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-Omics technologies have emerged as powerful tools to uncover cellular
diversity within tissues, and the role of cell-cell communication in tissue
development, function, and disease. In this review, we will discuss recent
advancements in -omics technologies that are used to interrogate the
biomolecular mechanisms that underly tissue form and function. We will
specifically discuss the application of -omics technologies, along with
bioinformatic tools, towards identifying new cell types and cell-cell
interactions within native tissues. We will then examine how insights from
-omics technologies can inform the design of engineered tissues, particularly
through the lens of recapitulating native cell-cell interactions. Finally, we will
discuss how -omics can be employed to benchmark and analyze engineered
tissues for applications that span fundamental science and translation. Overall,
the integration of -omics and tissue engineering will improve our understanding
of the roles of cellular diversity and cell-cell communication in regulating tissue
health and disease and subsequently inform how cell-cell interactions can be
leveraged to design therapies for human health applications.
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1 Introduction

The term “tissue engineering”was first widely recognized by the scientific community in
the late 1980s, following a National Science Foundation meeting under the same name
(Vacanti, 2006). At the time, the field focused primarily on the surgical integration of living
tissues and prosthetic devices. Initial experiments involved seeding cells onto natural
scaffolds present in the body or applying cell sheets to damaged tissues, not yet realizing the
potential to design synthetic scaffolds to direct regeneration. Tissue engineering, as we
recognize it today—related to the design of new tissues by integrating cells, biologics, and
scaffolds—was reportedly first used in a 1991 article titled “Functional Organ Replacement:
The New Technology of Tissue Engineering.” Since then, tissue engineering has evolved
beyond the design of prosthetic devices and surgical manipulation of native tissues, and now
encompasses the development of synthetic tissue platforms for both in vitro and in vivo
applications. For example, tissue engineering is now used to generate in vitro tissue models
for biological discovery and therapeutic screening, as well as implantable therapies for drug
delivery and regenerative medicine.

Modern-day advances in developing and characterizing engineered tissues have been
facilitated by the integration of tissue engineering design principles with bioinformatics and
-omics technologies. The roots of these -omics technologies can be traced back to the early
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2000s, when the publication of the Human Genome Project
triggered widespread interest in genomics research (Hood and
Rowen, 2013). Rapid progress following this landmark study
enabled researchers to explore and characterize biomolecules
beyond genomic DNA, leading to the birth of various ’-omics’
fields (e.g., epigenomics, transcriptomics, proteomics,
metabolomics) (Manzoni et al., 2018). These technologies have
unlocked new possibilities for identifying molecular interactions
between cells, signaling cues, and the extracellular matrix (ECM)
within native tissues. Recent advances in -omics methodologies have
also led to single-cell insights, including the identification of cell
types previously undetected in heterogenous tissues and the
discovery of cell-cell interactions that drive critical tissue-specific
functions (Baysoy et al., 2023). In parallel, bioinformatics tools have
evolved to aid in interpreting the extensive datasets generated by
-omics tools, allowing for insight into biomolecular-scale
phenomena that result in cell- or tissue-level function.

Collectively, -omics tools have been applied to study
developmental, regenerative, and disease processes across many
different tissues and organs. Many of these biological processes
arise from interactions between heterotypic cell types (e.g.,
parenchymal, stromal, immune, vascular) that are present within
tissues and organs. -Omics tools have shed light on these complex
cell-cell interactions, and how they influence tissue form and
function (Armingol et al., 2021). These insights can be leveraged
to define cell subpopulations and signaling interactions that must be
recapitulated within engineered tissues to accurately mimic specific
properties or functions of native tissues. In turn, -omics tools can
also be used to characterize cellular heterogeneity and cell-cell
interactions within engineered tissues. For example, -omics
analysis can be used to derive new biological insight from
in vitro model systems, or to assess the integration and
performance of transplanted tissues. As -omics and
bioinformatics tools continue to improve, further elucidation of
the complex cell-cell signaling processes that underly tissue
development, regeneration, and disease will enhance our ability
to design and validate multicellular engineered tissues that closely
mimic native tissues, and to utilize these engineered tissues for
applications that span basic science to clinical translation.

In this review, we will first provide an overview of -omics
technologies that are commonly used to characterize tissues and
provide insight into the biomolecular processes that underly tissue-
level behavior and function. Subsequently, we will highlight how
-omics have been specifically employed to define cellular diversity of
tissues, along with cell-cell interactions that contribute to tissue
development, regeneration, and disease. Finally, we will discuss how
-omics technologies can inform the design of multicellular
engineered tissues and enable the analysis of these living systems
for basic science and translational applications.

2 -Omics techniques for characterizing
cells and tissues

The advent of -omics technologies has revolutionized our ability
to characterize cell states and cell identities, along with the
composition and organization of higher-order tissues and organs
(Gulati et al., 2025). -Omics technologies leverage advanced

experimental, analytical, and computational strategies to
characterize the biomolecular landscapes of cell and tissue
specimens. Within the field of -omics, scientists have established
subcategories of technologies that focus on distinct biomolecules,
with the most commonly-used techniques being genomics,
transcriptomics, proteomics, and metabolomics (Dai and Shen,
2022). The insights gained from -omics studies have informed
our understanding of cell identities and cell states that exist
across health and disease, as well as intercellular interactions that
result in tissue- and organ-level structure and function.
Additionally, while an extensive amount of insight can be gained
from using a single -omics technique, holistic characterization of
biological specimens and their functions can be achieved by
integrating information from complimentary -omics technologies.
Such “multi-omics” strategies enable researchers to elucidate
systems-level relationships by which genomic, transcriptomic,
proteomic, and metabolomic landscapes collectively define
biological states and functions (Hasin et al., 2017).

In the following sub-sections, we will examine how the leading
-omics technologies (e.g., genomics, transcriptomic, proteomics,
metabolomics) contribute to our understanding of biological
systems (Figure 1). We will discuss the workflow of the most
relevant techniques in each -omics field, followed by a discussion
of future trends for these technologies. Additionally, we will
highlight the need for advanced bioinformatics tools to derive
insights from -omics data using statistical and data science
techniques (Uesaka et al., 2022).

2.1 Genomics

The genome is comprised of the complete set of DNAmolecules
within an organism, providing all genetic instructions for
organismal development and function. Within genomic analysis,
there are three common approaches: whole-genome sequencing
(WGS), which evaluates the complete set of DNA sequences
within an organism; whole-exome sequencing (WES), which
analyzes the protein-coding regions of the genome; and targeted
sequencing, which examines specific sections of the genome (Ng and
Kirkness, 2010; Rabbani et al., 2014; Bewicke-Copley et al., 2019). In
addition to protein-coding DNA sequences, WGS also captures
non-coding sequences and regulatory regions of the genome,
which contribute to the regulation of gene activity (Gloss and
Dinger, 2018). Changes to non-coding regions can significantly
influence gene expression and whole-organism phenotypes. Thus,
by studying sequences beyond the exome, scientists have gained a
greater understanding of non-coding genetic variations that
contribute to disease emergence and progression (Belkadi et al.,
2015). In contrast, while the exome comprises a small percentage of
an organism’s entire DNA sequence, most knownmutations that are
linked to disease occur in these regions, and therefore WES by itself
can yield significant insights regarding disease-causing genetic
variants (Rabbani et al., 2014). Once potential disease-causing
genetic variants have been identified, gene editing strategies can
be used to generate in vitro tissue models to study the mechanisms
by which candidate variants contribute to disease onset and
progression (Dobrindt et al., 2021; Longo et al., 2022).
Additionally, disease-specific engineered tissues can act as
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preliminary models to screen potential gene therapies for correcting
genetic variants (Kolli et al., 2017; Yang et al., 2021). Lastly, targeted
sequencing is utilized to detect specific genetic variations, and
represents a more cost-effective strategy to identify mutations
specific to certain conditions (Rehm, 2013).

Analogous to genomics, epigenomics is a closely-related field
which investigates epigenetic modifications that influence gene
expression without modifying the DNA itself (Murrell et al.,
2005). Epigenetic modifications typically modulate DNA folding
and architecture, which in turn controls transcription factor access
to DNA by organizing chromatin into higher-order structures
(Wang and Chang, 2018). Epigenetic changes also occur through
chemical alterations to DNA, commonly including histone
modifications and DNA methylation. Techniques such as
Cleavage Under Targets and Tagmentation (CUT&Tag) and
Assay for Transposase-Accessible Chromatin using sequencing
(ATAC-seq) have enabled comprehensive profiling of histone
modifications and chromatin accessibility (Buenrostro et al.,
2013; Bartosovic et al., 2021; Jiang et al., 2022). Intriguingly,
epigenetics alone, or in combination with gene expression data,

can be used to define cell identities and cell states. Collectively, these
tools have allowed for further insight into regulatory elements that
mediate gene expression. Techniques for probing epigenomics will
continue to be invaluable for characterizing cell state transitions and
the processes that govern the emergence of new cell identities during
tissue development, regeneration, and disease.

2.1.1 Sample preparation and data analysis
for genomics

WGS is the most widely-used genomic analysis technique,
providing a precise DNA fingerprint of the biological specimen.
To performWGS, DNA is extracted from cells or tissue via lysis and
purified to remove any RNA fragments, proteins, and chemical
additives (Linnarsson, 2010). The isolated DNA is then fragmented
through mechanical or enzymatic shearing. In the past, standard
WGS protocols amplified DNA by polymerase chain reaction
(PCR), but modern techniques no longer require this step, thus
eliminating bias regarding which sequences are amplified (Zhou
et al., 2022). The DNA fragments are then analyzed by a sequencing
platform to identify the nucleotide bases that make up of each

FIGURE 1
Various–omics technologies—including genomics (Murrell et al., 2005; Hood and Rowen, 2013; Smallwood et al., 2014; Tomczak et al., 2015; Bonev
and Cavalli, 2016; Bewicke-Copley et al., 2019; Wong et al., 2021), transcriptomics (Tang et al., 2009; Natarajan et al., 2017; Li and Wang, 2021; Rao et al.,
2021; Supplitt et al., 2021; Mubarak and Zahir, 2022; Williams et al., 2022), proteomics (Blagoev et al., 2003; Altelaar et al., 2013; Ragelle et al., 2017;
Lundberg and Borner, 2019; Palii et al., 2019; Al-Amrani et al., 2021; Gerritsen andWhite, 2021), andmetabolomics (Wishart, 2005; Dunn et al., 2007;
2011; Pinto and Eileen Dolan, 2011; Levy et al., 2017; Pinu et al., 2019; Wang et al., 2022; Alexandrov, 2023)—combined with bioinformatics approaches
(Argelaguet et al., 2018; Browaeys et al., 2020; Efremova et al., 2020; Jin et al., 2021; Uesaka et al., 2022; Ma et al., 2024), can provide biomolecular-level
characterization of cell identities, cell-cell interactions, and cell-microenvironment interactions.

