from this
observation that it does not lead to the expectations that a
similar distribution type should be matched for the process
model responses as shown for the lean rich heat exchanger
duty profile.

It is also worth noting that, overall, the distributions’mean is in
good accordance with the deterministic value, as the maximum
discrepancy is 2.1% (obtained for lean loading). The inclusion of
uncertainties in the process model can result in predictions that are
higher or lower than the deterministic value: CO2 capture ratio
0.74% lower, SRD 0.78% higher, reboiler duty 0.6% lower, condenser
duty 0.1% lower, lean loading 2.1% lower, and rich loading 0.62%
higher. A point of interest compared to our previous research
(Kuncheekanna and Jakobsen, 2023) is that the difference
between deterministic and mean CCR are more pronounced,
while there were virtually identical previously. This can be linked
to both the difference in underlying models and/or uncertainty
interaction between different parts of the process.

3.2.2 Effect on design and cost estimation
To understand the full impact of these uncertainties, it is

important to understand how these will impact the design of key
equipment and the overall cost of the process. The obtained

distribution of the heat exchanger’s direct cost and CCR are
shown in Figures 5a–d with comparison to the deterministic and
CEMCAP values. On the other hand, Figure 6 describes the obtained
distribution in CO2 avoidance cost, also in comparison with the
deterministic and CEMCAP value. Table 6 summarizes the
distribution characteristics (min, max, key percentiles, etc.), the
deterministic, and CEMCAP values corresponding to these two
sets of figures.

In terms of equipment design, the results show that oversizing
the heat exchangers with 4% (i.e., to supply the maximum value of
the duty distribution) would be sufficient to guarantee that the
required duty could be supplied independently of the
uncertainties. It is worth noting that this is within the typical
10% overdesign factor considered in engineering practice.
However, to not reduce this design margin, which may provide
operational flexibility during operations, it is here assumed that
heat exchange areas and cost will also be updated based on the
uncertainties. In any case, as the heat exchanger costs are typically
linear to the duty, the uncertainty in equipment cost is similar to
the uncertainties in duties and is thus limited in extent as shown in
Figures 5a–c. To specify here, the mean value for the condenser
direct cost is similar to the deterministic value; hence, the mean
line is not observed in Figure 5b.

Ultimately, it is important to look at the CO2 avoidance cost,
which is the most important parameter to consider when seeking to

FIGURE 5
Estimated deterministic and stochastic output for (a) reboiler direct cost, (b) condenser direct cost, (c) lean–rich heat exchanger direct cost, and (d)
CO2 capture ratio.
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understand the impact of uncertainties on the cost of the process.
The results show that the calculated CO2 avoidance cost ranges from
83.8 to 78.7 €/ton CO2. The deterministic CO2 avoidance cost (79.6
€/ton CO2) is rather close to the lower end of the range, while the
mean value (81.3 €/ton CO2) is closer to the middle of the
uncertainty range. Considering that these uncertainties are only
linked to solvent properties, the resulting 5.3% uncertainty range is
significant. Interestingly, most of this uncertainty seems to be linked
to the uncertainty in CCR, which impacts the amount of CO2

avoided in the CAC calculation. A possibility to reduce the CCR
(and thus cost) uncertainty could be to increase the absorber height.
However, as we indicated earlier (Kuncheekanna et al., 2020),
ensuring that a 90% capture rate is met with high confidence
may require drastically increasing the absorber height. Hence,
confirming the optimal height to achieve a 90% CCR via pilot
testing might be the best way to reduce the impact of solvent
property uncertainties on the CCR and, ultimately, the CO2

avoidance cost.

FIGURE 6
Estimated deterministic and stochastic output for the CO2 avoidance cost.

TABLE 6 Tabulated results of equipment direct cost estimated based on CEMCAP, deterministic, and stochastic approach.

