
Advancements in antibiofouling
hydrogel-based approaches for
the removal of short-chain per-
and polyfluoroalkyl substances in
drinking water treatment

Kyana K-A. Donovan1, Genesis T. Fermin1, Iliana Vigil2,
Sundus Shaker1, Richerly A. Paulino1, Robin Difo1 and
Yuemei Ye1,2*
1Department of Chemistry, Lehman College, City University of New York, Bronx, NY, United States,
2Graduate Center, City University of New York, New York, NY, United States

Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants with
increasing health concern due to their persistence, widespread presence, and
adverse health effects. Short-chain PFAS, in particular, are more challenging to
remove using conventional water treatment technologies. Hydrogel adsorbents
have shown as a promising solution for short-chain PFAS removal, offering high
adsorption capacity, rapid kinetics, and tunable material properties. However,
biofouling contamination which is easier to happen on wet hydrogels adsorbents
compared with conventional adsorbents in water treatment process, could
significantly reduce adsorption efficiency, shorten operational lifespan, and
increase overall costs. Antibiofouling modifications present a viable strategy to
enhance hydrogel functionality in drinking water treatment applications. This
review summarizes recent advancements of hydrogel in antibiofouling and short-
chain PFAS removal applications through functional group modifications.
Furthermore, it highlights gaps in the current literature, particularly the lack of
studies on the development and evaluation of hydrogels with both biofouling
resistance and short-chain PFAS removal capabilities for drinking water treatment
applications.
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1 Introduction

Promoting access to safe drinking water remains a critical global challenge, with the
presence of emerging contaminants such as per- and polyfluoroalkyl substances (PFAS)
posing significant risks to water quality and public health as a significant factor contributing
to this issue (Stoiber et al., 2020; UNESCO, 2023). PFAS are persistent organic pollutants
widely detected in drinking water due to industrial discharges, the use of firefighting foams
and the disposal of consumer product waste into the environment (Stoiber et al., 2020;
Munoz et al., 2023; Hu et al., 2016; Wang et al., 2020). Most PFAS are resistant to chemical
degradation due to their strong C-F bonds (Bao et al., 2018; Verma et al., 2023; Ye et al.,
2023). Short-chain PFAS (carbon chain ≤7), with a shorter fluorinated tail, were introduced
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as safer alternatives to their long-chain counterparts (carbon
chain ≥7) in industry applications in the past decades (Jensen
and Warming, 2015). However, the smaller molecular size and
increased hydrophilicity make short-chain PFAS difficult to
remove (Brendel et al., 2018; Li et al., 2020), posing new
challenges for water treatment. Moreover, short-chain PFAS have
been widely detected in groundwater and treated drinking water
with Liquid Chromatography-Mass Spectrometry and High-
Resolution Mass Spectrometry through either direct injection or
solid-phase extraction to concentrate the PFAS and clean the matrix
background before injection (Ateia et al., 2019; Li et al., 2011; Wang
et al., 2024a). And short-chain PFAS have been found to pose
significant health risks, including lipid metabolism disruption,
infertility, reproductive issues, and endocrine dysfunction (Sheng
et al., 2018; Chen et al., 2018; Feng et al., 2017; Nian et al., 2020).
Short-chain PFAS ammonium salt of hexafluoropropylene oxide
dimer acid (GenX) has also been shown to induce liver toxicity in
animal studies (Solan et al., 2023).

Advanced treatment process is an additional step incorporated
in novel technologies to remove emerging contaminants like PFAS
during water treatment processes, and has shown better PFAS
removal effects from water than other treatment processes such
as coagulation, flocculation, sedimentation, and filtration
(Figure 1A; Seven seas water, 2023; Jafarinejad, 2025). Advanced

treatment process is normally implemented before the disinfection
process (Figure 1A). PFAS removal from drinking water primarily
relies on activated carbon (GAC) (Kempisty et al., 2022) and ion
exchange resins (IER) from advanced treatment process (Boyer
et al., 2021). However, both adsorbents are more effective in
removing long-chain PFAS than short-chain PFAS (Jafarinejad,
2025). Furthermore, short-chain PFAS adsorbed onto GAC can
be displaced by longer-chain PFAS and other more hydrophobic
compounds over time (Newcombe, 1994; Park et al., 2020), and the
presence of other natural organic contaminants and ions in the
water matrix could reduce the performance of these adsorbents due
to competitive adsorption (Ateia et al., 2019).

