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Photocatalytic technique had already been employed in the treatment of olive mill
wastewater (OMW) using the photocatalysis in suspension. The coupling of photocatalytic
and membrane techniques should result in a very powerful process bringing great
innovation to OMW depollution. Despite the potential advantages using these hybrid
photoreactors, research on the combined use of photocatalysis and membranes has so
far not been sufficiently developed. The present paper describes a study to assess the
photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated
by UV light, used to abate the pollutant load of OMW. Good results were obtained (more
than 90% of the phenol content was removed and the COD decrease was of the order
of 46–51% in 24 h) particularly using the ceramic membrane compared with those offered
by analogous catalytic membranes made of metallic or polymeric materials.
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INTRODUCTION
There are literature reports of a good number of studies (Saez
et al., 1992; Paraskeva et al., 2004; Dhaouadia and Marrot, 2008)
on the possibility of abating or reducing the pollutant load of
olive mill wastewater (OMW). The olive oil extraction process
generates large amounts of dark liquid effluent known as OMW,
as high as 0.5–0.8 m3 per tonne of olives treated. This effluent
consists of a mixture of “vegetation water” coming from the
olives, and water added during oil extraction process. OMW is
one of the most contaminated effluents. OMW is a foul smelling
acidic wastewater, composed of water (83–92 W/W%), organic
matter (4–16 W/W%) and minerals (1–2 W/W%). OMW dis-
posal on farmland is the cause of serious problems owing to the
wastewater’s high phenol and polyphenol content.

Owing to their antibacterial effects, phenols and polyphe-
nols are the most problematic compounds contained in the
OMW (Saez et al., 1992; Pozzo et al., 1997). Alternative pro-
cesses have been proposed to reduce pollutant problems such as
those due to OMW. According to the literature, the proposed
OMW treatment processes can be physical-chemical, biologi-
cal or combined treatment (Boari and Mancini, 1990; Fiestas
De Ursinos and Padilla, 1992; Pozzo et al., 1997; Paraskeva
and Diamadopoulos, 2006). Treatment of OMW by advanced
oxidation processes (AOPs), such as electrochemical oxidation,
has recently been increasing (Andreozzi et al., 1999; Drouiche
et al., 2004; Inan et al., 2004; Gotsi et al., 2005; Giannis et al.,
2007). Recent studies used solar photocatalytic pilot plants to
obtain the OMW degradation by combined TiO2 (very widely
used also in the degradation of textile reactive dye) and photo-
Fenton catalysis system (Ahmadi et al., 2005). The present

research therefore aims at investigating the catalytic effect of
titanium dioxide, together with the action of ultraviolet light
and the oxidizing effect of hydrogen peroxide. The tests were
performed in a photoreactor in which three different types
of heterogeneous membrane containing titanium dioxide were
successively inserted, one at a time. Of these three different
membranes one was ceramic, one polymeric and the third
metallic. Significant advances in membrane technology research
aimed at extending membrane potential have recently been
reported.

Numerous membrane applications have also been proposed
that are regarded as economically competitive due to the avail-
ability of membranes with higher flux and lower process costs. In
particular, ceramic membrane development has been one of the
principal targets. These membranes have proved suitable for high
temperature, corrosive and high pressure applications with good
durability (DeFriend et al., 2003; Falamaki et al., 2004; Yoshino
et al., 2005; Bouzerara et al., 2006; Wang et al., 2006; Nandi
et al., 2008; Kim and Van der Bruggen, 2010). In the present
research, aimed at monitoring the photocatalytic treatment of
olive oil mill wastewater in a batch photoreactor containing a
catalytic (TiO2) membrane, an investigation was made of the
principal parameters affecting the water treatment process, such
as the variation in concentration between the beginning and
the end of the photocatalytic process of compounds selected
as indicators, i.e., polyphenols, or COD variation. In addition,
an assessment was made of the amount of catalyst, the pres-
ence or absence of oxidizing agent and the varying power of
the UV radiation used for photocatalytic irradiation by per-
forming various tests on mill wastewater samples. The catalytic
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process was monitored by periodically taking samples from the
reactor and analyzing them in order to determine both the
total polyphenol content using a tyrosinase enzymatic biosensor
previously developed by the authors (Campanella et al., 2005,
2006, 2007), and the COD (Chemical Oxygen Demand), mea-
sured colorimetrically by the dichromate method (Rand et al.,
1979).