Frontiers in Chemical Engineering frontiersin.org03

Stark et al. 10.3389/fceng.2025.1629455

mailto:Image of FCENG_fceng-2025-1629455_wc_f1|tif
https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2025.1629455


fragment (Ng and Kirkness, 2010). The resultant data includes
millions of DNA reads, which are aligned and assembled through
computational pipelines to piece together the DNA fragments into
the entire genomic sequence of the biological specimen. Following
genome assembly, genetic variations such as single point mutations,
structural variants, and single-nucleotide polymorphisms can be
detected. The assembled genome sequences are compared to
reference sequences using reference-alignment tools and variant-
calling algorithms to detect genetic variations (Logsdon et al., 2020).
Analysis of genomic data enables the identification of disease-
causing variants, and advanced algorithms can even identify
abnormal repeats, methylation patterns, and structural variants
that influence disease mechanisms.

2.1.2 Genomics trends and future directions
Since the completion of the Human Genome Project, genomic

analysis has gained widespread recognition in the field of human
health and become a critical biomedical research tool (Lander et al.,
2001). In recent years, 3D genomics has emerged as a rapidly-
advancing technique. Spatial organization of genes, and howDNA is
packaged in the nucleus, dictate how transcriptional and
translational machinery and DNA-binding proteins interact with
DNA. 3D genomics focuses on analyzing dynamic changes in the
spatial organization of the genome, and evaluating how these
changes influence gene expression and regulation of essential
cellular functions (Zhang and Li, 2020). Standard 3D genomics
methods include chromosome conformation capture (3C)-based
approaches (Dekker et al., 2002). These methods use proximity
ligation to identify chromatin contacts amongst nearby DNA
sequences (Han et al., 2018). DNA is first crosslinked to
maintain its spatial organization, and then the chromatin is
fragmented. The ends of the resulting DNA fragments are ligated
and sequenced to detect spatially-proximal DNA. 3D genomics has
been employed to study chromatin structure in embryonic stem
cells, and changes in 3D chromatin organization were found to
correlate with chromatin accessibility and gene activity during early
lineage specification (Dixon et al., 2015). Furthermore, spatial
genomics techniques allow for spatially-resolved DNA
sequencing. Zhao et al. developed slide-DNA-seq, which can
analyze DNA sequences from whole tissue samples and therefore
map genomic data onto local tissue architecture (Zhao et al., 2022).
Future studies that apply 3D and spatial genomic technologies to
whole tissues are expected to uncover how genomic architecture and
organization influences biological processes across development,
homeostasis, and disease.

2.2 Transcriptomics

The transcriptome is the complete set of RNA molecules
synthesized by a cell (Wang et al., 2009). Specifically, the
transcriptome consists of coding and non-coding RNA. Coding
RNA includes messenger RNA (mRNA), which are transcripts for
protein-coding genes. When exclusively examining gene expression,
transcriptomics techniques like RNA sequencing (RNA-seq) are
typically performed by selectively sequencing mRNA. Beyond gene
expression, RNA-seq can also identify alternative splicing
modifications by revealing multiple mRNA isoforms (Wang

et al., 2008), and can also be used to study non-coding RNAs
that play a critical role in gene regulation (Atkinson et al., 2012).
Non-coding RNA includes ribosomal RNA (rRNA), transfer RNA
(tRNA), and small RNA (sRNA), which are not translated into
proteins but instead are involved in a variety of functions such as
protein synthesis and gene regulation (Palazzo and Lee, 2015).
Therefore, transcriptomic analysis not only provides insight into
the genes that are translated into proteins to regulate cell
phenotypes, but also the molecular machinery that regulates the
transcription and translation of these genes.

Much of our current understanding of transcriptomics and its
relation to cell or tissue phenotypes is credited to next-generation
sequencing (NGS) technologies. NGS was developed to overcome
the limitations of DNA microarrays, an earlier technology that first
enabled multiplexed analysis of gene expression (Kothapalli et al.,
2002). RNA-seq is the current gold standard approach for
transcriptomic studies. In the past decade alone, RNA-seq has
enabled researchers to identify and quantify gene expression
levels, discover novel transcripts, and elucidate differential gene
expression dynamics across biological states and specimens (Wang
et al., 2009). Initially, the establishment of bulk RNA-seq provided
composite gene expression profiles for entire tissues or cell
populations. However, recent advances in single-cell RNA
sequencing (scRNA-seq) have enabled transcriptomic analysis at
the level of an individual cell (Li and Wang, 2021). scRNA-seq data
has generated unprecedented insight into the cellular heterogeneity
of tissues, allowing researchers to identify and distinguish between
different cell types and characterize cell-specific gene expression
patterns. In particular, researchers have frequently used
transcriptomic approaches to identify cell types and differentially-
expressed genes during embryonic development, tissue
regeneration, and disease progression (Sleep et al., 2010; Park
et al., 2018; Cao et al., 2019; Pijuan-Sala et al., 2019; McKellar
et al., 2021; Mascharak et al., 2022; Fabrizio et al., 2025).

2.2.1 Sample preparation and data analysis for
transcriptomics

Sample preparation for RNA-seq begins with the lysis of cells or
tissues to extract their RNA. For scRNA-seq, it is necessary to obtain
a clean, single-cell suspension prior to lysis (Haque et al., 2017).
Alternative strategies to single-cell preparation include isolation of
single nuclei and ‘split-pooling’ approaches, which can offer cost-
effective and flexible protocols that require less sophisticated
equipment and reduce aberrant transcription (Habib et al., 2016;
Lacar et al., 2016). After lysis, poly [T] primers are used to selectively
capture polyadenylated mRNAs, which are easier to analyze
compared to other RNA molecules (Haque et al., 2017). The
polyadenylated mRNAs are subsequently converted to
complementary DNA (cDNA) via reverse transcription.
Sequencing libraries are then prepared by ligating adapters onto
the cDNA fragments, and the libraries are then analyzed by
sequencing platforms (Haque et al., 2017). Individual reads are
mapped to known genes, exons, or annotated transcripts by aligning
the sequencing data to reference datasets (Chen et al., 2023).

RNA-seq data can be analyzed to reveal differentially-expressed
genes that are present among cell and tissue specimens.
Furthermore, identified genes can be grouped into categories that
are based on functions or processes associated with each gene. Here,
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gene set analysis (GSA) can be performed to test differential
expression between these groups of genes, thereby providing
insight into biological processes or signaling pathways that may
vary between experimental groups (Chen et al., 2023). Additionally,
over-representation analysis can be used to determine whether
specific gene sets are enriched amongst up- or downregulated
differentially-expressed genes. Gene set enrichment analysis
(GSEA) is another computational method to determine whether
a gene set exhibits statistically-significant differences between
experimental groups. Functional enrichment analysis can also be
employed to infer biological insight from differentially-expressed
genes or gene sets. This process commonly uses bioinformatics tools
such as the Database for Annotation, Visualization and Integrated
Discovery (DAVID) and Ingenuity Pathway Analysis (IPA) (Huang
et al., 2007; Krämer et al., 2014).

2.2.2 Transcriptomics trends and future directions
Future sequencing platforms for transcriptomics analysis are

expected to focus on improving spatial transcriptomics, which is
capable of measuring gene expression within the spatial context of
tissues and cells. This is typically conducted by image-based
approaches, which detect mRNA molecules directly within the
tissue, or next-generation sequencing (NGS) approaches, where
spatial information is recorded with each transcript (Williams
et al., 2022). In image-based approaches, researchers commonly
use in situ hybridization (ISH) methods, where labelled nucleic acid
probes bind to specific sequences (Jin and Lloyd, 1997).
Alternatively, in situ sequencing (ISS) directly sequences RNA
molecules in the tissue using methods like sequencing by ligation
or sequencing by synthesis (Lee et al., 2022). NGS methods retain
spatial context through techniques such as microdissection and
microfluidics that directly capture location information, or the
use of microarrays with barcoded probes that correspond to
locations within a tissue (Williams et al., 2022). Spatial
transcriptomics enables the characterization of transcriptional
patterns in 3D space, such as signaling pathway and protein
gradients, revealing how gene expression is influenced by tissue
architecture (Garcia-Alonso et al., 2021). These techniques can also
detect the local organization of cells within a tissue and provide
insights into the local signaling environment, including cell-ECM
and cell-cell interactions (Coy et al., 2022).

The immense volume of data that is generated from existing
RNA-seq workflows can pose significant challenges in data
processing and interpretation. For instance, it can be difficult to
distinguish background noise from meaningful observations.
Additionally, transcriptomic analysis typically produces high-
dimensional data, where data points are sparse and traditional
analysis methods are less effective. As a result, researchers have
turned to developing machine learning and high-throughput
computational tools to improve the accuracy, efficiency, and
scalability of transcriptomic analysis (Zeng et al., 2022).

2.3 Proteomics

Proteomics is the study of the entire complement of proteins
expressed at the cellular, tissue, or organismal level. The results of
proteomic analysis can provide information about the identities of

proteins that are present in a biological specimen, as well as
modifications to protein structures and protein-protein
interactions (Al-Amrani et al., 2021; Cui et al., 2022). Previous
studies have shown that transcriptomic sequencing alone is weakly
correlated with protein expression, supporting the use of proteomics
in tandem with transcriptomics and other -omics technologies to
obtain a complete picture of the biomolecular landscape for a
biological specimen (Zhang et al., 2014; 2016; Mertins et al.,
2016; Sinha et al., 2019). Proteomic analysis can provide insight
into dynamic protein expression profiles that change in response to
environmental cues, enabling characterization of cell states as they
evolve over time (Altelaar et al., 2013). In particular, proteomics has
been applied to study disease progression, where analyzing protein
expression levels at different disease states can reveal critical disease-
driving cellular processes and biomolecular-level responses to
treatment (Tremlett et al., 2015; Carlsson et al., 2017; Bai et al.,
2020). Additionally, analyzing differential protein expression
amongst heterogeneous cell types enhances our understanding of
the cellular makeup of tissues, and the roles of individual cells in
overall tissue function.