In addition, biofouling is another challenge for most materials
used for water treatment (LeChevallier et al., 1984; Wells and
Sytsma, 2009; Nguyen et al., 2012; Abdelsalam et al., 2017).
Although disinfection methods such as chlorination, ultraviolet
irradiation, and advanced oxidation processes are widely
employed to control bacterial growth, some bacteria can
withstand these conventional treatments and remain in treated
water (Sharma and Bhattacharya, 2017). Microorganisms present
in flowing water can adhere to surfaces within drinking water
treatment materials, distribution piping systems, as well as
domestic treatment adsorbents or membranes (Bachmann and
Edyvean, 2005; Sójka et al., 2023; Zuo et al., 2022; Daschner

FIGURE 1
(A) Schematic graph of the drinking water treatment process includes water intake, coagulation, sedimentation, filtration, disinfection, and
distribution. Advanced treatment technologies are used in some drinking water treatment systems to remove emerging contaminants like PFAS. Red
spots indicate vulnerable stages exposed to potential biofouling risks. (B) Diagram of water distribution from storage to household use, highlighting
potential biofouling risks in domestic water treatment systems and tap water supply, marked by red dots.
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et al., 1996), where they utilize accumulated nutrients to grow and
form biofilms over time, ultimately leading to biofouling
(Figure 1B). Biofilm formed on the surface of adsorbents can
occupy the active sites on adsorbent materials (Flemming and
Geesey, 1991) and clog membranes (Razali et al., 2023), thereby
reducing the adsorption efficiency of adsorbents and compromising
system performance by decreasing flux, permeability, and usage life
over time. Despite this, effective antibiofouling strategies for these
materials remain lacking for short-chain PFAS control applications.
Hydrogel based adsorbents have emerged as a promising alternative
to conventional adsorbents and filtration membrane for removing
anion short-chain PFAS (Xu et al., 2024; Huang et al., 2018;
Verduzco and Wong, 2020; Naim Shaikh and Nawaz, 2024).
Comparing with GAC and IER, the hydrophilic, and porous
nature of hydrogel and its tunable surface property makes it not
only possible to be effective for short-chain PFAS removal but also
with dual function of biofouling resistance after modification. These
three-dimensional, cross-linked polymeric materials offer high
water content, tunable porosity, and surface functionality,
enabling them to interact effectively with water-soluble PFAS
molecules through mechanisms like hydrophobicity, electrostatic
interactions, hydrogen bonding, and size exclusion (Xu et al., 2024;
Wang et al., 2025).

Although hydrogel-based adsorbents have been extensively
studied for contaminant removal and antibiofouling separately,
their potential to integrate both properties for efficient short-
chain PFAS removal remains underexplored. However, this
approach holds significant promise. For instance, hydrogel
coatings on filtration membranes have been shown to impart
antibiofouling properties in addition to contaminant removal
(Sójka et al., 2023; Li et al., 2022).Additionally, graphene oxide-
incorporated hydrogels have been reported to be effective for short-
chain PFAS removal in one study (Becanova et al., 2021) and for
antibiofouling in another (Zhang et al., 2018).

This review explores hydrogel adsorbents for short-chain PFAS
removal and the challenges they face in engineering applications due
to insufficient antibiofouling properties. Furthermore, it examines
advancements in antibiofouling hydrogels for water treatment and
the potential for enhanced performance by integrating
antibiofouling features with effective PFAS removal components.
It also highlights key insights and future directions for developing
antibiofouling hydrogel technologies to improve short-chain PFAS
removal in water treatment applications.

