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This review summarizes some recent experiments with ice nanoparticles (large water
clusters) in molecular beams and outlines their atmospheric relevance: (1) Investigation of
mixed water–nitric acid particles by means of the electron ionization and sodium doping
combined with photoionization revealed the prominent role of HNO3 molecule as the
condensation nuclei. (2) The uptake of atmospheric molecules by water ice nanoparticles
has been studied, and the pickup cross sections for some molecules exceed significantly
the geometrical sizes of the ice nanoparticles. (3) Photodissociation of hydrogen halides
on water ice particles has been shown to proceed via excitation of acidically dissociated
ion pair and subsequent biradical generation and H3O dissociation. The photodissociation
of CF2Cl2 molecules in clusters is also mentioned. Possible atmospheric consequences
of all these results are briefly discussed.
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1. INTRODUCTION
The fact that small atmospheric ice particles and aerosols are
important players in atmospheric chemistry has been recognized
and outlined in textbooks, e.g., Finlayson-Pitts and Pitts (2000),
and numerous review articles, e.g., Peter (1997); Ravishankara
(1997); Finlayson-Pitts (2009); and Vaida (2011). Perhaps the
most pronounced example is the stratospheric ozone depletion
process, where the ice particles in polar stratospheric clouds
(PSC) play a key role (Peter, 1997; Solomon, 1999; Prenni and
Tolbert, 2001; Lu, 2010). The investigations of small nanometer-
size particles directly in the atmosphere are difficult thus such
studies are yet scarce, and large ambiguities exist in this size
region. However, these small particles have large surface to
volume ratio and offer a substantial playground for the sur-
face assisted chemistry and photochemistry in the atmosphere.
Recently Kulmala et al. (2013) stressed the importance of the par-
ticles from this size range as the initial step in the atmospheric
aerosol formation.

To investigate the relevant processes in laboratory, a vast num-
ber of studies on bulk ice surfaces are carried out including
uptake and reactivity of atmospheric gasses on ice (Hanson,
1995; Oppliger et al., 1997; Huthwelker et al., 2006; Marcotte
et al., 2013), and their photochemistry (Klán and Holoubek,
2002; Yabushita et al., 2002). On the other hand, the cluster
physicists and chemists have developed a plethora of approaches
for studying clusters in laboratory experiments in molecular
beams which enable controlled generation of nanometer-size
particles with composition corresponding to the atmospheric
species (Campargue, 2001; Buch and Devlin, 2003). The details

of ice nanoparticles generation in supersonic expansions has been
recently investigated by Kim et al. (2004), Manka et al. (2012),
and Li et al. (2013). The individual particles can be investigated
under controlled conditions in vacuum by various means: e.g.,
ionization (electron, photon) and mass spectrometry (MacTaylor
and Castleman, 2000; Lengyel et al., 2012b); infrared (IR) spec-
troscopy (Yacovitch et al., 2011, 2012; Preston et al., 2012; Fujii
and Mizuse, 2013) or ultraviolet (UV) photodissociation exper-
iments (Kreher et al., 1999; Li and Huber, 2001; Poterya et al.,
2007, 2008a, 2011; Ončák et al., 2008, 2011); particle (elec-
tron, photon, neutron) scattering (Heath et al., 2003; Kim et al.,
2004; Manka et al., 2012); special methods such as sodium dop-
ing and subsequent spectroscopies (Bobbert et al., 2002; Yoder
et al., 2011; Pradzynski et al., 2012). Such experiments provide
unprecedented molecular-level insight into the small particle gen-
eration, their (photo)chemistry and (photo)physics and detailed
dynamics of the processes on/in these particles. This in turn
offers valuable data for understanding and modeling of atmo-
spheric chemistry. Some of the methods of aerosol particle spec-
troscopy have been reviewed in recent book (Signorell and Reid,
2011).

Here we review some recent results of the molecular beam
experiments with the ice nanoparticles performed mostly in our
laboratory. Our versatile experiment allows to look at different
aspects of the ice nanoparticle chemistry and physics: e.g., nucle-
ation, pickup processes, and photochemistry. The purpose of
this review is to summarize the different viewpoints outlined in
the individually published articles to provide a new perspective
for such experiments with ice nanoparticles, and also to discuss
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some possible direct consequences for atmospheric chemistry and
physics. Wherever similar experiments exist in the literature, we
attempt to review them briefly and outline our work in their
context.