A valuable subfield of proteomics is phosphoproteomics, which
focuses on the study of protein phosphorylation, a critical post-
translational modification (Thingholm et al., 2009; Riley and Coon,
2016). These transient modifications, which entail the addition and
subtraction of phosphate groups onto amino acids, are responsible
for regulating signaling pathways essential to numerous cellular
functions (e.g., proliferation, migration) (Thingholm et al., 2009).
Many signal transduction pathways that regulate cellular response to
cell-cell and cell-matrix signaling rely on phosphorylation to elicit
specific cell behaviors in response to extracellular stimuli.
Furthermore, phosphoproteomics have been widely used to
investigate alterations to phosphorylation events that are
associated with dysregulated signaling and abnormal cell behavior
in disease states (Gerritsen and White, 2021; Morshed et al., 2021).
In sum, insights from phosphoproteomics are invaluable for
studying cell behaviors that arise from cell-cell signaling, as well
as signaling landscapes associated with different cell states.

Early proteomics methods relied on two-dimensional (2D) gel
electrophoresis to separate proteins by charge and size, which
enabled the initial characterization of proteins extracted from
various biological samples (Chandramouli and Qian, 2009).
These techniques are now more commonly used for qualitative
proteomic analysis, as they fall short in terms of reproducibility,
sensitivity, and detecting low-abundance proteins. The current
leading method for proteomic analysis is mass spectrometry
(MS), a technique that can offer precise characterization of
proteins, their isoforms, and post-translational modifications. MS
offers advantages over traditional immunoassays by detecting intact
proteins and peptides (Glish and Vachet, 2003). Depending on the
complexity and composition of the biological sample, different
proteomics approaches can be used. Bottom-up proteomic
strategies analyze proteolytic peptide mixtures, and represent the
most widely-used analytical approaches to study protein expression.
Alternative strategies such as top-down approaches analyze intact
peptides. Finally, middle-down approaches analyze long but not
fully-intact peptides, allowing for additional insights into post-
translational modifications and different protein isoforms (Han
et al., 2008).
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2.3.1 Sample preparation and data analysis for
proteomics

All proteomic approaches begin by extracting the proteins from
the biological specimen, often by using detergents, organic solvents,
lyophilization, and mechanical disruption (Al-Amrani et al., 2021).
The extracted proteins are then purified by gel-based and
chromatography-based approaches, resulting in a mixture of
purified proteins. The isolated proteins are then broken down by
digestion with a sequence-specific protease to produce a final
solution of purified peptides (Sinha and Mann, 2020).

The downstream process for analyzing samples by MS involves
ionizing the protein or peptide molecules, commonly by
electrospray ionization (ESI) and matrix-assisted laser desorption/
ionization (MALDI) (Han et al., 2008). The samples are processed in
a mass analyzer which separates the peptides according to mass-to-
charge ratios. There are several types of mass analyzers that use
different separation and ion detection techniques, but here we
highlight three common types. Quadrupoles separate ionic
peptides based on radio frequency electrical fields, where the ions
are fragmented through collisions with inert gases (Haag, 2016). For
time-of-flight (TOF) analyzers, the ions are separated based on
velocity, and microchannel plate (MCP) detectors amplify and
measure emissions from ion ejected electrons. Lastly, Orbitrap
analyzers separate ions based on oscillation frequencies where the
‘image current’, which represents the strength of the ion produced,
is measured.

The experimental spectra data is analyzed by software that
identifies peptides through comparison with known database-
generated spectra, generating qualitative or quantitative findings.
Peptide quantification strategies are either label-free, where MS
signals are extracted and normalized from raw data, or label-
based, where stable isotopes are introduced to tag proteins (Sinha
andMann, 2020). Common analysis software includes MSstats, an R
package that uses linear mixed models for label-free and label-based
workflows, thereby allowing for data-dependent and data-
independent spectral readings (Choi et al., 2014). The Perseus
platform is another software that utilizes traditional statistical
techniques in combination with machine learning to interpret
proteomic data (Tyanova et al., 2016). Additionally, there are
specialized databases that can be used to infer biological insight
from proteomics data. For example, the Kyoto Encyclopedia of
Genes and Genomes (KEGG), Reactome, PANTHER, and pathways
interaction database (PID) all provide extensive information on
protein interactions, pathways, and associated gene functions (Mi
et al., 2007; Schaefer et al., 2009; Croft et al., 2011; Kanehisa
et al., 2012).

2.3.2 Proteomics trends and future directions
Understanding the spatial arrangement of proteins at the

cellular and sub-cellular level offers information regarding
signaling networks between and within cells, protein localization,
and signaling pathways as they correlate to cell function and
dysfunction. Spatial proteomic techniques are typically conducted
to investigate one of three different findings: proteomic constituents
of individual organelles within a cell, analysis of protein-protein
interactions, and imaging of protein location within 3D space
(Lundberg and Borner, 2019). MS has been used to characterize
the structure and composition of organelles, in order to gain better

insight into organelle function (Andersen et al., 2003). MS and
fluorescent protein tagging-based imaging has also been applied to
map the subcellular spatial arrangement of proteins, thereby
identifying proximal proteins which may interact in meaningful
ways to induce whole cell responses (Liu et al., 2018).

However, MS-based proteomic techniques vary significantly
depending on the MS instrument that is used and the sample
processing protocol. Variability amongst proteomics protocols
therefore affect the accuracy and reproducibility of proteomic
data. Additionally, interpretation of collected data is complicated
by highly-varied processing parameters, limited quality assessment,
and shortage of standardized data formats (Domon and Aebersold,
2006). Difficulty in ensuring consistency of analysis across different
data platforms and computational tools limits the ability to draw
reliable conclusions. Future development of proteomic technologies
should prioritize the standardization of MS preparation and
processing protocols, alongside the optimization of data analysis
workflows that can enhance the reproducibility and reliability of
proteomic studies.

2.4 Metabolomics

The metabolome is the complete set of metabolites found in a
biological sample. Metabolites are the intermediate and end
products of metabolic processes and include a wide variety of
small molecules that contribute to functional phenotypes in whole
tissues and single cells (Zhang et al., 2012). Metabolomics is the
comprehensive study of metabolites, providing qualitative and
quantitative information on the abundance of metabolites in
biological systems. Approaches for characterizing the
metabolome include targeted analysis, which identifies the
presence and quantity of specific metabolites; metabolite
profiling, which provides a global and semi-quantitative view of
metabolites within a sample; and metabolic fingerprinting, which
characterizes patterns of metabolic activity (Shulaev, 2006).
Metabolomics has been used to identify metabolites related to
prognosis, diagnosis, and intermediate disease states, allowing for a
comprehensive understanding of disease progression (Dunn et al.,
2007; Sreekumar et al., 2009; Floegel et al., 2013). Over the past
decade, metabolomics has become an increasingly attractive
experimental method for studying biological systems in
combination with other leading -omics technologies, providing
insights into the complex interactions between genes, proteins, and
metabolites that drive cellular phenotypes.

2.4.1 Sample preparation and data analysis for
metabolomics

A wide variety of biological samples can undergo metabolomic
analysis, including blood, urine, cerebrospinal fluid, solid tissues, or
cells (Tan et al., 2016). Quenching metabolic activity immediately
after sample collection is critical for slowing or stopping metabolic
flux. After quenching, metabolite isolation and extraction can be
performed to prepare samples for analysis. Analysis is conducted by
either untreated or targeted approaches. Untargeted approaches
generate a comprehensive metabolic profile of all metabolites
within a biological specimen, while targeted approaches focus on
specific metabolites or sets of metabolites.
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Both untargeted and targeted metabolomics utilize MS and
nuclear magnetic resonance (NMR) spectroscopy for analysis.
NMR spectroscopy is an analytical technique that characterizes
chemical bonding and structure of molecules and atoms based on
magnetic properties of certain atomic nuclei (Dunn et al., 2011).
Metabolites are identified according to signaling peaks that are
generated during MS and NMR. There are two classes of
identification: putative and definitive. Putative identification uses
one or two molecular properties (e.g., retention time, NMR
spectrum) for identification without an authentic chemical
standard. Definitive identification is more accurate, as it employs
at least two properties along with an authentic chemical standard for
identification (Tan et al., 2016). Definitive identification is often
used after putative identification, in which selected metabolites are
confirmed using authentication standards and compared against
metabolomics databases (Dunn et al., 2011). There are several
software tools that offer comprehensive analysis of metabolomic
data, such as MetaboAnalyst 5.0, which provides both statistical and
functional analysis for several data collection methods (Pang et al.,
2021). Additionally, many specialized platforms are available to
derive specific biological insights from metabolomics data. For
instance, IMPaLA and MetPA are software tools that focus on
identifying relevant metabolic pathways (Kamburov et al., 2011;
Xia et al., 2011).

2.4.2 Metabolomic trends and future directions
Spatial metabolomics is a rapidly advancing technology that

interprets the presence and quantity of metabolites while conserving
their spatial organization within tissues (Alexandrov, 2023). This
approach primarily uses mass spectrometry imaging (MSI), a
derivative of MS, which overlays a coordinate grid onto a sample,
enabling the mass spectrometer to generate spatially-resolved
molecular data at each grid point (Buchberger et al., 2018). MSI
performs spatial mapping of metabolic heterogeneity within tissues,
and has successfully been employed to identify different cell types
(Luo et al., 2023). MSI has also been used to characterize diseased
tissues, resulting in the generation of metabolically-defined disease
subtypes and the identification of dysregulated metabolic pathways
(Scott et al., 2017; Neumann et al., 2022; Wang et al., 2022). Current
MSI technologies can proficiently assess the spatial organization of
metabolites at single-cell resolution, but subcellular analysis remains
challenging. Subcellular spatial metabolomics requires complex
protocols and advanced technical expertise, thus highlighting the
need for improved methods to achieve simplified spatial mapping
methodologies at the subcellular level (Petras et al., 2017).