2 Hydrogels for short-chain
PFAS removal

Hydrogel based adsorbents emerges as a highly effective
alternative to traditional adsorbents for short-chain PFAS
removal in water treatment, offering benefits as shown in
Supplementary Table S1 such as faster kinetics, high affinity for
short-chain PFAS, easy regeneration, and reusability (Ateia et al.,
2019; Huang et al., 2018; Verduzco and Wong, 2020; Alsaka et al.,
2025) comparing with GAC (Boyer et al., 2021; Zhang et al., 2021).
Additionally, IER, the other conventional adsorbent, exhibits good
adsorption capacity over multiple short-chain PFAS, however, it is
costly and can experience performance declines in the presence of

organic matter and competing ions in the water matrix (Wang et al.,
2024a). Additionally, IER has a low regeneration rate of 27.5% and
degrades over time, limiting its long-term applicability (Wang et al.,
2024a; Liu et al., 2022).

2.1 Interaction mechanisms of reported
functional groups on hydrogels for short-
chain PFAS removal

2.1.1 Electrostatic interactions
Electrostatic interactions are the dominant mechanism for short-

chain PFAS removal improvement (Xu et al., 2024; Huang et al., 2018;
Kumarasamy et al., 2020). Positively charged aminated functional
groups, such as quaternary ammonium ([NR4]

+) (Huang et al.,
2018; Kumarasamy et al., 2020), and amine(-NH2) (Xu et al., 2024)
have been incorporated into hydrogels, imparting a positive charge to
the adsorbent and facilitating strong electrostatic interactions with
anionic short-chain PFAS (Supplementary Table S2). The
hydrophilic property of hydrogels reduces this kind of adsorbents’
diffusion resistance to short-chain PFAS, enhancing adsorption kinetics
and affinity (Xu et al., 2024; Verduzco and Wong, 2020) and their
porous structure exposes a higher density of charged polymers to PFAS
compared to IER, leading to increased adsorption capacity (Ateia et al.,
2019). Huang et al. (2018) developed aminated poly (ethylene glycol)
diacrylate hydrogels with adsorption capacities 8 to 63 times higher than
conventional adsorbents, particularly for short-chain PFAS such as
perfluorobutanesulfonic acid (PFBS), perfluorobutanoic acid (PFBA),
and GenX (Huang et al., 2018). Similarly, aminated polyacrylamide
hydrogel foam in another study (Xu et al., 2024) demonstrated a rapid
equilibration within 15 min and a high affinity for perfluorohexanoic
acid (PFHxA), perfluoroheptanoic acid (PFHpA), and GenX, achieving
removal rates exceeding 90%, while PFBA removal reached 82%. This
was attributed to the synergistic effects of electrostatic interactions,
hydrogen bonding, and hydrophobic interactions (Xu et al., 2024). All
studies have also demonstrated that aminated hydrogels have stronger
binding affinities for PFBS over PFBA (Ateia et al., 2019; Xu et al., 2024;
Huang et al., 2018). The versatility of hydrogel material allows hydrogel
to be fabricated into beads (McCarty, 2016), porous membrane (Cai
et al., 2023), foams (Li et al., 2022), or coatings on various surfaces
(Wibisono et al., 2015) depending on application requirements.

2.1.2 Hydrophobic interactions
In contrast to electrostatic interactions, hydrophobic

interactions via fluorination have been explored as another
strategy to enhance PFAS adsorption, by leveraging the like-like
affinity between hydrogel’s fluorinated surfaces and the
perfluoroalkyl chains of PFAS, but this approach is less effective
for short-chain PFAS (Huang et al., 2018; Verduzco and Wong,
2020; Koda et al., 2014). Koda et al. (2014) developed
perfluoroalkane-functionalized star polymer microgels, which
captured only 23% of short-chain PFAS like PFHxA, while the
hydrogel adsorbent modified with amination alone achieved over
97% removal efficiency. Notably, the combination of fluorination
with cationic functional groups on hydrogel adsorbents (Wang et al.,
2025; Huang et al., 2018; Verduzco and Wong, 2020) showed no
obvious enhancement in short-chain PFAS adsorption compared to
adsorbents modified with cationic functional groups alone. Huang
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et al. (2018) observed that aminated hydrogels exhibited similar
adsorption efficiencies to those containing both amination and
fluorination, achieving 100% removal of PFBS and >95% removal
of GenX, while non-fluorinated hydrogels performed better for
PFBA removal. Given the limited effectiveness of fluorinated
materials for short-chain PFAS removal and the potential release
of PFAS from degraded fluorinatedmaterials, fluorination strategy is
not suggested for hydrogel based short-chain PFAS adsorbent
development. Hence, electrostatic interactions remain the
dominant mechanism for short-chain PFAS removal, particularly
for compounds like PFBA and PFBS.