EXPERIMENTAL SECTION
MATERIALS
Raw materials for ceramic membranes such as clay, kaolin,
feldspar, quartz, calcium carbonate and sodium carbonate
were provided by Imerys Minerali SPA, Avezzano, Italy.
Polysulfone, PVDF (Polyvinylidenefluoride), 1-octanol and N-
methyl-pyrrolidone (NMP) was purchased from Sigma Aldrich
srl, Milan, Italy. The metallic membrane was supplied by SETEC
srl, Civita Castellana, Italy. Titanium oxide (P25) from Evonik
Degussa GmbH, Frankfurt am Main, Germany. COD was deter-
mined using test kits (LCI 400 CSB/COD/DCO9) supplied by
Hach Lange, Dusseldorf, Germany. The tyrosinase enzyme for
the biosensor from mushroom (2400 Umg−1) (EC 1.14.18.1) and
the dialysis membrane (D-9777) were supplied by Sigma, St.
Louis, Mo, U.S.A. Potassium chloride, phenol, phosphate for the
buffer, potassium dichromate and the other chemical reagents
were of analytical reagent grade and supplied by Carlo Erba,
Milan, Italy. Lastly, the Kappa-carrageenan was from Fluka AG,
Buchs, Switzerland.

SAMPLES
The OMW samples were provided by a three-phase olive oil
mill company located in Lazio, Italy. In Table 1 the principal
characteristic of the studied samples are summarized.

APPARATUS
A tyrosinase biosensor previously developed by the authors
(Campanella et al., 2005, 2006, 2007), (see Figure 1) was used
for Total Phenols (TPh) determination. The tyrosinase biosen-
sor was assembled using an amperometric oxygen electrode
by Universal Sensor Inc., New Orleans (U.S.A.), Mod. 4000-1,
connected to a mod. 551 VA-Detector Amel potentiostat cou-
pled to a Mitel MK 5001 Multimeter and to a mod. d5126-2
Omniscribe analog recorder. Total Chemical Oxygen Demand
(Rand et al., 1979) was determined using a Hach DR 6000
Spectrophotometer (Hach Lange, Dusseldorf, Germany) and a
LT 200 Thermostat for standard and special digestions. A batch
type photoreactor designed for laboratory scale analysis was uti-
lized. The bench-scale OMW experimental setup consisted of
an aerated photoreactor and a side-stream tubular membrane
module. The aerated bioreactor was made of glass and had an
operating volume of 2 litres, a diameter of 10 cm and length
of 55 cm. Air was introduced into the reactor using filtered in–
house compressed air via air diffusers placed at the bottom
of the reactor. UV irradiation was provided by a 450 W high
pressure Hg lamp, emitting radiation in the 300–400 nm range,
or with a 36 W low pressure lamp, emitting radiation in the
250–300 nm range, both produced by Helios Italquartz, Milan,
Italy.

Table 1 | Properties of OMW samples used in this study.

COD, (g/L) 47

Total Phenols (TPh), (g/L) 8.1

pH 4.6

Color (absorbance at λ = 450 nm) Dark brown

Properties of OMW prior to dilution.

FIGURE 1 | Tyrosinase enzyme biosensor.