Metabolomics has been largely used in clinical settings,
primarily to assess patient health by measuring the presence of
specific metabolites in biological specimens. In recent years,
metabolomics has also become a powerful tool in precision
medicine. It has led to the identification of specific disease
biomarkers, as well as the development of personalized
treatments that are based on individual metabolic profiles (Soni
et al., 2023). However, challenges in absolute quantification, which
would allow for the identification of abnormal metabolite levels
within a sample, currently limits the translational potential of
metabolomics (Pinu et al., 2019). Most metabolomics data is
semi-quantitative and normalized in non-standardized ways, and
thus quantitative reference data that can be used to calibrate

pathway analysis is lacking. While absolute quantification of
targeted metabolomics data is possible, methodologies to obtain
absolute quantification from untargeted approaches are still in
development.

2.5 Multi-omics

Individual -omics techniques can provide insights into cellular
identity and function through the perspective of different
biomolecules. These tools become more impactful when used
together to capture relationships between different biomolecules,
resulting in a comprehensive understanding of the biological
sample. Multi-omic approaches primarily focus on the
downstream analysis of data from separate -omics technologies.
For example, computational tools suchMulti-Omics Factor Analysis
(MOFA) have been developed to integrate multi-omics datasets
(Argelaguet et al., 2018). By employing statistical analysis and
machine learning tools, multi-omics methods can infer
biologically-relevant patterns that reflect biomolecular landscapes
defined by combined data from individual -omics techniques.

2.5.1 Multi-omics trends and future directions
Integrating multiple -omics techniques significantly increases

data volume and complexity, making it more challenging to
decipher synergistic relationships among different biomolecules.
These challenges are already present in analyzing data from
single -omics techniques, emphasizing the need for advanced
computational methods and integrated datasets to effectively
combine the information gathered across multiple -omics
technologies. Although there are many tools for single -omics
analysis, limited tools currently exist for multi-omic analysis. In
particular, strategies to integrate data from more than two -omics
techniques are lacking.

One comprehensive database, called the Single Cell Atlas (SCA),
provides a detailed multi-omics map of human tissues (Pan et al.,
2024). This atlas includes data from 125 healthy adult and fetal
tissues across eight -omics modalities, including single-cell RNA
sequencing, ATAC sequencing, immune profiling, mass cytometry,
flow cytometry, spatial transcriptomics, bulk RNA sequencing, and
whole-genome sequencing. The Omics Discovery Index (OmicsDI)
is another open-source platform that synthesizes -omics datasets,
including proteomics, genomics, metabolomics, and transcriptomics
(Perez-Riverol et al., 2017). Additional single-omics databases have
agreed upon standardizing data structures to contribute to OmicsDI.
One of the most notable disease-focused databases is The Cancer
Genome Atlas (TCGA), a project launched by the National
Institutes of Health to identify and record major cancer-causing
genome alterations (Weinstein et al., 2013; Tomczak et al., 2015).
TCGA incorporates genomic, epigenomic, transcriptomic, and
proteomic data for tumors of over 30 different cancer types.
Compared to single -omics databases, these collective databases
provide extensive depth of information, though they are limited by
smaller sample sizes due to the difficulty of acquiring and combining
different datasets. Future efforts will focus on developing more
integrative databases designed to meet the computational
demands required to extract meaningful insights from multi-
omics analysis.
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3 Application of -omics technologies to
characterize cellular diversity and cell-
cell interactions

Cell diversity is essential for tissue structure and function.
Advances in -omics technologies have revolutionized the ability
to identify new cell types and uncover their specialized functions.
These technologies also provide insight into cell-cell interactions,
thereby enhancing our understanding of the roles of different cell
subpopulations in tissue development, maintaining homeostasis,
and responding to physiological demands and stressors
(Armingol et al., 2021). Identifying new cell types and
understanding their interactions are essential for deciphering the
complex biological processes that underlie tissue development,
regeneration, repair, and disease. Such knowledge can then be
leveraged to develop next-generation therapies. For instance,
insights into neuronal cell diversity have advanced knowledge of
brain function and disease, while the discovery of novel immune cell
subsets may enable future breakthroughs in immunotherapy
(Mukamel and Ngai, 2019; Chen et al., 2020). In the following
sections, we will describe how -omics technologies have been
specifically employed to identify cell types and subtypes, as well
as shed light on cell-cell interactions that underpin tissue structure
and function.

3.1 Identification of cell types and subtypes

Advances in -omics technologies have enabled unprecedented
insights into the identification of cell types and their functions. In
particular, scRNA-seq has allowed for the analysis of gene
expression at the single-cell level, thus revealing distinct
transcriptomic profiles for different cell subpopulations. For
example, researchers at Massachusetts General Hospital and the
Broad Institute utilized scRNA-seq to characterize airway epithelial
cells and discovered a novel cell type called the pulmonary ionocyte
(Montoro et al., 2018). These cells were found to constitute
approximately 1% of airway epithelial cells. Furthermore, they
expressed the cystic fibrosis transmembrane conductance
regulator gene (CFTR), which has been implicated in cystic
fibrosis. Thus, the discovery of this cell type may re-direct
therapeutic strategies toward targeting pulmonary ionocytes or
their progenitors for cystic fibrosis treatment. In another study
performed at Washington University in St. Louis, Lake et al.
generated a cellular atlas for healthy and diseased kidneys, which
revealed the presence of 51 human kidney cell types and the
emergence of altered epithelial, stromal, and vascular cells in
diseased kidneys (Lake et al., 2023). This dataset will allow for
further investigation into the cell-cell signaling mechanisms that
regulate kidney dysfunction.

Spatial transcriptomics has also been employed to identify new
cell subpopulations. For example, scientists in Germany integrated
spatial transcriptomics with scRNA-seq data to generate a spatial
transcriptomics map of the embryonic mouse brain (Marco et al.,
2023). The researchers identified six distinct neuronal populations
and their spatial organization, which aligned with anatomical
regions that have been defined for the embryonic mouse brain.
Specifically, the different neuronal populations correspond to the

lateral ganglionic eminence (LGE), subventricular zone (SVZ) and
mantle zone, the septal areal, the preplate and cortical SVZ, the pial
surface, the cortical ventricular zone (VZ), and the LGE VZ. To
confirm the identities of the transcriptionally-defined clusters, the
scientists cross-referenced their results with known regional and
cell-type markers. They visualized gene expression both
anatomically and within t-SNE clusters, confirming distinct
spatial domains. For instance, Neurog2 and Sox3 were enriched
in the cortical VZ, Ascl1 and Ddah1 marked the LGE VZ, and
markers such as Neurod6 and Tiam2 highlighted the cortical SVZ,
while Zic4 and Onecut2 were enriched in the septal region. Non-
neural populations, including fibroblasts and endothelial cells, were
identified in the pial surface by markers such as Col1a2 and Cldn5.
Moving forward, data from this study can be used to provide spatial
context for cell-cell interactions within the developing mouse brain.
The ability to study neurogenesis through the lens of tissue
organization and architecture will reveal unprecedented insight
into the mechanisms that underlie neurodevelopment, and such
knowledge can potentially be used to inform strategies for neural
regeneration or therapies for neurodevelopmental disorders.

In addition to transcriptomics, multi-omics approaches have
also been employed to interrogate cell type diversity within tissues.
For example, a research group in Sweden employed multi-omics
integration to investigate cellular heterogeneity in the human liver
by using a combination of single-nucleus RNA sequencing,
proteomics, and chromatin interaction profiling (Cavalli et al.,
2020). By analyzing transcriptomic profiles at single-cell
resolution alongside mass spectrometry-based proteomic data, the
researchers were able to identify seven major liver cell populations,
including hepatocytes, cholangiocytes, endothelial cells, Kupffer
cells, and hepatic stellate cells, liver progenitor cells, and
fibroblasts (Cavalli et al., 2020). Intriguingly, transcriptomic
profiling allowed for the identification of four distinct
subpopulations of hepatic stellate cells. The integration of
transcriptomic and proteomic datasets revealed a modest
correlation between RNA and protein expression levels. In
addition to cell-type identification, the study incorporated data
from HiCap, which is a method for mapping regulatory elements
that interact with promoter regions by capturing and sequencing
DNA fragments that are in close proximity within the 3D structure
of the genome (Zhigulev and Sahlén, 2022). This approach provided
an epigenomic perspective on gene regulation, by revealing
connections between different regulatory elements. By integrating
single-nuclei RNA-seq, proteomics, and HiCap data, the authors
identified several enhancer regions for DPYD, which is a gene that
encodes for the enzyme dihydropyrimidine dehydrogenase (DPD).
DPD deficiency can result in increased chemotoxicity amongst
cancer patients, and therefore understanding the causes of DPD
deficiency can lead to strategies to alleviate treatment side effects.
DYPD expression was associated with both hepatocyte and Kupffer
cell subpopulations. The authors also identified several enhancers
for SCL2A2, which encodes for a glucose transporter and has been
used as a prognostic marker for hepatocellular carcinoma (HCC).
SCL2A2 expression was primarily found in hepatocytes.
Overexpression of SCL2A2 is associated with cancer cell
proliferation and metabolism, and therefore identifying the
regulatory elements that influence SCL2A2 expression can reveal
biological mechanisms that facilitate HCC progression. Overall, the

Frontiers in Chemical Engineering frontiersin.org08

Stark et al. 10.3389/fceng.2025.1629455

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2025.1629455


ability to combine transcriptomic, proteomic, and epigenomic data
allowed for a more comprehensive understanding of liver cellular
diversity and regulatory elements that influence gene expression in
the liver, thereby offering insights into both normal cellular function
and disease processes.

3.2 Cell-cell interaction networks

Understanding how cells communicate within tissues is essential
for comprehending complex biological processes. Cell-cell
communication involves interactions mediated by ligand-receptor
pairs and extracellular matrix (ECM) components (Armingol et al.,
2021). -Omics technologies have allowed for unprecedented insight
into the signaling pathways that cells use to communicate across
tissue development, repair, regeneration, and disease. In particular,
scRNA-seq has revolutionized the analysis of cell-cell interactions by
providing detailed information on ligand-receptor expression
patterns, enabling the mapping and understanding of
communication pathways between different cell types (Liu et al.,
2022). Here, we highlight some of the tools that have been used to
infer cell-cell interactions from scRNA-seq data and provide
examples of the insights that have been obtained from these tools.