We will start with nucleation of nitric acid ice particles as
revealed by special Na-doping method. Then we report about ice
particle growth by pickup of molecules. Finally, we discuss UV
photodissociation of atmospheric molecules on ice nanoparticles
which is the major focus of our studies.

2. MATERIALS AND METHODS
The majority of experiments reviewed in this article was per-
formed in our laboratory on CLUster Beam apparatus (CLUB).
A detailed description of CLUB setup can be found in Fárník
(2011) and some recent extensions of this apparatus are out-
lined below. It is schematically depicted in Figure 1: it represents
a unique and versatile setup for variety of experiments with clus-
ters. The molecular beam is produced by a continuous supersonic
gas expansion through a nozzle into vacuum. The mean clus-
ter sizes can be controlled by the expansion conditions: pressure,
temperature and nozzle geometry. The clusters can be doped
with foreign molecules either in coexpansion or by passing them
through a pickup cell filled with the molecular gas.

After passing through several differentially pumped high vac-
uum chambers the cluster beam enters the chamber where the
photodissociation experiments are performed. The molecules in
clusters are excited with nanosecond UV laser pulses. The desired
photofragments are then selectively photoionized by resonance
enhanced multiphoton ionization (REMPI) method and their
kinetic energies are recorded. The time-of-flight (TOF) technique
was used to measure the fragment velocity originally. Recently we
have implemented the velocity map imaging (VMI). The ionized
photofragments are detected with a large-area position sensi-
tive detector with phosphor screen and the resulting images are
recorded with a fast CCD camera. The image processing deliv-
ers a detailed 3D information about the photofragment veloci-
ties from which the photodissociation dynamics can be learned.
More details about imaging and VMI techniques can be found
in Chandler and Houston (1987); Eppink and Parker (1997);
Gebhardt et al. (2001); and Whitaker (2003).

The next chamber along the beam path contains a new reflec-
tron TOF mass spectrometer (RTOF) with electron and photo-
ionization. It has been first implemented and described in our
recent studies by Lengyel et al. (2012b, 2013); Kočišek et al.
(2013a,b). At the end of the apparatus, the clusters can be also
detected and analyzed by a quadrupole mass spectrometer after
electron ionization. This option serves the beam alignment and
analysis. Also cluster velocities can be measured using a (pseu-
dorandom) chopper and the quadrupole detection to measure
the cluster flight-times. Subsequently the cluster pickup cross sec-
tions can be evaluated from change in the cluster velocity in the
pickup experiments. This method has been described by Fedor
et al. (2011b).

Recently we have built another setup for studies of isolated
molecules and small clusters: Apparatus for IMaging (AIM).
Some of the results reviewed here were obtained on AIM. It
implements the velocity mapping according to the design of
Eppink and Parker (1997) and it has been described recently

by Fedor et al. (2011a); Fárník et al. (2012); and Poterya et al.
(2014). We have built essentially identical VMI system for CLUB
apparatus after testing it on AIM.

Several pulsed UV-laser systems are available in the laboratory:
a fixed wavelength (193 nm) excimer laser; and two tunable sys-
tems (∼200–400 nm) consisting of Nd:YAG lasers, dye lasers and
frequency mixing units. In addition, a tunable IR OPO/OPA sys-
tem can be also used. The laser beams from all these systems can
be directed into different viewports in CLUB and AIM apparatus
for the various experiments.

3. RESULTS AND DISCUSSION
3.1. HNO3 MOLECULE AS NUCLEATION CENTER
The PSC particles in the stratosphere can be pure water ice
(type II), or ice containing nitric acid (type Ia), and nitric and
sulphuric acids (type Ib) (Peter, 1997). To mimic these parti-
cles in laboratory experiments we have generated mixed water–
nitric-acid clusters by nitric acid vapor expansions. Kay et al.
(1981) first investigated these clusters by TOF mass spectrometry.
Recently, Lengyel et al. (2012b) have characterized these clus-
ters by mass spectrometry using two complementary ionization
methods: (1) electron ionization and (2) photoionization after
Na-doping. The analysis of the electron ionization mass spectra
suggested that the second (and each subsequent) HNO3 molecule
attaches more efficiently to the cluster when the previous HNO3

molecule(s) are already acidically dissociated: for example at
least four water molecules are needed to dissociate an HNO3

molecule, therefore (HNO3)2·(H2O)n clusters with two HNO3

molecules appear for n ≥ 4–5 and have presumably the zwit-
terionic structure NO−