2.2 Selectivity and reusability of
functionalized hydrogels

In addition, functionalized hydrogels with high reusability offers
a higher practical advantage over GAC and IER (Supplementary
Table S1), improving its practicality, scalability, and cost-
effectiveness for future drinking water treatment applications. For
example, Huang et al. (2018) demonstrated that their hydrogels
could be easily regenerated in 70% methanol containing 1% NaCl
and reused for up to 5 cycles before disposal, while mostly GACwere
dumped to landfills for disposal or recycled for less than 3 times

(Boyer et al., 2021). A report suggests potential for up to 10 cycles
through optimizing material (Ateia et al., 2019), underscoring the
hydrogels’ potential for cost-effective, and sustainable use.

3 Antibiofouling hydrogels
development for drinking
water treatment

Nonetheless, biofouling contamination caused by colonization
of attached bacteria on both conventional and emerging adsorbents
is an inevitable challenge that decrease efficiency (LeChevallier et al.,
1984; Abdelsalam et al., 2017; Flemming and Geesey, 1991; Wang
et al., 2024b). Biofouling on hydrogel obstructs active adsorption
sites and increases diffusion resistance for contaminants such as
PFAS, degrades materials via enzymatic activity, ultimately
shortening the operational lifespan of adsorbents and increasing
maintenance costs (Flemming and Geesey, 1991; Vuong et al., 2023).
Wang P. et al. (2022) found that PFAS passive sampling hydrogels
exhibited significantly reduced adsorption performance after
21 days in surface water due to biofouling. Endowing hydrogel
based materials with antibiofouling properties is crucial for ensuring
their long-term efficacy while preventing secondary bacterial
contamination to treated water.

FIGURE 2
Schematic diagram of hydrogel modification strategies designed to impart both short-chain PFAS removal and antibiofouling properties, along with
the underlying mechanisms of each strategy.
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Various antibiofouling strategies including polymers (Sójka
et al., 2023; Li et al., 2022; Peng et al., 2022; Xu et al., 2023; Wen
et al., 2021; Chen et al., 2024), nanoparticles (Zhang et al., 2018; Baek
et al., 2015), quorum-quenching bacteria (Lee et al., 2018; Yi et al.,
2024), and enzymes (Ye et al., 2019; Li et al., 2021; Zanoni et al.,
2016) can be integrated into hydrogels designed to address this issue.
These components inhibit biofilm formation through multiple
mechanisms (Supplementary Table S3; Figure 2). The dominant
antibiofouling mechanism is through electrostatic interactions,
which causes bacterial membrane damage through the interaction
between the oppositely charged polymer adsorbent and bacteria (Li
et al., 2022; Chen et al., 2024; Wang J. et al., 2022). Hydrophilic
protection is another mechanism that prevents biofouling
contamination by forming a hydrophilic water layer on the
adsorbent surface, thereby preventing bacterial attachment (Sójka
et al., 2023; Zhang et al., 2018; Wibisono et al., 2015; Peng et al.,
2022; Xu et al., 2023; Wen et al., 2021; Chen et al., 2024).
Nanoparticles inhibit the formation of biofilm through physically
breaking bacterial cells and chemically damaging bacteria
membrane with generated reactive oxygen species (ROS) (Guo
et al., 2021; Ye et al., 2017) or released toxic silver ions (Baek
et al., 2015). In contrast, quorum-quenching bacteria and enzymes
offer a more sustainable antibiofouling strategy (Lee et al., 2018; Yi
et al., 2024; Ye et al., 2019; Li et al., 2021; Zanoni et al., 2016).
Quorum-sensing bacteria suppress bacterial growth and biofilm
development by disrupting bacterial communication (Lee et al.,
2018; Yi et al., 2024). Whereas, enzymatic approaches can either
hydrolyze biofilm components to prevent their formation or
mechanically detach established biofilms (Figure 2; Ye et al.,
2019; Li et al., 2021; Zanoni et al., 2016).

