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Nanofiltration (NF) membranes are a pressure-driven membrane separation
technology that lies between reverse osmosis (RO) and ultrafiltration (UF),
featuring selective separation of low-molecular-weight organic compounds,
divalent ions, and some monovalent ions. Due to their low operating pressure,
low energy consumption, and ability to efficiently desalinate while retaining some
beneficial minerals, NF membranes have shown broad application prospects in
drinking water purification, wastewater treatment, food and pharmaceutical
industries, and resource recovery. This article systematically reviews the existing
challenges (including trade-off effect between selectivity andflux,membrane fouling
and insufficient chemical stability) and the corresponding countermeasures from the
perspectives of material modification and structural design, etc., with the aim of
providing references for further research and industrial applicationofNFmembranes.
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1 Introduction

With the increasingly severe global water shortage and environmental pollution
problems, efficient and energy-saving water treatment technologies have become a
research hotspot. Since its development in the 1980s, nanofiltration (NF) technology
has been widely applied in several fields, thanks to its unique separation performance
(molecular weight cut-off of 200–1,000 Da), relatively low operating pressure
(0.5–1.5 MPa), and high selectivity in removing multivalent ions (Zhang et al., 2020;
Wieczorek and Ulbricht, 2021; Di et al., 2024; Tan et al., 2025). Compared to reverse
osmosis (RO) membranes, NF membranes require less energy for desalination and are
capable of retaining certain monovalent ions (e.g., Na+ and K+). These properties make NF
membranes particularly suitable for applications where high water quality is desired without
the need for complete desalination (Zhang et al., 2020).

Interfacial polymerization (IP) is a commonly employed technique for the fabrication of
NF membranes. It involves polymerization occurring at the interface between two
immiscible solvents, resulting in the formation of an ultrathin and dense separation
layer that exhibits highly efficient retention of small organic molecules and divalent
ions (Chen J. et al., 2024; Ding et al., 2024). Despite significant progress in NF
technology, the following bottlenecks still exist. 1) The trade-off between selectivity and
flux: High rejection rates often come with low flux (Ni et al., 2024). 2) Membrane fouling:
Adsorption of pollution leads to performance decline (Liu L. et al., 2025; Tan et al., 2025). 3)
Insufficient chemical stability: Extreme pH or oxidative environments can cause membrane
degradation (Miao et al., 2024; Wang et al., 2024).
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Based on these, this article aims to review the basic design
principles of NF membrane and its current research progress in the
field of water treatment. Specifically, it provides a comprehensive
analysis of the aforementioned challenges associated with NF
membranes, as well as their modification approaches from the
perspectives of material composition and structural design.
Finally, it looks forward to the future development directions of
NF technology, providing a reference for related research.

2 Limitations of NF membranes and
corresponding countermeasures

Up to now, the problems existing in NF membranes and the
corresponding modification strategies are shown in Figure 1. The
specific analysis is as follows.

2.1 The trade-off effect between selectivity
and flux

2.1.1 Material modification
Introducing nanomaterials, such as metal-organic frameworks

(MOFs) (Chen Q. et al., 2024), covalent organic frameworks (COFs)

(Xiang et al., 2025), graphene oxide (GO) (Feng et al., 2025b), and
carbon nanotubes (CNTs) (Ye et al., 2023), into the separation layer
can effectively optimize the membrane’s pore structure and surface
properties. For example, MOFs (e.g., ZIF-8 (Xie et al., 2024) and
UiO-66 (Huo et al., 2024; Yu et al., 2024) offer uniform channels and
enhance molecular sieving capabilities. COFs, with their tunable
pore sizes and excellent chemical stability, can improve membrane
selectivity (Xiang et al., 2025). The interlayer nanochannels in GO
regulate water transport pathways while maintaining a high
rejection rate (Feng et al., 2025b). Additionally, incorporating
CNTs with low-friction inner surfaces into the separation layer
can accelerate water molecule transport and reduce osmotic
resistance (Zhao et al., 2023). Inorganic nanoparticles such as
SiO2 and TiO2 can also be added into the polyamide (PA) layer
to simultaneously enhance mechanical strength and regulate pore
size distribution (Yan et al., 2022; Feng et al., 2025a). However,
large-scale production of new materials (such as MOFs, COFs, and
GO) is challenging due to cost constraints. Besides the above-
mentioned nanomaterials, adjusting the membrane surface
wettability through block copolymers with hydrophilic/
hydrophobic chain can reduce membrane fouling and optimize
flux (Wieczorek and Ulbricht, 2021). Embedding artificial water
channel proteins in the separation layer can achieve high selectivity
and high flux (Song and Kumar, 2019).