3 ·H3O+·(H2O)n−1·(HNO3). Analogically,
the larger clusters with more HNO3 molecules are efficiently
generated when all the previous HNO3 molecules in the cluster
dissociate to ion pairs. These results were in accordance with the
previous study by Kay et al. (1981). The Na-doping experiments
below revealed another important property of mixed HNO3-
water clusters: the HNO3 molecule is an effective nucleation
center around which the clusters start to grow.

In electron ionization experiments generally the information
about the neutral precursor clusters can be obtained rather indi-
rectly from the mass spectra of the ionized fragments. To gain
more insight into the nature of the neutral parent clusters the
Na-doping method can be applied. This technique has been devel-
oped in Buck’s laboratory (Bobbert et al., 2002; Zeuch and Buck,
2013) and used for size resolved infrared spectroscopy of large
clusters (Forck et al., 2010, 2012; Pradzynski et al., 2012). Yoder
et al. (2011) also proposed it as a general method for atmo-
spheric aerosol detection and sizing (see also Forysinski et al.,
2011). The experiments are based on the phenomena of sol-
vated electron generation from Na in water clusters. The binding
energy of the solvated electron (e.g., ∼3 eV for water clusters)
is significantly lower than the ionization potential of the cluster
constituents. Therefore the clusters can be ionized with single low
energy UV photon resulting in soft, essentially fragmentation-
free, ionization. The measured mass spectrum after Na-pickup
and photoionization thus reveals the original neutral cluster size
distribution.

However, in our case of mixed (HNO3)m(H2O)n clusters
no signal was detected after the Na doping: this observation
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FIGURE 1 | Schematics of the experimental apparatus CLUB and the experiments outlined in this article.

contradicted the strong signals from the mixed cluster after elec-
tron ionization, and also the strong signals from the pure water
clusters after the Na doping. The reason for this absence of signal
from the mixed cluster turned out to be the fast charge transfer
reaction: Na + HNO3 → Na++ HNO−

3 . Therefore the cluster
could not be ionized with the low energy photon as in the case
of the solvated electron. Thus the Na-doping method as “the sizer
for atmospheric aerosols” (Yoder et al., 2011) is limited to aerosols
where sodium does not react with the constituent molecules.

This observation implied, that the nitric acid vapor expansions
generated clusters which always contained at least one HNO3

molecule, i.e., no pure water clusters were formed.1 This in turn
means that the HNO3 molecule acts as a very effective condensa-
tion nuclei. Could it play the same role in the atmosphere?

The stratospheric particles containing HNO3 molecules, i.e.,
type Ia PSCs are the most common ones, and thus determining
for the ozone depletion. Yet, large uncertainties remain concern-
ing their formation mechanism and composition (Peter, 1997;
Finlayson-Pitts and Pitts, 2000; Prenni and Tolbert, 2001; Stetzer
et al., 2006). The generally accepted models usually start with
PSCs forming on background stratospheric aerosols composed
primarily of sulphuric acid. Prenni and Tolbert (2001) out-
lined the interplay between nitric and sulphuric acids in PSCs.
Although many studies concentrated on nitric acid aerosols, e.g.,
Dickens and Sloan (2002) and Stetzer et al. (2006), the initial steps
of small cluster formation have not been studied in detail. Our
present findings suggest that the initial clusters can be efficiently
formed around HNO3 molecule.