Equipment direct cost (M€2014) New CAC (€/ton CO2)

Reboiler Condenser Lean rich heat exchanger

CEMCAP 2.97 0.836 3.82 80.3

Deterministic 2.98 0.837 3.98 79.6

Stochastic outputs

Mean 2.97 0.837 3.99 81.3

Min 2.95 0.820 3.78 83.8

Max 3.03 0.841 4.39 78.7

2.5th percentile 2.96 0.823 3.89 83.3

5th percentile 2.96 0.824 3.92 82.7

10th percentile 2.96 0.835 3.96 82.2

25th percentile 2.97 0.836 3.99 81.5

50th percentile 2.97 0.837 4.00 81.1

75th percentile 2.98 0.839 4.00 80.9

90th percentile 2.98 0.839 4.00 80.7

95th percentile 2.98 0.840 4.01 80.5

97.5th percentile 3.01 0.841 4.01 80.1
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4 Conclusion

The focus of this work is the adoption of stochastic approach for
the assessment of solvent property submodel uncertainties on the
key process design and cost performance of an MEA-based CO2

capture process. This study initially established a rigorous rate-based
capture process model of the CEMCAP reference cement plant case
using the CO2SIM flowsheet simulator. This allowed the validation
of the key process parameters CO2SIM predicted with the ASPEN
HYSYS® simulation carried out in CEMCAP, as the deterministic
predictions of both models were in strong agreement.

With the established capture process model, the uncertainty
analysis framework was accomplished by coupling CO2SIM with
UQLab software tool, a MATLAB®-based uncertainty quantification
toolbox. By using Monte Carlo uncertainty propagation, the
performance of the capture model was assessed considering
uncertainties in solvent property inputs (i.e., density, surface tension,
viscosity, solubility, enthalpy flow to account for heat capacity property,
heat of absorption, reaction kinetic rate constant, and diffusivity) on the
key performance indicators (i.e., CO2 capture ratio, specific reboiler
duty, reboiler duty, condenser duty, lean rich heat exchanger duty, and
lean and rich loading). In the uncertainty analysis presented, the results
demonstrate that the magnitude of the process performances
distributions we obtained vary substantially. While the uncertainty
dispersion away from the deterministic baseline value is highest for the
lean loading parameter (i.e., 16%), the uncertainty in the reboiler duty
was shown with the lowest impact (i.e., 2.7%). Additionally, with the
prescribed normal distribution adopted for all uncertainty inputs, the
lean-rich exchanger duty presented a very high negatively skewed
distribution profile, whereas the rest of the parameters showed a
symmetrically distributed profile. Overall, while the deterministic
and mean value were in good accordance, the range of values of the
distribution highlights a significant impact of solvent property
uncertainties on key performance indicators. The study further
evaluated the impact of the uncertainties on the cost of the
individual heat exchanger (i.e., reboiler, condenser, and lean-rich
heat exchanger), as well as the CO2 avoidance cost metric. The
result highlighted that heat exchanger duty uncertainty falls within
the overdesign margin commonly used in engineering practice.
However, the CO2 avoidance cost exhibits significant uncertainty
linked to solvent properties (~5.2%) that are mainly linked to
uncertainty in the CO2 capture ratio. Hence, a key element in
reducing CO2 avoidance cost uncertainty may well be to validate
suitable absorber height to guarantee, with a reasonable confidence,
a 90% capture ratio via pilot testing.

Finally, it is important to note that process modelers should
perform uncertainty analysis for their specific CO2 capture process
model with the solvent of choice as the results cannot be generalized.
A process model with configurations including the specific choice
for rate-based model and solvent submodel correlations may impact
on how the uncertainties propagate through the model and present
in the respective KPIs.

While the overall results demonstrate that the influence of the
solvent property models’ uncertainties varies on these parameters,
stochastic analysis was used to adopt amore robust design and better
understand cost uncertainties, thus highlighting the benefit of taking
such approaches in addition to deterministic analysis. A potential
area of further research is to integrate uncertainty analysis and pilot

testing of technology to further improve the reliability of underlying
models using, for example, Bayesian inference.
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