CellChat is a powerful tool that utilizes scRNA-seq data to
predict how cells interact and influence each other’s behavior (Jin
et al., 2021). This methodology has been instrumental in studying
cell-cell interactions across various biological contexts, including
immune response, tissue development, and cancer progression.
CellChat leverages network-based inference, pattern recognition,
and manifold learning to predict dominant cellular signaling inputs
and outputs, enabling the classification of signaling pathways and
the delineation of conserved versus context-specific communication
patterns across diverse transcriptomic datasets. In a recent study
investigating the progression of nonalcoholic fatty liver disease
(NAFLD) to hepatocellular carcinoma (HCC), CellChat was
applied to single-nuclei RNA sequencing data to characterize
dynamic signaling networks within the liver microenvironment
(Koelsch et al., 2023). The analysis revealed that structural cells,
particularly fibroblasts and hepatocytes, served as dominant signal
senders, while macrophages, monocytes, and endothelial cells were
major recipients of these signals, especially during disease
progression. Importantly, CellChat uncovered that signaling
molecules such as TGF-β, IL-1β, and TNF-α exhibited context-
dependent functions, targeting different cell populations at various
disease stages. These shifts reflected a broader reorganization of
immune communication, marked by a transition from adaptive to
innate immune dominance. Moreover, the study highlighted that
certain pro-tumorigenic functions and metabolic alterations were
only detectable when considering the collective behavior of the
immune network, opposed to analyzing individual cell types in
isolation. Through this systems-level approach, CellChat enabled
the identification of early signaling changes predictive of
carcinogenesis, emphasizing its utility in uncovering emergent
immune functions within the complex tissue environments. By
understanding these interactions, targeted therapies can be
developed to disrupt these communication networks and inhibit
tumor progression.

CellCommuNet is a database for scRNA-seq data from human
and mouse tissue, with samples that encompass both normal and
diseased tissues. This resource aids researchers in deciphering
complex cell-cell interactions within tissues, as well as
identifying shifts in cell-cell communication that occur with
disease (Ma et al., 2024). For example, CellCommuNet has been
used to study interactions between macrophages and CD8+T cells
in lung adenocarcinoma, revealing enhanced communication
mediated by the SPP1-CD44 signaling axis. This interaction
suggests a tumor-associated phenotype shift in macrophages,
potentially contributing to immune suppression and poor
prognosis. Additionally, analysis of clear cell renal cell
carcinoma revealed increased cell-cell communication activity,
especially involving endothelial cells. CellCommuNet also
revealed that VEGF, FN1, and FGF pathways were upregulated
in tumor-containing samples compared to healthy controls. These
examples underscore CellCommuNet’s utility in uncovering
context-specific and disease-relevant signaling dynamics across
diverse tissues.

CellPhoneDB and NicheNet are other notable tools that utilize
scRNA-seq data to predict cell-cell interactions. CellPhoneDB infers
cell-cell communication by integrating a repository of ligands,
receptors, and their interactions with scRNA-seq data. It utilizes
a statistical framework to predict enriched ligand-receptor
interactions between cell types based on gene expression levels
and the subunit architecture of protein complexes (Efremova
et al., 2020). In one example, CellPhoneDB has been used to
explore the role of chemokine receptors in immune cell
migration across various immune-mediated diseases (Rahman
et al., 2024). The authors were able to identify 39 unique
chemokine-based ligand-receptor pairs, many of which occurred
only in diseased tissues. Additionally, 30 ligand-receptor pairs
associated with immune cell extravasation were identified, and
these occurred in both healthy and diseased tissues. Tissue-
specific sender-receiver pairs were observed in healthy tissues,
while both tissue-specific and generalized sender-receiver pairs
were observed in diseased tissues.

NicheNet, on the other hand, predicts how ligands influence
gene expression in receiver cells by integrating gene expression data
with prior knowledge of ligand-receptor interactions, intracellular
signaling pathways, and gene regulatory networks. This
computational model uses weighted networks to calculate
regulatory potential scores, thus identifying which ligands affect
specific target genes (Browaeys et al., 2020). NicheNet was validated
against scRNA-seq data from head-and-neck squamous cell
carcinomas (Puram et al., 2017), and the results support the
hypothesis that cancer-associated fibroblast (CAF) ligands drive a
partial epithelial-to-mesenchymal transition program (p-EMT) in
nearby malignant cells. NicheNet ranked TGFB3 as one of the
strongest CAF ligands, and 18 of the top 20 predicted ligands
were also known EMT regulators. Mechanistic tracing connected
TGFB3 to downstream genes such as TGFBI, LAMC2, and TNC
through SMAD3. These findings demonstrate how NicheNet can be
used to uncover functional, ligand-driven regulatory mechanisms in
the tumor microenvironment, offering insights into how stromal
cells influence cancer progression and identifying potential targets
for therapeutic intervention.
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4 -Omics-guided design and analysis of
engineered tissues

4.1 Design of engineered tissues

The field of tissue engineering can benefit from cellular and
molecular insights that are obtained from -omics technologies. By
revealing cell-cell and cell-matrix interactions that regulate tissue
development, regeneration, and disease, data from -omics studies
can inform the design of engineered tissues by highlighting cell
types, biologics, and extracellular matrix components that are
needed to recapitulate native tissue structure and function
(Figure 2). Here, we highlight how -omics can be used to define
relevant cell subpopulations for engineered tissues, as well as inform
the incorporation of biologics and extracellular matrix components
that recapitulate native cell-cell interactions.

4.1.1 Selection of cell types to incorporate into
engineered tissues

Cells are key components in establishing the functionality of
engineered tissues. Engineered tissues are designed to closely
resemble their native tissue counterparts in both cellular
composition and organization. Here, we highlight how -omics
technologies can inform the cellular make-up of engineered
tissues, as well as provide insight into mechanisms for
guiding cell fate decisions and cell behavior towards
desired functions.

4.1.1.1 Primary cells
A growing body of -omics research has reinforced the view that

tissue function is an emergent property of coordinated interactions
among multiple cell types, rather than isolated activity of any single
population. These insights underscore the importance of cellular
diversity, not only in identifying novel or rare subpopulations, but in
revealing how established cell types interact to support complex
physiological outcomes. Particularly for engineered tissues, the
integration of multiple primary cell types, such as parenchymal,
vascular, immune, and stromal cells, can be more practical and
impactful than focusing solely on rare or transitional populations,
which may be difficult to isolate, expand, or maintain in culture.

The selection of appropriate primary cells for incorporation into
engineered tissues is increasingly guided by spatial and single-cell
omics approaches, which provide high-resolution maps of
intercellular communication. These technologies have illuminated
how paracrine signaling, extracellular matrix remodeling, and direct
cell-cell contact contribute to tissue-specific functions. For instance,
in the liver, spatial transcriptomics and scRNA-seq has shown that
sinusoidal endothelial cells provide signaling cues that direct proper
liver development and zonation, as well as the emergence of
functional Kupffer cells (MacParland et al., 2018; Hu et al., 2022;
Kent et al., 2024). Engineered liver constructs that include only
hepatocytes often fail to achieve mature function, but the addition of
non-parenchymal components has been shown to enhance
functional outputs such as albumin secretion and urea synthesis,
demonstrating the value of recreating the native cellular ecosystem
(Li et al., 2014; Stevens et al., 2017; Chhabra et al., 2022). Similar
principles apply in cardiac tissue engineering. -Omics studies have
revealed extensive crosstalk between cardiomyocytes, endothelial
cells, and fibroblasts during development (Skelly et al., 2018; Wu
et al., 2022; Hou et al., 2024). Accordingly, cardiomyocyte function is
significantly improved when endothelial cells and fibroblasts are
included in engineered tissue constructs, as cell-cell communication
leads to better electrical conduction, mechanical performance, and
resilience under stress (Caspi et al., 2007; Stevens et al., 2009).

4.1.1.2 Stem cells
While primary cells have been used to develop and optimize

many engineered tissue platforms, limited availability of primary cell
sources, and concerns regarding host-donor compatibility for in vivo
applications, have sparked interest in developing alternative cell
sourcing strategies. Here, stem cells are considered to be a promising
cell source, as they are capable of indefinite expansion, can
differentiate into multiple cell types, and can be sourced from the
patient to generate personalized therapies (Teo and Vallier, 2010).
However, controlling stem cell fate decisions to obtain the
appropriate cell types within engineered tissues remains
challenging. Advances in -omics technologies have transformed
our ability to decode the molecular programs that govern stem
cell self-renewal and differentiation, providing a systems-level
framework to guide lineage specification. For example,

FIGURE 2
-Omics technologies can be applied to identify and characterize relevant cells, biologics, and structural ECM proteins within the native tissue
microenvironment, thereby informing the design of engineered tissues (Hynes and Naba, 2012; Ragelle et al., 2017; Nguyen et al., 2019; Shaik et al., 2019;
Bressan et al., 2023; Lammi and Qu, 2024).
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transcriptomics and proteomics have been employed to track gene
expression and transcription factor protein expression during
lineage specification (Semrau et al., 2017; Palii et al., 2019; Lee
et al., 2024). Metabolomics have also demonstrated that stem cells
and their progenitors differ into terms of their metabolite
composition, and that metabolic signaling can directly regulate
stem cell self-renewal and quiescence (Schönberger et al., 2022).
Finally, employing -omics technologies to characterize the stem
cell niche can identify cell-extrinsic microenvironmental cues that
regulate stem cell fate decisions (Kjell et al., 2020). Moving forward,
these insights from -omics studies can be combined with cell
engineering and synthetic biology tools to encode synthetic
molecular programs within stem cells to directly regulate their fate
decisions (Tewary et al., 2018). For example, synthetic gene circuits
can be designed to control the timing and level of transcription factor
activation to guide lineage-specific differentiation, or to directly
modulate stem cell quiescence or proliferation. Additionally,
incorporating epigenomic profiling, such as chromatin accessibility
and histone modification analyses, can provide critical insights into
the regulatory landscape of governing stem cell fate, thus enabling
more precise engineering of cellular identity. In turn, -omics can be
used to analyze engineered stem cells, in order to benchmark their
phenotype against their native counterparts and assess the robustness
of differentiation protocols (Simmons et al., 2024).