3.1 Customized antibiofouling polymers
in hydrogels

Antibacterial polymers are widely used in the synthesis of
anti-biofouling hydrogels due to their sustainability, ease of
production, and broad availability. As summarized in
Supplementary Table S2, various positively charged nitrogen-
substituted polymers interact with negatively charged bacterial
components inhibiting the biofouling on the surface of the
material through electrostatic interactions. The presence of
cationic charges on these polymer hydrogels is crucial for the
antibacterial properties. Poly (imidazolium) (Wang J. et al., 2022)
exhibited 99% antibiofouling performance within 1 h against
E. coli (Escherichia coli) and S. aureus (Staphylococcus aureus).
Chitosan, a cationic natural polymer with inherent amine
functionality is a sustainable option (Li et al., 2022), has
demonstrated 95% antibiofouling efficiency in a 15-day test
(Supplementary Table S3; Li et al., 2022).

3.2 Antibiofouling hydrogels with microbial
adhesion resistance and bactericidal
properties

Biofouling occurs on hydrogel in two key steps: the initial
adhesion of microorganisms to the surface of hydrogel and

colonization after that (Roberts et al., 2012; AlSawaftah et al.,
2022). Hence, antibiofouling mechanisms of hydrogels are
primarily driven by two factors: improving resistance to
microbial adhesion and delivering bactericidal effects through
various physicochemical properties. One key mechanism of
microbial adhesion resistance is the creation of a hydrophilic
protection layer on the hydrogel’s surface, which attracts water
molecules, forming a layer of water on the surface of the material
(Sójka et al., 2023; Zhang et al., 2018; Wibisono et al., 2015; Peng
et al., 2022; Xu et al., 2023; Wen et al., 2021). This water layer acts as
a barrier, preventing bacteria from adhering to the materials surface,
thereby reducing biofilm and colony formation. Notably, combining
cationic and hydrophilic functionalities strengthens electrostatic
interactions with water while further enhancing microbial
resistance (Wen et al., 2021; Zhou et al., 2019; Yang et al., 2018).
These polymer hydrogels demonstrate strong antibacterial
performance in water treatment applications. Polymers such as
poly-sulfobetaine methacrylate (Sójka et al., 2023) and
carboxybetaine acrylamide (Wen et al., 2021) facilitate the
formation of a protective hydration layer, thereby preventing
bacterial adhesion with 90%–96% effectiveness against E. coli
(Supplementary Table S3; Li et al., 2022; Peng et al., 2022; Wen
et al., 2021) This is further supported by studies showing hydrogels
containing hydrophilic surfactants like benzalkonium chloride and
dicocoalkyldimethyl ammonium chloride which have demonstrated
extended fouling-free periods of 10–14 weeks in marine
environments (Supplementary Table S3; Cowie et al., 2006)