PHOTOCATALYSIS
Photocatalytic processes make use of a semiconductor metal
oxide (TiO2) as catalyst and H2O2 as oxidizing agent. The
mechanism of photocatalytic oxidation of organic compounds
is well know (Hoffmann et al., 1995; Linsebigler et al., 1995;
Herrmann et al., 1999; Gelover et al., 2004; Chatterjee and
Dasgupta, 2005; Fostier et al., 2008) and involve multiple pro-
cesses. Initially, an electron–hole (e−/h+) pair is generated in
the semiconductor particles (Hoffmann et al., 1995), when the
surface is irradiated with energy (greater than) or equal to the
band gap. Electrons are excited from the valence band (VB) to
the conduction band (CB) of the semiconductor, thus creating
an electron vacancy at the VB edge. The VB hole is strongly
oxidizing, whereas the CB electron is strongly reducing. A hole
can migrate to the surface and oxidize an electron donor; in
turn, at the surface, the semiconductor can donate electrons to
reduce an electron acceptor. Consequently, the semiconductor
particle can act either as an electron donor or an electron accep-
tor for molecules in the surrounding medium, depending on the
charge transfer to the adsorbed species (Linsebigler et al., 1995;
Chatterjee and Dasgupta, 2005). Overall, the mechanism of pho-
tocatalysis can be divided into five steps: (1) transfer of reactants
in the fluid phase to the surface; (2) adsorption of the reactants;
(3) reaction in the adsorbed phase; (4) desorption of the products;
and (5) removal of products from the interface region (Herrmann
et al., 1999). A photocatalyst is a substance that, after being irra-
diated by light, can induce a chemical reaction in such a way that
the actual substance of the catalyst will not be consumed (Gelover
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et al., 2004). Among the various types of photocatalyst, TiO2 is the
most commonly used semiconductor photocatalyst in the con-
version of organic pollutants into harmless substances (Fostier
et al., 2008). It is known to be relatively inert, corrosion resis-
tant, and less toxic and cheaper (Madhusudan Reddy et al., 2003)
than other photocatalysts such as ZnS, WO3, etc. Several catalysts
have been tested so far (Do et al., 1994; Sayama and Arakawa,
1997; Valden et al., 1998; In et al., 2007), although TiO2 in the
anatase form seems to have the most appropriate attributes such
as high stability, good performance and low cost (Yin et al., 2001;
Andersson et al., 2002).

THREE DIFFERENT CATALYTIC MEMBRANES (CERAMIC, POLYMERIC
AND METALLIC), FABRICATION
Substrates cover a wide range of ceramic, polymeric, glass and
metallic materials (particularly stainless steel).

Ceramic membrane preparation
For the fabrication of the ceramic membrane, capable of liq-
uid waste treatment, several inorganic raw materials were used:
clay (19%W/W), kaolin (33%W/W), feldspar (16%W/W), quartz
(20%W/W) calcium carbonate (10%W/W), sodium carbonate
(2%W/W). The various raw materials used in the fabrication of
inorganic membranes had different functional attributes. Kaolin
and clay gave the membrane low plasticity and high refractory
properties. Sand contributed to the mechanical and thermal sta-
bility of the membrane. The porous texture of the ceramic was
regulated by calcium carbonate which, under sintering condi-
tions, dissociates into CaO and releases CO2 gas. The path taken
by the released gaseous CO2 created the porous texture of the
inorganic membrane and contributed to membrane porosity dur-
ing the sintering process. Sodium carbonate acted as a colloidal
agent and improved the dispersion properties of the inorganic
precursors, thereby enhancing the homogeneity of the membrane
structure. Likewise, feldspar acted as binder by creating silicate
bonds among the elements to increase the mechanical strength of
the ceramic membrane. The particle size distribution analysis of
the ceramic body was checked using a Malvern Mastersizer 2000
laser granulometer during the membrane fabrication process. The
data indicate that almost 90% of the particles had a diameter
of less than 10 μm. The average particle size of kaolin, calcium
carbonate and quartz was 2.37, 4.11, and 8.40 μm, respectively.

For fabricating this ceramic membrane these raw materials
were mixed and a body slip prepared (Almandoza et al., 2004;
Saffaj et al., 2004, 2006; Ersu and Ong, 2008; Palacio et al., 2009;
Jeonghwan and Van der Bruggen, 2010). Lastly, the dry ceramic
membrane was fired at 950◦C. The paste was then cast over a
gypsum mold of a circular cylinder (55 cm diameter and 5 cm
thickness) (Chin et al., 2006). Subsequently, the ceramic body was
de-molded and the circular cylinder dried at room temperature
for 24 h. After that it was maintained at 100◦C for 12 h in a hot
air oven. Then the membrane was sintered for 5 h as follows: 1 h
to attain 250◦C, 3 h to attain 600◦C, 1h to attain 900◦C and 1 h
at a constant temperature of 900◦C. During the transition from
100◦C to 250◦C, a low heating rate was maintained in order to
eliminate the induction of thermal stresses caused by the loss of
moisture. Subsequent cooling of the membrane was conducted by