3.2. PARTICLE GROWTH AND PICKUP CROSS SECTIONS
The atmospheric processes involving molecules on ice particles
start by the pickup process in which the molecule lands on the
particle. One of the quantities determining the further processes

1Unless the nitric acid was diluted below concentrations of 1 mol% HNO3.

is the effective cross section of the ice nanoparticle for the pickup
of the molecule. We can measure this quantity in our experiment
by passing the cluster beam through a cell filled with a particular
gas: the molecules collide with the clusters and are adsorbed, and
the clusters are slowed down by these inelastic collisions. Cuvellier
et al. (1991) demonstrated that by accurate measurements and
analysis of cluster velocities after the pickup process the cluster
mean sizes N̄ could be determined. To calculate N̄ they assumed
that the pickup cross section corresponded to the geometrical
one, σg(N̄) = πR2

N (RN is the particle radius). This assumption
can be tested, if the mean cluster size N̄ is known (e.g., from
other experiments). Then the effective pickup cross section σ̄(N̄)

can be derived from the velocity measurements. We have carefully
tested this method for the well studied argon clusters, compared
it to other methods, and confirmed by theoretical simulations:
(Fedor et al., 2011b) delivered reliable pickup cross sections for
ArN clusters.

Subsequently, Lengyel et al. (2012a) have applied this method
to ice nanoparticles (H2O)N (N̄ ≈ 260, RN ≈ 1.2Å). Pickup of
various atmospherically relevant molecules has been measured,
e.g., water, methane, NOx, hydrogen halides, and some volatile
organic compounds. The water cluster mean sizes have been mea-
sured previously by Bobbert et al. (2002), therefore we could
determine σ̄ from the velocity measurements.

Our study has shown that the pickup cross sections can be sig-
nificantly larger than the geometrical cross sections. Specifically
σ̄ ≈ 1000 Å2 for pickup of water molecules on (H2O)N , N̄ ≈
260, which is two-times larger than the geometrical cross section
σg ≈ 500 Å2. The hexagonal ice density was used to calculate this
geometrical cross section. Considering different densities of the
cluster, the corresponding σg varied between 400 and 670 Å2. It
is also worth mentioning that the above geometrical cross sec-
tion is in agreement with theoretical calculations (Buch et al.,
2004) which take into consideration real water–water potentials
and hydrogen bonding in the cluster.
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Our own molecular dynamics (MD) simulations were detailed
in the corresponding publication (Lengyel et al., 2012a). The geo-
metrical size of our simulated clusters was in agreement with
the above σg . Yet the cross section obtained from the MD sim-
ulations of the pickup processes on the clusters was 950 Å2

quite in agreement with the measured value. Thus the mea-
sured value has been confirmed by the MD simulations within
the experimental error bars. More recently we have developed
also a semiempirical analytical model which describes the mea-
sured cross sections. The polarizability of the molecule and
clusters leads to the attraction of the molecules which col-
lide with the clusters with scattering parameters significantly
larger than the cluster radius resulting in the larger pickup cross
section.

Our results can be compared to the measurements of pickup
cross sections for protonated and deprotonated water clusters by
Zamith et al. (2010a,b, 2013). In their experiments the charged
clusters can be size selected and thus σ(N) for individual clus-
ter sizes can be obtained. Our neutral cluster measurements are
performed with the cluster size distributions produced in the
expansions and are referred to the mean cluster size σ̄(N̄). Also
the mass range of the experiments with ionic clusters is some-
what below our usual cluster sizes. Nevertheless, in the region
where our data overlap, the agreement between the cross sections
of ionic and neutral species is good (Zamith et al., 2013).2

More recently, we have investigated the size dependence of the
pickup cross section. It turned out that the data depart even more
from the geometrical value for the larger clusters N̄ ≥ 300. In
this region they exceed even the values from MD simulations. It
appears that highly irregular particle shape for the larger clusters
has to be invoked to explain these observations. There is an evi-
dence that the larger clusters in supersonic expansions can grow
by smaller cluster coagulation rather than by addition of indi-
vidual molecules (Bobbert et al., 2002). This together with the
directionality of the hydrogen bond in ice can give rise to highly
irregular cluster shapes. We are currently working on theoretical
simulations of this hypothesis.

It ought to be mentioned that the effective cross section is
velocity dependent. We cannot lower the cluster beam velocity
substantially to achieve the collision velocities corresponding to
the real atmospheric temperatures (below 300 K). However, we
can extrapolate the measured σ̄ value using theoretical velocity
dependence as outlined by Lengyel et al. (2012a). This extrapo-
lation would yield σ̄ ≈ 1400 Å2 at the atmospherically relevant
temperatures, i.e., cross section almost by factor of 3 larger than
the geometrical value.