FIGURE 1
Limitations of NF membranes and corresponding countermeasures.
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2.1.2 Structure optimization
From the perspective of mass transfer, under the premise of

ensuring excellent retention performance, reducing the thickness,
increasing the pore size/free volume fraction (FFV), or enhancing
the effective filtration area of the separation layer can also effectively
break the trade-off effect. The IP process was optimized (such as
adjusting the monomer concentration and changing the reaction
interface) to prepare ultra-thin but dense PA layers, reducing mass
transfer resistance (Liu G. et al., 2025). The incorporation of
additives into the aqueous phase can also control the IP rate by
regulating monomer diffusion, thus enabling the fabrication of a
thinner separation layer (Zhang et al., 2022; Zhang et al., 2024;
Wang et al., 2025a). In addition to directly controlling the separation
layer thickness through aforementioned factors, the substrate can
also be pre-modified by depositing a hydrophilic intermediate layer
to improve control over the IP process and facilitate optimization of
the separation layer structure (Wang et al., 2025b). The hydrophilic
surface of the intermediate layer adsorbs amine solution, thereby
increasing the local concentration of amine monomers near the
reaction interface. This higher amine concentration, combined with
the reduced surface pore size of the intermediate layer, helps
suppress defect formation in the PA layer and enhances
separation performance. Moreover, hydrogen bonding
interactions between the intermediate layer and amine molecules
can effectively slow down the diffusion of amine monomers, further
limiting their supply in the reaction zone and promoting the
formation of a thinner PA layer. Nevertheless, achieving a defect-
free ultrathin separation layer remains challenging in practical
applications.

By designing novel monomers for IP, the pore size distribution
and FFV of the PA separation layer can be precisely controlled,
thereby optimizing the permeability-selectivity balance of NF
membranes. Specific strategies can be classified into the following
types. 1) Introduction of rigid/distorted monomers: The use of
monomers containing bulky groups or non-planar structures can
increase the packing defects in the polymer chains, resulting in larger
free volume and wider pore size distribution (Liu Y. et al., 2023; Peng
et al., 2023; Tang et al., 2023). For instance, the PA network formed
by the polymerization of a quaternized-spiro PIP and TMC has a 6%
increase in FFV due to the enhanced rigidity of the designed
monomer, leading to a higher permeance (~22 L m-2 h-1 bar-1)
(Peng et al., 2023). 2) Using macromolecule to react with TMC.
Macromolecules have a relatively high steric hindrance and can react
with TMC to increase the FFV of the PA layer (Wang et al., 2025a).
For instance, ε-Polylysine/TMC system exhibits a larger FFV (from
15.64% to 38.85%) compared to Lysine/TMC system (Wang et al.,
2025a). In addition to modulating the network structure by directly
incorporating new monomers into the IP process, post-treatment
methods can also be employed to dynamically adjust the network
density through the reactive functional groups (e.g., hydroxyl,
carboxyl, and amino groups) in monomers or additives (Yu
et al., 2022; Mi et al., 2024).

By optimizing the kinetics of IP or introducing external control
measures, wrinkled structures can be formed on PA layer surface,
thereby significantly increasing the actual active area and
simultaneously optimizing the mass transfer pathways. During
the IP process, by adding surfactants (such as SDS) or polymers
(such as PVA) to regulate the diffusion rate of amine monomers

(such as PIP), interfacial instability is induced, resulting in the
formation of nano-scale wrinkles or stripe patterns (Tan et al.,
2018; Huo et al., 2022). By temporarily supporting the PA layer with
removable templates such as Cd(OH)2 nanowires during the IP
process, a hollow wrinkled structure is formed after the removal,
increasing the effective area (Karan et al., 2015).

2.2 Strategies for improving membrane anti-
fouling performance

The improvement of the anti-fouling performance of NF
membranes is one of the cores of its application. The key idea of
the modification strategy is to change the properties of the
membrane surface through physical or chemical methods,
thereby weakening the interaction between pollutants and the
membrane surface. Specific strategies need to be developed to
direct the regulation of membrane surface properties in
accordance with the composition of water.

2.2.1 Hydrophilic modification
The specific method involves immobilizing hydrophilic

polymers or zwitterionic polymers on membrane surface through
surface coating or surface grafting, forming a stable hydration layer
on membrane surface as a physical barrier to effectively prevent the
adhesion of hydrophobic organic substances (such as proteins, oils),
colloids and other contaminants (You et al., 2017; Ding et al., 2021).
Among them, zwitterionic polymers have positive and negative
charge centers in their molecular structure, which can combine a
large number of water molecules through strong ionic hydration to
form a super-hydrated layer, and have excellent resistance to various
pollutants (Ding et al., 2021). In addition to enhancing
hydrophilicity through polymers, as mentioned in Section 3.1.1,
some nanomaterials can also improve the hydrophilicity of the
membrane surface and endow it with anti-fouling properties.