an atmospheric cooling procedure adopted by switching off the
muffle furnace that had previously been maintained at the estab-
lished sintering temperature. After sintering, membranes had a
hard, rigid and porous texture. Finally, the fabricated membrane
was polished with silicon carbide abrasive paper (C-220) to obtain
a membrane 53 cm in diameter and 4.5 cm thick. The internal sur-
face of the cylinder was glazed with an enamel containing also
10% (w/w), or 30% (w/w), of TiO2, then fired again at 700◦C.
Physical characterization of the membrane was performed after
firing. The open porosity of the membrane was evaluated using
the water percentage absorption method. Chemical (i.e., corro-
sion) resistivity of the membrane was evaluated by subjecting the
membrane to concentrated HCl and concentrated NaOH solu-
tion. Analysis of the membranes before and after the corrosion
test was performed to detect any change in elemental composi-
tion. The mechanical strength of the membranes was tested using
a three point bending load method (ASTM Standard C1211-02,
2003; JIS R 1601, 2008). All these quantitative tests were per-
formed on the ceramic sample prepared for evaluating general
membrane performance and characteristics.

Polymeric and metallic membrane preparation
To fabricate the polymeric membrane (Legrini et al., 1993;
Molinari et al., 2001; Addamo et al., 2004; Cao et al., 2006;
Damodar et al., 2009) a homogeneous polymeric solution was
prepared containing a polymer, a solvent and an additive such
as commercial polysulfone, 1-octanol and NMP, respectively, in
addition a 10 or 30 percent by weight of TiO2. In practice the
alcohol guaranteed a sufficiently fast phase separation in the water
containing the coagulation bath. In order to achieve the desired
structure of the membrane, PVDF (Polyvinylidenefluoride) with
TiO2 was used, as reported in literature (Byrne et al., 1998;
Molinari et al., 2002). Casting solutions were prepared by mix-
ing 10 wt.% polyvinylidene fluoride (PVDF), with different
amounts of nanosize (20 nm) Degussa P25 TiO2 catalyst particles
(10 or 30 W/W%) in n-methyl-2-pyrrolidone (NMP) solvent at
60–65◦C. The solution containing different percentages of TiO2

was sprayed on to a PVC support. After the spraying step, the
membrane was immediately exposed for 10 s to a (450 W) high
pressure UV lamp to anchor the solution on the PVC support,
which was then immersed in a 23–25◦C tap water coagulation
bath for 1 day. Finally the PVDF/TiO2 composite membrane
obtained was washed with distilled water.

Lastly, the metallic membrane was made by electro-depositing
titanium (Ti) on the surface of a stainless steel foil support
(Delplancke and Winand, 1988; Fernandez et al., 1995; Esplugas
et al., 2002; Yanga et al., 2004). The stainless steel foil was cleaned
by sonication in acetone and placed in a suspension of TiO2,
Degussa P-25 (mainly anatase) in acetone (1 g in 100 mL). The
suspension was first homogenized by sonication and stirred mag-
netically during the deposition. A counter-electrode of platinum
was placed in the suspension just before the stainless steel sub-
strate having the same size and shape. An appropriate potential
was applied between the electrodes, the stainless steel foil act-
ing as the cathode. Two samples were prepared by applying
200 V for 4 min. Due to their natural surface charge, the tita-
nium particles moved to the stainless steel foil, thus forming a
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layer. Finally, to improve adhesion, the sample was heated in a
N2 flow at 973 K for 4 h to produce the sample TiO2/steel. After
anodic oxidation, the metallic membrane was rinsed with distilled
water and dried in an oven at 40◦C (Delplancke and Winand,
1988; Fernandez et al., 1995; Esplugas et al., 2002; Yanga et al.,
2004).