3.3 Integration of nanoparticles into
hydrogels for enhanced antibiofouling
properties

Nanoparticles inhibit biofilm formation through biocidal ion
release or ROS generation (Zhang et al., 2018; Baek et al., 2015;
Wang J. et al., 2022; Guo et al., 2021). Silver nanoparticles (AgNPs)
are widely studied for their antimicrobial and antibiofouling
properties in water treatment (Baek et al., 2015), as hydrogels
incorporating AgNPs release Ag+ ions, which disrupt bacterial
cell walls, proteins, and genetic material, leading to bacterial
death. AgNPs have been shown to lyse approximately 80% of
E. coli cells after prolonged exposure (Supplementary Table S3;
Baek et al., 2015). However, AgNPs could induce oxidative stress in
non-target organisms (Luoma SN, 2008; Asharani et al., 2008),
disrupt microbial ecosystems essential for nutrient cycling (León-
Silva et al., 2016), and contribute to antimicrobial resistance, posing
public health risks (Luoma SN, 2008). To mitigate these risks,
alternative antimicrobial nanoparticles have been explored.
Saleque et al. (2023) Embedded tantalum telluride quantum dots
in hydrogels has suppressed the growth of S. aureus and E. coli
cultures by 26% and 34%, respectively through physical disrupting
bacterial membranes and interference with deoxyribonucleic acid
replication in bacteria (Supplementary Table S3). Additionally,
graphene oxide nanosheets, when loaded onto zwitterionic
polyampholyte hydrogels grafted onto ultrafiltration
polyethersulfone membranes, led to an 80% reduction in E. coli
colonies by combining biocidal activity with a hydrophilic
protection layer (Supplementary Table S3; Zhang et al., 2018)
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ROS-based mechanisms can further enhance the antibiofouling
performance of hydrogel. ROS, such as hydrogen peroxide and
hydroxyl radicals, disrupt bacterial membranes, proteins, and DNA.
Quinone-modified activated carbon membranes, for example,
generate ROS, achieving 99% bacterial inactivation within an
hour while maintaining mechanical stability and preventing
biofouling for up to 5 days (Supplementary Table S3; Guo et al.,
2021) Despite these advancements, the toxicity of these
nanoparticles remains largely unexplored for large-scale
applications. Further research is needed to assess their
biocompatibility and long-term environmental impact.

3.4 Antibiofouling hydrogels formation with
sustainable approaches

Quorum-quenching bacteria and enzymes are considered
effective and sustainable antibiofouling agents due to their
natural origin and environmentally benign properties
(Supplementary Table S3; Lee et al., 2018; Yi et al., 2024; Ye
et al., 2019; Li et al., 2021; Zanoni et al., 2016) Hydrogels
incorporating quorum-quenching bacteria have been shown to
inhibit bacterial growth by disrupting quorum sensing, a critical
bacterial communication system that regulates biofilm formation
(Lee et al., 2018; Yi et al., 2024). Lee et al. (2018) embedded
Acinetobacter sp. into hydrogels, which degraded AI-2 quorum-
sensing molecules and reduced biofilm formation in Aeromonas
sp., Enterobacter sp., E. coli K-12, and B. subtilis by 51%, 70%, 33%,
and 33%, respectively. When encapsulated in membrane
bioreactors, these hydrogels delayed biofouling and extended
operational lifespan by 4.8 times. Similarly, Yi et al. (2024)
developed microcapsules containing Rhodococcus sp. in a semi-
interpenetrating hydrogel network, achieving over 99% quorum-
sensing molecule degradation within 8 h and maintaining
efficiency for 3 months. Enzyme-based antibiofouling hydrogels
offer another assuring strategy. Li et al. (2021) designed a
lysozyme-encapsulated hydrogel with a dual antibacterial
mechanism: its negatively charged surface repelled bacteria to
reduce adhesion, while it released lysozyme in response to acidic
conditions or glutathione, breaking down bacterial cell walls. This
system increased E. coli and S. aureus mortality by 85%. Ye et al.
(2019) further improved lysozyme stability by immobilizing it
within a hydrogel, enhancing temperature tolerance and retaining
activity for 55 days. This porous hydrogel structure captured
bacteria and catalyzed lysis, achieving 99.4% inhibition of
E. coli within an hour and maintaining over 96% inhibition
for 30 h. In another approach, Zanoni et al. (2016)
functionalized silica nanobeads with Proteinase K, which
physically disrupted P. fluorescens biofilms and enzymatically
degraded their protein matrix. This method reduced biofilm
coverage and thickness while preserving bacterial viability,
offering an alternative to conventional bactericidal strategies.
Integrating such quorum-quenching bacteria and enzymes
into hydrogels not only enhances antibiofouling performance
but also allows for material reuse by immobilizing active agents
within a hydrated polymer network. Additionally, hydrogels can
trap contaminants within their matrix, further improving
antibacterial properties.