2.2.2 Surface charge regulation
By altering the charge nature of the membrane surface,

electrostatic repulsion (Donnan effect) is utilized to repel
contaminants with the same charge (Song et al., 2021; Liu H.
et al., 2023; Hui et al., 2025). Most natural organic matter,
colloidal particles and microorganisms in natural water bodies
carry a negative charge. By sulfonating, carboxylating and other
methods to make the membrane surface carry a strong negative
charge, these pollutants can be effectively repelled, reducing organic
and colloidal pollution. In specific scenarios (such as removing
positively charged certain dyes), positively charged NF membranes
are also designed. The key lies in the targeted design based on the
charge characteristics of the target pollutants.

2.2.3 Surface morphology and roughness
optimization

Altering the structure of the membrane surface can affect the
way pollutants interact with the membrane and the hydrodynamic
behavior. A smooth surface can reduce the anchor points for
pollutant deposition, making it less likely for pollutants to adhere
and easier for them to be washed away by water flow (Wang et al.,
2023; Zhuang et al., 2024). The lotus leaf effect, which involves
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designing micro-scale patterns on the surface, can not only reduce
the actual contact area between pollutants and the membrane
surface but also alter the flow field on the membrane surface,
generating local turbulence and enhancing shear force, thereby
reducing concentration polarization and pollutant deposition.

2.2.4 Functionalization
Introducing specific chemical functional groups on membrane

surface endows it with special properties (Liu L. et al., 2025). For
instance, grafting quaternary ammonium salts, antimicrobial
peptides or loading silver nanoparticles (AgNPs), copper
nanoparticles can endow the membrane surface with antibacterial
properties. However, it should be noted that all the above substances
are based on killing bacteria, and secondary pollution caused by
dead cells should be prevented. Therefore, preventing the initial
adhesion of microorganisms through a highly hydrophilic or
zwitterionic surface to avoid pollution caused by dead cells
becomes an excellent strategy for enhancing the antibacterial
properties of membranes.

2.3 Chemical stability improvement

The chemical stability of membrane materials is insufficient in
extreme pH and oxidative environments, which can easily lead to
performance degradation or structural damage, restricting their
long-term application. In water treatment, the chemical
degradation of NF membranes mainly includes hydrolysis
reactions and oxidative erosion. The amide bonds within the PA
layers are susceptible to hydrolysis under strongly acidic or alkaline
conditions, which can lead to the disruption of the cross-linked
network structure. Free chlorine (such as sodium hypochlorite) can
attack the N-H bonds in the PA layer, forming chloramines or
causing chain breaks. The chemical stability of nanofiltration
membranes can be enhanced through novel membrane design.
For example, developing polyester materials with chlorine-free
attack sites (Li et al., 2024), acid-resistant polysulfonamides (Lai
et al., 2022), and acid/alkali-resistant polyureas (Wang et al., 2024)
not only ensures the long-term stable operation under harsh
conditions, but also enables the membrane to withstand more
extreme chemical cleaning conditions. However, the
improvement of the stability of novel membrane is also only
focused on a certain aspect. For instance, although polyester
membranes have chlorine resistance, the ester bonds are prone to
hydrolysis under alkaline conditions, leading to a sharp decline in
performance. Therefore, the chemical stability of NF membranes
should be determined by selecting materials and modification
strategies based on specific application scenarios.

3 Summary

NF, as an efficient and energy-saving separation technology,
holds broad application prospects in the field of water treatment.
This paper reviews the main challenges faced by NF membranes and
the corresponding improvement strategies. Despite numerous
challenges, with the development of new materials and new
processes, NF technology is expected to play a greater role in the

field of water treatment. Future research should focus on the
development of high-performance membrane materials, system
optimization and intelligent operation to promote the wider
application of NF technology. For example, from the perspective
of membrane materials, more regular nanopores can be precisely
constructed at atomic level to enable high-speed water molecule
transport with near-zero friction and highly selective ion screening.
Meanwhile, inorganic-organic hybrid membranes can employ
“rigid-flexible integration” strategy by embedding rigid, well-
defined channels within a flexible polymer matrix, thereby
significantly improving the flux and chemical stability to
withstand harsh environments.
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