OLIVE MILL WASTEWATER DEGRADATION PROCESS IN A
PHOTOREACTOR
Experiments were conducted in a batch type laboratory scale pho-
toreactor, as illustrated in Figure 2. The aerobic olive mill waste
water photoreactor (AOP) consisted of a cylindrical vessel with a
diameter of 8.0 cm. The working volume was 1.5 L, with provision
made for UV irradiation and addition of hydrogen peroxide (the
final concentration of H2O2 in the photoreactor was 5 mM). The
catalytic ceramic membrane was mounted as required around the
UV lamp, so that the TiO2 present in the internal glazed surface
was exposed to UV irradiation to achieve the degradation of pol-
lutants. For the sake of comparison, in addition to this new type of
ceramic membrane, also two other traditional membranes, either
polymeric or metallic, were used alternatively in the same way. In
a typical heterogeneous photocatalytic test, 300 mL of OMW were
diluted 1:100 V/V with distilled water. Then 1.5 L of the diluted
sample were placed in the reactor after adding 4 mL of H2O2

(0.20 M) in order to obtain a concentration of about 5 mM in the
photoreactor and irradiated with a low or high pressure UV lamp.
Periodically 5 mL of the sample was taken and their polyphenol
content determined using a tyrosinase enzymatic biosensor, fab-
ricated as described in previous papers (Campanella et al., 2005,

FIGURE 2 | Scheme of the batch photoreactor (1.5 L) with the

membrane placed around the bulb of the lamp.

2006, 2007), while the COD was determined using the dichromate
method (Rand et al., 1979).

RESULTS AND DISCUSSION
Some papers reported in literature describe the use of microp-
orous membranes for waste water treatment (Di Serio et al., 2008;
Cui et al., 2011; Athanasekou et al., 2012) coupled to the cata-
lyst, and the immobilization of TiO2 both physically deposited
on the membrane surface, or confined in coating. In the present
research our aim was to study the use of a ceramic membrane in
which 10% W/W, or 30% W/W, TiO2 was included in the glaze
that cover the internal surface of the tubular membrane. This
ceramic membrane had both a filtration and a support function.
A new inorganic formulation was also tested for the fabrication
of this ceramic membrane, which had an average particle diame-
ter varying from 0.5 to 50 μm. In addition, the present research
indicates that the ceramic membrane was fabricated with high
contents of inexpensive kaolin (33%) and clay (19%). Thermal
characterization suggested that the appropriate sintering temper-
ature for the composition of materials selected is around 900◦C.
The membranes provided good mechanical strength (3 MPa flex-
ural strength) and chemical stability (only 8% weight loss was
found, if immersed in both acid or base media). The results
obtained in all the tests performed using the UV lamp at high
pressure, expressed in mg L−1, are illustrated in the histograms in
Figures 3, 4, while all the principal data obtained using UV lamp
at low and high pressure, expressed in % removal of COD and
phenols, are summarized in Tables 2, 3 respectively.

Several tests were carried out involving the photodegradation
process performed in the photoreactor described and the three
different membranes were each used successively. In particular,
the process was investigated both in the presence of H2O2, but
without any catalytic membrane, and with H2O2 and the catalytic
membrane. The results obtained point to a moderate improve-
ment due to the use of H2O2 in the photodegradation process
as the percentage of COD removal increases from 28 to 29%,
while the percentage polyphenol abatement varies from about 50
to 53%. Lastly the investigated process was carried out using two
different UV lamps, one low and one high pressure. In partic-
ular, Tables 2 and 3 show the percentage removal of COD and
phenols with an UV lamp at low pressure (36 W) or at high
pressure (450 W), respectively, after 24 h, in order to monitor
the photocatalytic treatment of OMW in a batch photoreactor
using a tyrosinase biosensor and COD test. Comparing the data
in Tables 2, 3 the results obtained show that the effect on the pro-
cess trend does not change substantially whichever type of lamp
is used. However, in optimal conditions, the percentage polyphe-
nol abatement varies from about 93 to 97% and that of COD
from about 52 to 56% on going from the low pressure lamp to
the high pressure one. These results show that on going from
the low pressure to the high pressure lamp, at constant treatment
time, the pollutant load abatement does not vary by more than
5%, while the cost of the materials (high pressure lamps) and
the energy consumption (in kWh) are much higher in the lat-
ter treatment. It is therefore more economical to use low pressure
lamps in this treatment even though this means lower pollutant
load abatement.
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FIGURE 3 | Chemical oxygen demand variation during batch experiment with the three different membranes used with olive mill wastewater (diluted

1:100 with distilled water), performed with a (450 W) high pressure UV lamp.

FIGURE 4 | Total phenolic compound variation in the OMW during batch experiment with the three different membranes used with olive mill

wastewater (diluted 1:100 with distilled water), performed with a (450 W) high pressure UV lamp.