The atmospheric nucleation models generally assume the
geometrical cross sections of spherical particles even for the
small particles in nanometer-size range. For example recently
Vehkamäki et al. (2012) have described a model which explic-
itly treats situations close to our experimentally studied case: the

2Zamith et al. (2013) pointed out that the definition of the geometrical cross
section σg = π × (RN + rm)2 should include the molecular radius rm. We
have omitted rm to have the same σg for the water clusters when different
molecules are being picked up by them. Considering this difference, both
experiments agree with one another in the region where the data overlap.

small cluster growth by monomer collisions with the cluster. The
nucleation rates in their model are proportional to the collision
coefficients which are taken to be the hard sphere collision rates.
Thus the nucleation rates are proportional to the particle cross
sections. Considering our experimental cross sections rather than
the geometrical ones, the nucleation rates would be different by
factor of 2–3. Our experiments have also shown that the cross
sections differ for different molecules.

3.3. PHOTOCHEMISTRY ON NANOPARTICLES
Large amount of attention has been paid to the photochemistry
of hydrogen halides in water clusters due to their relevance to
the ozone depletion process (Hurley et al., 2002, 2003; Dermota
et al., 2005). Photodissociation in clusters has been also investi-
gated for other relevant species, e.g., OClO (Fenner et al., 1997;
Kreher et al., 1999), and nitric acid (Li and Huber, 2001). We con-
centrate on photodissociation dynamics of hydrogen halides and
freons in/on large rare gas and water clusters.

3.3.1. Hydrogen halides and hydronium radical
We investigated the HX (X = Cl, Br, I) photodissociation on
(H2O)n, n̄ ≈ 102–103, clusters to mimic the UV-photochemistry
of hydrogen halides on ice particles in PSCs. The prerequisite
for our present experiments were numerous previous studies of
(HX)m·Rgn clusters (Rg = Ar, Kr, Xe, Ne) performed originally in
Buck’s laboratory (Buck, 2002; Slavíček et al., 2003, 2004; Nahler
et al., 2004a,b; Fárník et al., 2005; Fárník and Buck, 2006). The
rare gas cluster represents a non-reactive solvent environment in
which the HX photodissociation proceeds. The understanding of
the photodissociation process in this inert solvent is necessary to
gain some insight into the comparatively complex HX·(H2O)n

system where chemistry can occur.
The rare gas experiments revealed “mechanistic effects” of

photodissociating fragment: caging versus direct exit. These pro-
cesses are expressed in the measured kinetic energy distributions
(KED) of H-fragments as peaks at zero kinetic energy and at ener-
gies corresponding to the photodissociation of the isolated molecule,
respectively, see Figure 2B. The vertical arrows label the energies
corresponding to the photodissociation of isolated HCl molecule.
The mass spectra Figure 2A serve not only to confirm the pickup
of the molecule by the clusters, but also in case of multiple pickup
the spectra reveal the dynamics of the molecules on the clus-
ter surface and generation of small (HCl)m clusters. Despite the
fact that the rare gas cluster represents an inert solvent envi-
ronment the observed processes could be quite complex. For
example Nahler et al. (2004a); Fárník and Buck (2006); and
Poterya et al. (2008b) observed rare gas compounds HXeY (Y = I,
Cl, C2H) generation and orientation. Therefore, detailed under-
standing of the rare gas systems facilitates the interpretation
of the more complex results obtained with the water clusters
below.

Large water clusters (H2O)n, n̄ ≈ 102–103 were generated in
our experiments and HX molecules were deposited on their sur-
face in the pickup process discussed above. Figure 2C shows
that the HCl molecules on the water cluster do not coagulate to
HCl clusters as opposed to the Ar case shown in Figure 2A. An
example of the H-fragment KED measured in several our studies
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FIGURE 2 | Examples of experimental data measured for HCl

pickup on Arn (A,B), and HCl on (H2O)n (C,D): mass spectra

(A,C) and H-fragment KED after the photodissociation with

193 nm (B,D). The KE corresponding to H fragment from free
HCl molecule resulting in Cl∗ spin-orbit excited state is labeled
by ∗ in (B).