4.1.2Mimicking cell-cell interactionswith biologics
and extracellular matrices

Cells communicate through the production and exchange of
signaling molecules, which can take the form of growth factors,
metabolites, and extracellular matrix proteins. While cells can
directly communicate with each other through secreted, soluble
factors or ligand-receptor pairs that remain tethered to the cell
surface, cell-cell communication can also be achieved through
interactions with the surrounding extracellular matrix (ECM) (Rosso
et al., 2004). Cells dynamically remodel the ECM by depositing new
components and degrading existing scaffolds, which can also regulate
the availability of growth factors and other signaling molecules that are
sequesteredwithin the ECM. These changes to the ECMare then sensed
by surrounding cell types, therebymodulating cellular processes such as
migration, growth, and differentiation (Nguyen and D’amore, 2001).
Thus, while the incorporation of multiple cell types into an engineered
tissue represents one strategy to mimic native cell-cell interactions, a
complementary approach involves the inclusion of biologics and ECM
cues that represent the signaling molecules that are exchanged between
cells in native tissues. By incorporating the correct growth factors,
metabolites, or ECM proteins within engineered tissues, it may be
possible to reduce the complexity of cell types that are needed to achieve
a desired tissue phenotype or function. By analyzing cell–cell
interactions in native tissues, -omics technologies can help
researchers identify biologics and ECM proteins to design
engineered tissues that replicate native cell-cell communication and
influence cell function.

4.1.2.1 Identification of signaling molecules that
recapitulate cell-cell communication

The identification of soluble growth factors and metabolites that
are produced through cell-cell communication has been enabled by
transcriptomics, proteomics, and metabolomics analyses. Analyzing

the gene expression of related ligands and receptors, and their
localization to different cell subpopulations, can reveal paracrine
and juxtacrine mediators of cell-cell communication (Pavličev et al.,
2017; Parikh et al., 2022). In addition, proteomics analysis has
enabled the characterization of growth factors and the molecular
mechanisms that underly their function and interaction with cellular
receptors (Soskic et al., 1999; Blagoev et al., 2003; Tsai et al., 2008).
These insights help to identify key domains within growth factor
proteins that are responsible for receptor binding and downstream
signaling. This knowledge can then inform the rational selection of
ligands for incorporation into engineered tissues to mimic native
cell-cell signaling, as well as the design of peptide motifs that
enhance receptor engagement and signal transduction.

Proteomics has also played a key role in analyzing ECM proteins
and ECM-sequestered signaling molecules. Here, high-resolution
proteomic mapping of native tissues can identify essential matrix
proteins such as collagens, laminins, fibronectins, and
proteoglycans, along with ECM-associated proteins, regulators,
and secreted factors (Hynes and Naba, 2012; Ragelle et al., 2017).
In a study by Asthana et al., proteomic analysis using a combination
of MS and multiplex ELISA enabled more detailed profiling of the
human pancreatic proteome. The researchers identified proteins in
pancreatic tissue that are often underrepresented, enabling the
design of engineered tissues that incorporate these previously-
unidentified components to create more physiologically-relevant
scaffolds (Asthana et al., 2021). Ultimately, proteomic datasets
can guide the design of biomaterials by informing the inclusion
and organization of protein components that mimic the
composition and structure of the native ECM. In addition to
characterizing composition and structure, it is also important to
understand how cells interact with their surrounding ECM. Here,
proteomics and transcriptomics have been valuable in studying how
different cell types bind to and remodel the ECM, and in identifying
the downstream signaling pathways by which the ECM regulates cell
behavior (Nguyen et al., 2019; Shaik et al., 2019). Collectively, this
information can be used to engineer both cells and biomaterials to
elicit appropriate cell-matrix interactions to guide tissue formation
and function (Ragelle et al., 2017; Lammi and Qu, 2024).

4.1.2.2 Engineering tissues to mimic and modulate cell-cell
communication

Over the past few decades, the field of tissue engineering has
developed several strategies to mimic paracrine, juxtacrine, and
ECM-mediated signaling within engineered tissues. With regards
to paracrine signaling, many research groups have devised
approaches to incorporate growth factors into engineered
tissues to direct cell behavior towards tissue repair and
regeneration (Lee et al., 2011). Efforts have focused on
engineering the growth factor itself to enhance long-term
stability and bioactivity (Jones et al., 2011). In parallel,
innovations in biomaterials design have resulted in different
strategies to control the temporal release of growth factors.
These strategies include passive sorption of the growth factor
onto the biomaterial backbone, covalent conjugation of the
growth factor directly onto the biomaterial backbone, and
sequestration strategies that leverage reversible electrostatic
interactions to transiently bind and release growth factors
(Teixeira et al., 2020).
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In contrast to paracrine signaling, in which soluble signaling
cues are exchanged between cells, juxtracrine signaling relies on
direct contact between neighboring cells. To replicate juxtacrine
signaling in engineered tissues, researchers have explored strategies
to immobilize juxtracrine ligands into scaffolds (Deng et al., 2022).
In particular covalent tethering chemistries offer strong, irreversible
bonding between the ligand and scaffold (O’Grady et al., 2020). By
tethering juxtacrine signals to scaffold backbones, we can mimic the
spatial environments of native cell–cell contact and direct
cellular responses.

To recapitulate ECM-mediated signals, efforts have focused on
synthesizing biomaterials from natural or synthetic biopolymers
that mimic the native ECM. Natural proteins that are commonly
used in biomaterials include collagen, hyaluronic acid (HA), and
fibrin. These components offer key advantages such as
biocompatibility and biodegradability, tissue-specific biochemical
cues, and enhanced cell adhesion, making them valuable for
replicating aspects of the native ECM (Aazmi et al., 2024).
Hybrid materials that utilize multiple biopolymers can also be
designed to better mimic the heterogeneous composition of
native ECM, and to enable better control over the microscale-
properties of the materials. However, these biomaterial platforms
often fail to capture the full complexity of the native ECM, resulting
in growing interest in decellularization techniques, which aim to
maximize retention of native ECM constituents. In recent years,
analysis of decellularized tissues for different organs and disease
states has gained significant popularity (Sackett et al., 2018; J. Xu
et al., 2021; Yang et al., 2008). For example, one study employed
liquid chromatography (LC)-MS/MS to analyze homogenized
pericardium matrices (HPMs) and identify tissue-specific
structural proteins present in native heart tissues that could be
integrated into hybrid scaffolds as vascular tissue grafts (Bracaglia
et al., 2017). The researchers hypothesized that the hybrid scaffold
would offer both structural support and enhanced biochemical
function, thereby improving cell adhesion, enabling controlled
growth factor release and reducing inflammatory response.
Ultimately, decellularized tissue models can offer a
physiologically-relevant framework for studying cell–cell
interactions within native-like tissue environments.
Applying–omics techniques to characterize decellularized tissue
platforms additionally enables a deeper understanding of how
specific matrix components influence tissue form and function,
thereby guiding the design of synthetic biomaterials to replicate
key aspects of native ECMs and overcome translational challenges
associated with animal-derived materials.

4.1.3 Mimicking spatial organization of
native tissues

Tissue function arises not only from the presence of appropriate
cell types, but also from the proper spatial organization of these cells.
For instance, the liver arranges its hepatocytes in hexagonal lobules
to streamline metabolism and filtration, while the brain places
neurons and glial cells in precise layers to conduct complex
signaling. For decades, it has been known that these spatial
patterns are essential for regulating tissue function, but there was
a lack of tools to mechanistically understand how spatial
organization impacts cell behavior and higher-level tissue
function. That has since changed with the emergence of spatial

-omics technologies, which now allow for the mapping of individual
genes, proteins, and metabolites expressed across intact tissues
(Bressan et al., 2023). Spatial -omics data can be paired with
biofabrication strategies to recreate the cellular organization and
architecture of native tissues. For example, bioprinting is a technique
that can build tissues in a layer-by-layer fashion with astounding
precision. Much like an inkjet printer that deposits pigment on
paper, bioprinters deposit cells, ECM components, and growth
factors into 3D structures that mirror the architecture of native
tissues. Guided by -omics data, bioprinted constructs can now
recreate the zonation patterns of the liver, or the layered cellular
organization of skin and cartilage (Madiedo-Podvrsan et al., 2021;
Janani et al., 2022; Jorgensen et al., 2023).

Tissue-on-chip platforms offer another method to mimic the
organization of native tissues. Here, microfluidic devices can be
designed with different compartments to segregate different cell
subpopulations (Adjei-Sowah et al., 2022; Humayun et al., 2022).
Multiple cell types can be co-cultured and arranged according to
spatial-omics maps to observe how the cells interact under
physiologically-relevant conditions. Due to the advancements in
both spatial mapping and microfabrication, these microfluidic
platforms can now be engineered with precise spatial
heterogeneity, which allows them to model complex tissue
interfaces such as the blood-brain barrier (BBB) or intestinal
lining (Adriani et al., 2017; De Hoyos-Vega et al., 2023; Kaiser
et al., 2024). Ultimately, the ability to more accurately recapitulate
native tissue architecture is necessary for engineering tissue
constructs that not only reflect the composition and complexity
of native tissues, but also support functional outcomes that mimic
their physiological behavior.

4.1.4 Mimicking temporal and dynamic changes in
engineered tissues

Tissues are inherently dynamic systems that evolve over time,
through processes such as cell fate transitions, changes in ECM
composition and stiffness, and the emergence of metabolic gradients
within the tissue microenvironment. Capturing these temporal
changes is critical for understanding and recapitulating tissue
development and function. Longitudinal -omics technologies,
which characterize samples that are obtained at different time
points, offer a powerful means to dissect these dynamic
biological processes with high resolution. In particular, time-
resolved scRNA-seq has revealed how heterogeneous cell
populations transition through lineage trajectories during
development. For instance, Trapnell et al. used pseudotime
analysis to model gene expression changes during myoblast
differentiation, identifying regulatory cascades and transient
states that inform cell fate decisions (Trapnell et al., 2014).
Similarly, Weinreb et al. applied scRNA-seq with lineage tracing
to hematopoiesis, uncovering how transcriptional landscapes evolve
as progenitors commit to specific blood lineages (Weinreb et al.,
2020). These insights into dynamic transcriptional changes that
regulate cell states can inform the development of cell engineering
strategies to directly control stem cell fate decisions in vitro.