It was found that the reaction time have an important effect
on COD and phenol removal (see the histograms behavior in
Figures 3, 4). After 24 h and in the presence of TiO2, using
the low pressure UV lamp, almost 46.0 and 89.1% of COD
and phenols were, respectively, removed in this process involv-
ing the treatment of OMW using a ceramic membrane glazed
with an enamel containing 10% W/W TiO2. The use of a metal-
lic membrane, on which titanium dioxide, had been deposited
using an electrolytic anodizing process, resulted in a percent
COD abatement of 40.9% and a percent phenol reduction of
82.1%. Results also show that treatment efficiency increased with
increasing TiO2 concentration of about 30% in the ceramic mem-
brane, achieving 52.4 and 93.3% in COD and TPh, respectively.
This observation indicates that most of the biodegradable com-
pounds initially present in the wastewater were destroyed or/and

less biodegradable intermediates were formed. Finally, in the
case of the polymeric membrane the final COD removal was
only of the order of 32.5% and that of phenols of the order
of 64.2%.

The present research was carried out on suitably diluted
OMW samples before photocatalytic treatment in the reactor (as
described in the previous section). This allowed both the pho-
todegradation process and the analytical methods employed to
monitor pollutant load abatement during the process to be tested
more accurately. In practice, the aim was above all to give pri-
ority to the study of the analytical aspects of the methods used.
In future research, the next stage will be to repeat the same tests
on increasingly less diluted samples of OMW up to the point of
using non diluted “as is” samples, to investigate if and when the
increased sample concentration ultimately has an effect on both
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Table 2 | Percentage removal of COD and phenols with a (36 W) low pressure UV lamp after 24 h.

Experimental condition % COD removal

RSD% ≤ 5.0

% phenols removal

measured with

tyrosinase biosensor

RSD% ≤ 5.0

pH of the

solution after

the process

RSD% ≤ 5.0

Without membrane and without H2O2 28.10 50.2 5.48
Without membrane and with H2O2 29.05 53.8 5.85
With Metallic membrane and with H2O2 40.85 82.1 6.95
With Polymeric membrane and with H2O2 32.52 64.2 7.70
With Ceramic membrane (10 W/W% TiO2 on the surface)
and with H2O2

45.95 89.1 7.25

With Ceramic membrane (30 W/W% TiO2 on the surface)
and with H2O2

52.42 93.3 7.10

Table 3 | Percentage removal of COD and phenols with a (450 W) high pressure UV lamp after 24 h.

Experimental condition % COD removal

RSD% ≤ 5.0

% phenols removal

measured with

tyrosinase biosensor

RSD% ≤ 5.0

pH of the

solution after

the process

RSD% ≤ 5.0

Without membrane and without H2O2 28.50 50.8 5.50
Without membrane and with H2O2 29.15 53.8 5.95
With Metallic membrane and with H2O2 44.85 87.1 6.85
With Polymeric membrane and with H2O2 38.82 71.4 7.80
With Ceramic membrane (10 W/W% TiO2 on the surface)
and with H2O2

50.97 93.2 7.25

With Ceramic membrane (30 W/W% TiO2 on the surface)
and with H2O2

56.56 96.8 7.18

the efficiency of the photocatalytic process and the monitoring
methods used themselves.

CONCLUSIONS
Data reported in the Tables 2, 3 show how the new ceramic mem-
brane containing TiO2 seems to provide an excellent combination
of thermal, mechanical and chemical stability in addition to good
catalytic characteristics. Among the configurations described in
this paper, the membrane photoreactor, which combines the
advantages of both classical photoreactors and membrane pro-
cesses, seems very promising. Photocatalytic degradation can be
carried out reasonably quickly due to the high available irra-
diated surface area of the catalytic particles. This study shows
that the ceramic membrane is a good candidate for the removal
of pollutants in OMW. Indeed, the performance of polymeric,
metallic and ceramic membranes was evaluated and compared
as far as and the percentage removal of COD and total phenols
was concerned. Results show that the ceramic membrane is very
effective in removing both compared with the two other mem-
branes. Lastly, it may be concluded that the use of the tyrosinase
amperometric biosensor to monitor this process can be consid-
ered practical, useful and cheap in monitoring the photocatalytic
process of mill wastewater.
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