FIGURE 3 | Examples of experimental data measured for CF2Cl2/Ar system: electron ionization mass spectrum (A), and Cl-fragment KED after the

photodissociation with 193 nm (B).

(Poterya et al., 2007, 2008a, 2011; Ončák et al., 2008, 2011) is
shown in Figure 2D. It exhibits some differences compared to the
rare gas case: the direct exit fast fragments are missing entirely as
well as the sharp peak at zero kinetic energy (cage effect); rather
slow fragments extending to ≈0.5 eV occur with a broad maxi-
mum below 0.1 eV. These KEDs were invariant whether HCl, HBr
or HI were adsorbed on (H2O)n, while they were distinctly differ-
ent for these species on Rgn (the fast direct exit fragments reflect
the different energetics of the corresponding HX molecule).

For the water–hydrogen halide system we have to consider
the possibility of HX acidic dissociation on the cluster in its
ground state. Do the UV-photons excite the covalently bound HX
molecule on ice or H3O+·X− ion pair structure? The experimen-
tal observation together with an earlier theoretical calculations

of Sobolewski and Domcke (2002, 2003, 2007) lead to the pro-
posal that the hydrogen atom originated from species with
structure of neutral hydronium radical H3O. This hypothesis
has been confirmed by experiments with deuterated species:
namely, using HX·(H2O)n, DX·(H2O)n, and HX·(D2O)n and
assuming the hydronium radical model, we expect to gener-
ate H3O, H2DO, and D2HO in these clusters, respectively. The
expected H-atom signal ratio from these species then would
be 3:2:1 (assuming the same clusters, expansion and pickup
conditions, and observing only the H-signal, not D). This
ratio has been confirmed for all three hydrogen halides, sup-
porting the H3O hypothesis. The molecule was acidically dis-
sociated on the ice nanoparticle and the ion pair structure
was UV excited to a state of charge-transfer-to-solvent (CTTS)
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character where it relaxed to a biradical state where the hydro-
gen was released from H3O. It ought to be mentioned that
subsequently there has been found an evidence for the H3O
radical also in time dependent experiments of Hydutsky et al.
(2009).

Interestingly, no significant H/D scrambling occurred in the
clusters upon the acidic ionization and the H3O+·X− ion pair
remained of rather local nature. This can be clearly seen from
the signal ratios: namely in HX·(H2O)n clusters with n ≈ 500,
there is 103-times more H-atoms than in HX·(D2O)n. If the H/D
atoms in these clusters were all equivalent (statistical scrambling),
there would be 103-times higher probability to detect an H atom
from HX·(H2O)n cluster than from HX·(D2O)n. However, the
observed ratio of the signals from these two systems was only
equal to 3 (not 103) meaning that the H/D exchange did not occur
within the clusters.

Our experiments complemented by theoretical investigations
have delivered a clear picture of HX·(H2O)n photochemistry:
HX first acidically dissociates, the system is photoexcited to a
CTTS state, and Cl and H3O radicals are generated. Ončák et al.
(2008, 2011) and Poterya et al. (2011) argued that the acidic dis-
sociation in the ground state leads to a significant red-shift of
the absorption spectra of the X−H3O+(H2O)n−1 species with
possible atmospheric consequences.

There is more than three orders of magnitude increase between
150 and 320 nm (HCl and Cl2 absorption band maximum,
respectively) in the actinic flux of photons in the stratosphere
at ∼50 km altitude. Therefore the ozone depletion models
assume conversion of the reservoir species HCl to Cl2 on the
ice particles in PSC. Subsequently, Cl2 is photolyzed to release
Cl radicals into the stratosphere. However, the above men-
tioned red shift of the absorption spectra when HCl is adsorbed
on the ice particles and acidically dissociated can significantly
enhance the direct production of Cl radicals from photodisso-
ciation on ice particles (Ončák et al., 2008). Ončák et al. (2011)
have outlined some questions which should be addressed in
the future, namely: Should these direct processes on ice parti-
cles be included in the stratospheric ozone depletion models?
How large is the spectral shift for particles of real atmospheric
sizes? The shifts in our studies were calculated for fairly small
clusters and they are actually smaller for the bulk ice. Will the
Cl radicals leave the ice particles after the photodissociation
or remain caged? We are currently working on some of these
issues.