To recapitulate time-dependent phenomena in engineered
tissues, researchers are developing strategies that integrate
temporal control over both cellular and material components.
Cell engineering approaches that employ inducible circuits or
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tunable promoters can program time-dependent transcriptional
responses to mimic natural gene expression dynamics (Tewary
et al., 2018). Advances in materials science have enabled the
development of dynamic biomaterials, such as hydrogels with
tunable stiffness or degradation profiles that can evolve over time
to reflect native ECM remodeling (Xie et al., 2023). Furthermore,
hydrogels have been developed with oxygen-dependent chemistries
to mimic hypoxic microenvironments (Lewis et al., 2017), while
gradient materials can be developed to recapitulate spatial
differences in biochemical and biophysical properties that
recapitulate the heterogeneity of native tissues (Lowen and Leach,
2020; Ngo et al., 2021).

Beyond static environments, dynamic culture systems such as
perfusion bioreactors and mechanically actuated platforms further
improve the physiological-relevance of engineered tissues. For
example, vascularized microfluidic platforms have been used to
stimulate blood flow and nutrient delivery in engineered tissues,
enabling more accurate modeling of tissue perfusion. -Omics
approaches can be applied pre- and post-perfusion to assess how
shear stress regulates vascular cell phenotypes, vascular
inflammatory response, or ECM remodeling. Mechanical
actuation is another critical cue in many tissues, and recent work
has shown that phosphoproteomics can identify signaling pathways
activated in response to cyclic strain. For instance,
phosphoproteomics analysis revealed that dynamic actuation of
engineered muscle grafts increases phosphorylation of proteins

related to muscle contractility and repair, angiogenesis, and
innervation (Rousseau et al., 2023) Together, these integrated
-omics and dynamic culture strategies provide a powerful
framework to guide the design and optimization of bioactive and
functional tissue constructs.

4.2 Analysis and applications of
engineered tissues

Comprehensive analysis of engineered tissues is essential for
validating their structure and function, which can subsequently
inform their physiological relevance and translational potential.
-Omics tools enable the precise characterization of cell
composition, cell-cell interactions, and resulting biological
processes within engineered tissues. -Omics profiling can
therefore be used to benchmark engineered tissues against their
native counterparts, allowing for iterative tissue design to achieve
desired phenotypes or functions. Once an engineered tissue
construct has been validated, -omics can be used in conjunction
with both in vivo and in vitro applications (Figure 3). Here, we will
describe how -omics can be applied to evaluate the in vivo
performance of engineered tissues for transplantation and
regenerative medicine, gain new biological insights from in vitro
tissue models, and perform pre-clinical therapeutic screening with
engineered tissue testbeds.

FIGURE 3
Once engineered tissues have been transplanted into in vivo environments, -omics technologies can be used to assess patient-transplant
interactions and validate functional integration (Kumar et al., 2011; Malone andHumphreys, 2019; Balboa et al., 2022; Parikh et al., 2023; Sirolli et al., 2023;
Geo et al., 2024). When modeling tissue microenvironments in vitro, -omics technologies are employed to evaluate how well engineered tissues
recapitulate their native counterparts, thereby determining their physiological relevance as biomimetic models capable of uncovering novel
biological insight and assessing patient-specific therapeutic responses (Finkbeiner et al., 2015; Lassé et al., 2023).
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4.2.1 In vivo analysis of engineered issues
In vivo assessment of engineered tissues has been greatly

enhanced by the application of -omics technologies, which offer
detailed insights into how these constructs function and integrate
within living systems. -Omics analysis can help to reveal how
engineered tissues interact with surrounding host environments,
adapt to physiological conditions, and respond to external stimuli.
These approaches are also invaluable for characterizing host
immune responses to engineered tissues, and for examining how
engineered tissues influence or respond to host-pathogen dynamics.

4.2.1.1 Tissue transplantation: Donor-recipient
compatibility and post-transplantation outcomes

Engineered tissues hold significant promise as transplantable
therapies to replace damaged or failing tissues. A critical
consideration for tissue transplantation is ensuring the
compatibility between the patient and donor tissues. In recent
years, genomics and transcriptomics have been employed to
assess donor-patient compatibility by enabling the
characterization of human leukocyte antigen (HLA) genes (Geo
et al., 2024).

Beyond initial compatibility assessments, longitudinal
monitoring of transplanted tissues is critical for evaluating
whether the tissue can successfully integrate into the patient or
becomes at risk for rejection. Transcriptomic profiling has been used
to analyze gene expression profiles in transplanted tissues, offering
insights into cell-cell interactions and signaling mechanisms
involved in graft acceptance or rejection (Malone and
Humphreys, 2019). Such insights may lead to the development of
therapies that can shift cell-cell signaling towards mechanisms that
promote transplant acceptance and integration. Proteomics and
metabolomics offer additional tools for monitoring immune
responses to the transplanted tissue over time. By monitoring
fluctuations in protein expression and metabolic profiles, these
technologies can provide early warnings of immune activation.
For instance, proteomic analysis can detect the upregulation of
inflammatory cytokines, chemokines, and other immune
mediators, which may be indicative of transplant rejection
(Kumar et al., 2011; Sirolli et al., 2023). Simultaneously,
metabolomics can identify shifts in key metabolic pathways, such
as glycolysis or oxidative stress markers, that may signal aberrant
immune activity (Reikvam et al., 2018). These changes typically
precede symptom arrival and can therefore act as diagnostic
biomarkers that give physicians a critical window for
intervention. Thus, the use of -omics can enable timely
adjustments to immunosuppressive therapies that maintain
immune tolerance while minimizing the side effects associated
with generalized immunosuppression.

In addition to interactions between the patient’s immune system
and the transplanted tissue, graft performance can also be influenced
by pathogens or host microbiota. -Omics technologies provide a
molecular-level view of how engineered tissues interact with
microbial communities, enabling targeted strategies to improve
integration and reduce complications. For instance, proteomic
and metabolomic profiling can uncover how pathogens disrupt
host defenses or alter tissue metabolism, which are factors that
can affect immunocompromised or post-transplant patients (Jean
Beltran et al., 2017; Khan et al., 2019; Lehmann et al., 2024). These

findings inform the design of anti-microbial materials or pre-
conditioning regimens that protect engineered tissues from
infection-induced failure. Similarly, the host microbiome plays a
critical role in shaping immune response and tissue homeostasis.
Metabolomic analyses have shown how microbiome-derived
metabolites influence systemic inflammation, immune tolerance,
and even wound healing (Holmes et al., 2015; Levy et al., 2017). In
tissue engineering, this data can be used to predict graft outcomes
and design interventions that support tissue integration. For
example, modulating the microbiome through probiotics or
tailored diets could enhance compatibility between engineered
constructs and host tissues, especially in gut, skin, or mucosal
applications. Integrating these omics-driven insights into tissue
engineering pipelines aids in creating more resilient, adaptive,
and clinically-effective therapies.

4.2.1.2 Validation of engineered tissue performance post-
transplantation

Once an engineered tissue is transplanted, it must survive,
integrate with surrounding tissue, function, and respond to the
physiological demands of its new environment. -Omics
technologies allow for molecular-level analyses of engineered
tissues after transplantation. Transcriptomics and proteomics can
benchmark the maturation of engineered tissues in vivo, which can be
characterized through the expression of mature cell markers, proteins,
and signaling pathways that are relevant for tissue-specific function
(Balboa et al., 2022; Parikh et al., 2023). For example, in engineered
liver tissues, -omics data can confirm whether key metabolic enzymes
are expressed (Stevens et al., 2017). Metabolomics can be used to
profile metabolites that serve as indicators of tissue function or graft
recovery after ischemia-reperfusion injury (Wishart, 2005). Finally,
-omics techniques can be employed for longitudinal monitoring,
which enables dynamic tracking of graft health and can capture
early signs of graft failure due to aging, metabolic stress, or
overuse, even in the absence of overt immune rejection (Vasaikar
et al., 2023). By providing insight on graft performance, -omics
technologies enable continual refinement of engineered tissue
design for effective transplantation outcomes.

4.2.2 Biological insights from in vitro engineered
tissue platforms

While the field of tissue engineering has traditionally focused on
translational applications, many research groups are now employing
tissue engineering design principles to generate versatile in vitro
models of both healthy and diseased tissues. In vitromodels provide
a unique advantage by capturing cell and tissue functions under
controlled and reproducible conditions, which has been critical for
understanding biological phenomena that are often difficult to study
native contexts. Such models can be employed to uncover new
biological mechanisms underlying development, regeneration, and
disease, or may be applied as testbeds to screen new therapies or
develop personalized medicine protocols. -Omics can not only
inform the design of in vitro models but also enable the
characterization of cell-cell interactions within these platforms.
Here, we highlight how the integration of -omics and in vitro
models have provided new insight into tissue development and
disease, and the application of these technologies for
therapeutic screening.
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4.2.2.1 Developmental biology
Engineered tissues have significantly advanced our

understanding of developmental biology, particularly through the
use of organoids. Organoids have been traditionally defined as three-
dimensional in vitro cultures derived from primary tissues or stem
cells and are designed to mimic the self-assembly of tissues during
embryonic development (Fatehullah et al., 2016). The first organoid
cultures were established by encapsulating primary tissues or stem
cells in Matrigel, and culturing the cells in defined media conditions
to mimic morphogenetic signaling. In recent years, however, tissue
engineering tools such as synthetic biomaterials and biofabrication
have been incorporated into organoid protocols to better mimic the
spatial organization of native tissues (Garreta et al., 2021).
Furthermore, establishing organoids that incorporate stromal,
vascular, and immune cell types along with parenchymal cells are
an area of ongoing innovation (Takebe and Wells, 2019).