Despite these advantages, several trade-offs must be considered.
Antibacterial nanoparticles, while effective, raise concerns about
cytotoxicity and environmental impact due to the release of toxic
ions that can disrupt microbial ecosystems and contribute to
antimicrobial resistance. Additionally, while hydrophilic polymer
coatings enhance biofouling resistance, they may compromise
mechanical strength and long-term durability, limiting practical
use. Quorum-quenching bacteria and enzyme-based approaches
offer a sustainable alternative but present challenges related to
stability, scalability, and potential loss of activity over time.
Balancing efficacy, longevity, and environmental impact remains
a key challenge in developing hydrogel-based water
treatment materials.

4 Antibiofouling component
modifications to improve short-chain
PFAS removal

Unlike conventional water treatment materials with limited
tunability, hydrogels offer customizable functionality, allowing
their properties to be tailored for specific applications. By
modifying surface functional groups to enhance both
antibiofouling and short-chain PFAS removal, hydrogel-based
materials can achieve high adsorption efficiency while preventing
microbial growth, making them ideal for long-term water treatment
(Figure 2). This approach includes incorporating positively charged
or hydrophobic groups to facilitate short-chain PFAS adsorption,
while also introducing additional functional elements that
discourage microbial attachment and inhibit biofilm formation,
ensuring sustained filtration performance (Wang P. et al., 2022;
Chaix et al., 2024). For example, quaternary ammonium-modified
hydrogels, which exhibit a strong binding affinity for short-chain
PFAS due to robust electrostatic interactions (Ateia et al., 2019), and
antimicrobial properties effectively disrupt bacterial membranes,
making them highly effective against biofilm-forming
microorganisms such as E. coli and S. aureus (Li et al., 2022;
Peng et al., 2022; Chen et al., 2024). Predictably, the combination
of quaternary ammonium and antibiofouling components in
hydrogels demonstrate high effectiveness for short-chain PFAS
removal for long term with resistance to biofouling.

Furthermore, these obtained materials can also be designed to
optimize PFAS adsorption through size-exclusion mechanisms
within porous adsorbents (Ateia et al., 2019). Advanced
fabrication techniques such as 3D printing and electrospinning
enable the development of hydrogels with intricate geometries
and expanded surface areas, ultimately improving adsorption
efficiency and long-term performance in water treatment
applications (Chaix et al., 2024).

5 Challenges and future directions on
antibiofouling hydrogel-based water
treatment material for short-chain
PFAS removal

Hydrogel-based materials have shown significant potential for
short-chain PFAS removal and biofouling resistance in water
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treatment applications. However, several challenges remain
(Supplementary Table S1). First, further studies are needed to
investigate the compatibility and performance of antibiofouling
components integrated into hydrogels to enhance both short-chain
PFAS removal and biofouling resistance (Figure 2). The performance of
these hydrogels should be evaluated for antibacterial activity, biofouling
resistance, and PFAS removal, with further data required to validate
their long-term effectiveness in short-chain PFAS removal applications.
This includes both advanced treatment processes for drinking water
treatment and domestic water treatment products.

Moreover, hydrogel materials as emerging adsorbents are still
under lab-scale study, therefore, more pilot-scale studies or full
application studies are expected to further validate the performance
of promising hydrogels. Unlike conventional adsorbents, which are
highly commercialized, the cost of hydrogels for water treatment is
still unknown. Finding more low-cost raw materials for hydrogel
preparation have the potential to reduce production costs by
utilizing bio-based materials and demonstrate promising scalability.

The engineering application of hydrogel adsorbents is limited by
factors such as gel strength and degradation under extreme
conditions. Further optimization is needed for field use, with the
ability to be customized for both short- and long-chain PFAS.
Additionally, the long-term effectiveness, environmental impact,
and potential toxicity of these materials remain concerns,
necessitating life cycle assessments to evaluate their full
environmental footprint—from production to disposal—to ensure
that their benefits outweigh any ecological risks before large-scale
implementation (Verduzco and Wong, 2020). Future research
should focus on enhancing the stability, selectivity, and
environmental safety of hydrogel-based systems, as well as
exploring advanced fabrication techniques and more sustainable
material options to ensure their feasibility for large-scale water
treatment applications. With ongoing research and optimization,
hydrogel-based systems have significant potential to become a
sustainable, efficient solution for addressing short-chain PFAS
contamination in water, providing both enhanced performance
and long-term applicability in real-world water treatment scenarios.
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