3.3.2. Photochemistry of freon-12
Recently, we have implemented the imaging and velocity map-
ping techniques for the photodissociation of molecules in clusters
and Fedor et al. (2011a) tested it on the example of HBr pho-
todissociation in rare gas clusters. With this new tool we have
concentrated on another important atmospheric molecule, freon-
12 CF2Cl2, relevant for stratospheric ozone depletion. In analogy
to the hydrogen halides studies, Poterya et al. (2014) have first
investigated the freon photodissociation dynamics in the envi-
ronment of rare gas clusters. The mass spectrum in Figure 3A
illustrates that freon molecules tend to generate (CF2Cl2)n clus-
ters in large ArN clusters. On the contrary no clusters were

generated in pure freon expansions even at elevated stagnation
pressures. The KEDs of Cl-fragments in different clusters exhibit
caging and direct dissociation as illustrated in Figure 3B. Besides,
the photodissociation dynamics of the bare CF2Cl2 molecule
has been investigated by VMI technique in hitherto unreported
details. Previous TOF studies (Baum and Huber, 1993; Yen et al.,
1993) revealed some controversy concerning slow Cl fragments.
Our VMI experiments revealed also some slower fragments in
addition to the direct photodissociation yielding the fast frag-
ments with kinetic energy Ekin ≈ 0.97 eV. Several processes were
proposed to be responsible for these slow fragments, includ-
ing concerted dissociation of two Cl atoms from single CF2Cl2
molecule.

There are two important results of our CF2Cl2 photodissoci-
ation experiments with possible consequences for atmospheric
chemistry. The first one concerns the photodissociation of an
isolated CF2Cl2 molecule. The observation of the slow Cl frag-
ments which accounted for more than 20% of the total Cl
signal cannot be explained by the direct fission of the C–Cl
bond in CF2Cl2 molecule. Several pathways generating these
slow fragments have been proposed by Poterya et al. (2014).
They involve also concerted dissociation of two Cl atoms from
the molecule, or secondary decay of an excited CF2Cl radi-
cal. Both these channels would yield two Cl atoms generated
by one UV photon. Yet, the quantum yield measurements of
Taketani et al. (2005) resulted in the quantum yield � = 1 at
193 nm. This value is also recommended for the atmospheric
modeling (IUPAC). The proposed mechanisms leading to two Cl
atoms released from one molecule upon single photon absorp-
tion does not have to be necessarily in discrepancy with the
measured quantum yield of 1, if a compensating channel would
exist where no Cl fragments were generated upon the photon
absorption. The possibility of 2 Cl atoms released by a single
UV photon could have consequences for the ozone hole mod-
eling. However, it ought to be mentioned that the possibility of
multiphoton processes (193 + 235 nm) could not be entirely
excluded from our measurements as discussed by Poterya et al.
(2014).

The second important result of the above study concerns
the photodissociation in the clusters: it showed that part of the
Cl fragments is caged totally in the cluster, while still signifi-
cant fraction leaves the cluster undisturbed. Only in much larger
clusters the probability of the direct exit from the cluster dimin-
ishes. The fragments which leave the cluster could contribute
to the Cl budged in the atmosphere. Yet, it should be noted
that the present experiments were performed for the model sys-
tems where the CF2Cl2 molecules were embedded inside the
rare gas clusters. Currently we are performing the experiments
with CF2Cl2 molecule deposited on the surface of large water
clusters.

4. SUMMARY
In summary, the present review shows several examples where
detailed molecular level investigations of processes on nanoparti-
cles in laboratory molecular beam experiments can assist under-
standing of atmospheric processes including ice and aerosol parti-
cles. The community of aerosol physicists and chemists has been
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mainly concentrated on the field measurements and large scale
global modeling, while the molecular beam experiments have
been focused on single molecules and small clusters. However,
the message of the present review is to show that there is a large
potential in overlapping these two areas, and that the molecu-
lar beams can offer unprecedented detailed insight even into the
atmospherically relevant processes.
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Photodissociation of HBr on the surface of Arn clusters at 193 nm. Chem. Phys.
315, 161–170. doi: 10.1016/j.chemphys.2005.03.025
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