-Omics analyses can be employed to benchmark organoid
cultures against native tissues, and to gain insight into new
biological mechanisms that regulate tissue development. For
example, transcriptomics has been employed to characterize the
developmental age of organoid cultures. Finkbeiner et al. used
RNA-seq to compare global expression profiles between human
intestinal organoids (HIOs), fetal intestinal tissues, and adult
intestinal tissues (Finkbeiner et al., 2015). They found that the
organoids more closely resembled fetal tissues, and that both the
HIOs and fetal tissues had low expression of genes associated with
digestive function and host-defense functions. However, once
transplanted into an in vivo environment, the HIOs developed
adult-like characteristics, suggesting that the in vivo
microenvironment contains specific maturation cues that direct
intestinal development. Single-cell transcriptomics have also
played a key role in identifying cell subpopulations that emerge
during organoid culture, along with their corresponding
developmental trajectories. In a recent study, scRNA-seq was
used to characterize the development of ventral midbrain
organoids (Fiorenzano et al., 2021). Here, the authors were able
to trace the emergence of different cell populations (e.g., vascular
leptomeningeal cells, astrocytes, oligodendrocyte progenitors)
over time, as well as identify different dopaminergic neuron
subpopulations at different levels of maturity.

In addition to transcriptomics, proteomics analyses can be
employed to profile cell type markers, deposited growth factors
and extracellular matrix proteins, metabolites, and lipids that are
expressed throughout organoid development (Nezvedová et al.,
2023). Furthermore, genomic screens have been applied to
organoids to understand how individual genes influence tissue
development, which not only enhances our biological
understanding but also can provide opportunities to refine
organoid culture protocols. In one study, CRISPR-based loss-of-
function screening resulted in the identification of genes and
signaling pathways that are important for kidney development
(Ungricht et al., 2022). In particular, BMP, Wnt, Notch, and
Sonic Hedgehog signaling were all implicated in early kidney
development, and inhibition of ROCK signaling was also found
to improve mesoderm induction for the generation of nephron
progenitor cells. Taken together, -omics tools will continue to be
invaluable for characterizing organoid cultures and deriving
biological insight from these model systems.

4.2.2.2 Disease mechanisms
In vitro platforms can be used tomodel diseases such as cancer and

neurological disorders, and to specifically investigate the contributions
of cell-cell communication in regulating disease progression. In vitro
disease models can be assembled in a bottoms-up fashion, by co-
culturing relevant cell types within ECM-mimetic biomaterials or
microfabricated platforms. Alternatively, organoids have also been
used to model disease; here, diseased tissue can be isolated and
cultured, or stem cells can be genetically-edited to mimic mutations
that have been implicated in a given disease.

Researchers have turned towards -omics technologies for
benchmarking in vitro disease models against native tissues, and for
uncoveringmechanisms of cell–cell communication in disease contexts.
For instance, transcriptomic profiling has been used to compare gene
expression patterns between disease-mimetic organoids and patient-
derived tissues, helping to validate whether the in vitromodels faithfully
recapitulate key pathological features. One study by Lassé et al.
developed a kidney organoid as a model for TNFα-associated kidney
disease (Lassé et al., 2023). Using proteomics and transcriptomics, the
authors characterized the organoids at different culture durations,
which revealed changes in cellular composition and ECM deposition
over time. Upon stimulation with TNFα, the organoids expressed pro-
inflammatory markers and increased their secretion of cytokines, cell
adhesion proteins, and apoptotic regulators. Transcriptomic signatures
that were observed with TNFα stimulation were subsequently
confirmed in tissue specimens from kidney disease patients, thereby
supporting the physiological relevance of the organoid platform.
-Omics techniques can therefore be used in engineered platforms to
reveal whether disease-relevant pathways are appropriately activated in
the model system.

Once an in vitro platform has been validated, -omics can
subsequently be applied to elucidate cell-cell signaling mechanisms
that contribute to disease phenotype and progression (Ngo and
Harley, 2019; Truong et al., 2019; Ewoldt et al., 2024).
Technologies such as scRNA-seq have been particularly useful for
the analysis of in vitro platforms. Since cell identities can be inferred
from gene expression profiles, the use of scRNA-seq can eliminate the
need to physically isolate disparate cell subpopulations from in vitro
cultures for downstream analysis. In a recent study, Adjei-Sowah et al.
employed scRNA-seq to analyze an in vitromodel of the glioblastoma
perivascular niche (Adjei-Sowah et al., 2022). Based on marker genes,
the authors were able to distinguish endothelial cell, astrocyte, and
glioma stem cell subpopulations. Further analysis of copy number
variants allowed for additional subtyping of the glioma stem cell
population. By characterizing ligand-receptor expression across
different cell subpopulations, the authors identified angiocrine
SAA1-FPR1 signaling as a novel mediator of glioblastoma
invasion. This finding was experimentally verified in their in vitro
platform, demonstrating how -omics and engineered tissue models
can be used in tandem to derive and test new biological hypotheses.

In addition to scRNA-seq, phosphoproteomics is a powerful tool
for identifying dysregulated signaling pathways that are associated
with disease states. Within the past decade, phosphoproteomics has
been increasingly employed to reveal abnormal phosphorylation-
mediated signaling networks that are associated with dysregulated
cellular function and disease progression. For example, a recent study
identified Rab GTPases as direct substrates of the kinase LRRK2,
which is activated in Parkinson’s disease due to mutations in the gene
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Park8. Phosphorylation of Rab GTPases results in dysregulated
intracellular trafficking of Rab and impacts its interactions with
regulatory proteins, which may contribute to the development of
Parkinson’s disease (Steger et al., 2016). This work highlights how
phosphoproteomics can identify precise molecular events, such as
kinase-substrate interactions, that contribute to complex disease
phenotypes and inform therapeutic strategies. Overall, integrating
insights gained from phosphoproteomics with engineered tissue
platforms can not only inform design of in vitro models that
capture dysregulated cellular communication relevant to different
pathologies, but also result in the identification of new signaling
mechanisms that are dysregulated during disease progression.

4.2.2.3 In vitro models as therapeutic testbeds
In vitro platforms can not only serve as biological models for basic

science, but also as testbeds for preclinical drug evaluation and
precision medicine. Advancements in constructing three-
dimensional culture systems have significantly enhanced the drug
discovery process by offering models that better mimic in vivo
environments, thereby improving the accuracy of drug candidate
screening compared to traditional 2D tissue cultures (Ingber, 2022).
Designing in vitro systems to evaluate therapeutic responses requires
careful consideration of how drugs are absorbed and distributed within
host tissues. To address this issue, microfluidic technologies have been
employed to generate organ-on-a-chip platforms that simulate the
structure and function of human organs. These three-dimensional
models offer robust tunability, allowing researchers to replicate a wide
range of complex organ systems in a reliable and reproducible manner
(Shirure et al., 2018). To further enhance the physiological relevance of
these models, transport across biological barriers—such as the blood-
brain barrier and intestinal epithelium—also need to be modeled (van
der Helm et al., 2016; Yu et al., 2018; Arik et al., 2021). By
characterizing these barriers and incorporating them into in vitro
models, researchers can better assess drug transport into and within
tissues. One recent study developed a placenta-on-chip model, offering
a new way to study drug transport from mother to fetus and assess
safety profiles of drugs administered to pregnant patients (Blundell
et al., 2018). Many studies have also focused on modeling the
blood–brain barrier, due to its role in limiting drug delivery to the
central nervous system (Partyka et al., 2017; Park et al., 2019; Lee et al.,
2020; Neumaier et al., 2021). In addition to mimicking individual
organs, body-on-chip platforms that linkmultiple organ chips together
have also been developed to model systemic drug transport within the
human body (Ronaldson-Bouchard et al., 2022). Due to renewed
interest in replacing animal models within the drug development
pipeline (Zushin et al., 2023), it is anticipated that continued
innovations in fabricating in vitro models will advance the ability
for engineered tissue testbeds to accurately recapitulate drug
pharmacokinetics and pharmacodynamics.

In vitro testbeds can be developed with patient-derived cells to act
as personalized models of disease. When coupled with -omics, these
patient-specific platforms can be used to model and study
individualized drug responses (Soldatow et al., 2013;
Tsamandouras et al., 2017; Vlachogiannis et al., 2018). Genomics
has become popular in the field of pharmacogenetics to study how
genetic variations among patients affect the metabolism and efficacy
of drug treatments (Ma and Lu, 2011). In the past, studies focusing on
drug-metabolizing gene variants have accurately predicted patient

responses to therapeutics and identified adverse reactions (Pinto and
Eileen Dolan, 2011). This approach has revealed key genetic markers
that govern differential drug responses, paving the way for more
precise and personalized therapeutic interventions. In the future,
continued integration of -omics technologies with patient-specific
tissue models will enable an in-depth understanding of the molecular
mechanisms that govern drug response, allowing for improvements to
therapeutic regimens and real-time refinement of treatment protocols.

5 Discussion

-Omics technologies have profoundly transformed the landscape
of tissue engineering by enabling a comprehensive understanding of
cell diversity and cell-cell communication across tissue development,
regeneration, and disease. Insights gleaned from -omics studies have
been used to inform the design of engineered tissues, both for
fundamental science and translational applications. In turn, -omics
can be used to provide molecular-level characterization of engineered
tissues, in order to benchmark their composition, structure, and
function against their native counterparts. In recent years, -omics
technologies have been applied in particular to the design and
utilization of in vitro tissue models, in order to validate their
physiological relevance and derive new biological insight.

Moving forward, the advent of single-cell and spatial -omics
technologies promises to provide even greater insight into tissue
organization and cellular heterogeneity. Coupled with innovations in
biofabrication, cell engineering, and mammalian synthetic biology, it is
expected that single-cell and spatial insights will further enable the
fabrication of engineered tissue platforms with precisely-defined
architecture and cell composition, thereby moving the field of tissue
engineering closer to the development of functional artificial tissues and
organs. Integration of -omics technologies with pre-clinical
transplantation studies will allow for improved refinement of
regenerative tissue therapies, by providing valuable molecular insight
into the processes that govern tissue integration, patient-tissue
interactions, and tissue maturation and function post-transplantation.
Finally, the integration of artificial intelligence and machine learning
tools with multi-omics data holds great potential for uncovering new
biological mechanisms by which cell-cell communication governs tissue
development, function, and dysregulation. Such insights will further
inform the development and analysis of engineered tissues as biological
models, regenerative therapies, and therapeutic testbeds.
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