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Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical
properties, new structures, and new functions. In recent years, improvements in cell-free
protein synthesis (CFPS) systems have opened the way to accurate and efficient
incorporation of NSAAs into proteins. The driving force behind this development has been
three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting
(>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the
efficiency of orthogonal translation systems (OTSs) has improved. Third, the open nature
of the CFPS platform has brought about an unprecedented level of control and freedom
of design. Here, we review recent developments in CFPS platforms designed to precisely
incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact
efforts to elucidate structure/function relationships of proteins and to make biomaterials
and sequence-defined biopolymers for medical and industrial applications.
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INTRODUCTION
The incorporation of non-standard amino acids (NSAAs) into
proteins and (poly)peptide-based materials is a key emerging
application area in synthetic biology (Liu and Schultz, 2010;
Hoesl and Budisa, 2012). In recent years, efforts to incorpo-
rate NSAAs using cell-free protein synthesis (CFPS) systems
based on Escherichia coli have grown significantly. In this mini-
review, we discuss these efforts, beginning with a description
of the molecular basis for NSAA incorporation in E. coli using
orthogonal translation systems (OTSs). We then describe CFPS
and recent improvements in NSAA incorporation in crude cell
extract as well as reconstituted systems of purified compo-
nents. Finally, we discuss emerging frontiers and opportunities
for CFPS.

NSAA INCORPORATION
To date, over 100 OTSs have been established for site-specific
incorporation of NSAAs into proteins (O’Donoghue et al., 2013).
Site-specific NSAA incorporation has been used to expand our
understanding of biological systems by enabling studies of pro-
tein structure and dynamics with unique IR and X-ray diffrac-
tion signatures, fluorescent probes, and photocages (Liu and
Schultz, 2010). In other examples, cross-linkable NSAAs have
been incorporated to characterize protein-protein and protein-
nucleic acid interactions (Liu and Schultz, 2010). In addition to
expanding the chemistry of biomolecular systems, NSAA tech-
nology has also enabled researchers to mimic post-translational
modifications of eukaryotic proteins in bacterial protein expres-
sion systems. In an exemplary model, site-specific acetylation of
recombinant histones by genetically encoding acetyl-lysine (AcK)

elucidated new mechanistic understanding (Neumann et al.,
2009).

Beyond fundamental science, NSAA incorporation has also
opened the way to novel biopolymer materials, enzymes, and
therapeutics which are difficult—if not impossible—to create
by other means. Antibody drug conjugates (Zimmerman et al.,
2014), modified human therapeutics (Cho et al., 2011), teth-
ered enzymes (Smith et al., 2013), protein polymers (Albayrak
and Swartz, in press), phosphoproteins (Park et al., 2011), and
selenoproteins (Bröcker et al., 2014) showcase the power of NSAA
incorporation. In one example, pegylated human growth hor-
mone showed improved potency and reduced injection frequency
(Cho et al., 2011). In another case, an Anti-Her2 antibody bearing
p-acetyl-L-phenylalanine enabled precise control of conjugation
site and stoichiometry for selective and efficient conjugation to an
anti-cancer drug resulting in enhanced tumor regression (Axup
et al., 2012). These and other recent breakthroughs highlight
exciting opportunities for expanding the chemistry of life.

To incorporate NSAAs site-specifically into proteins, OTSs
require (re-)assignment of codons to NSAAs, NSAA-transfer
RNA (tRNA) substrates, and ribosome selection of these non-
natural substrates into the catalytic center. So far, ribosome
accommodation of NSAAs has not been the limiting fac-
tor. Rather, strategies to provide for efficient and accurate
incorporation of NSAA-tRNA substrates have been the biggest
challenge. In practice, this is usually achieved by using orthogo-
nal tRNA (o-tRNA)/aminoacyl-tRNA synthetase (o-aaRS) pairs
from phylogenetically distant organisms (Kim et al., 2013).

For example, an engineered tRNA
Tyr
CUA/TyrRS pair derived from

Methanocaldococcus jannaschii is used frequently for NSAA
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incorporation (Wang et al., 2001). More recent expansions of
the technology have used variants of the pyrrolysine transla-

tion system, tRNA
Pyl
CUA/PylRS from Methanosarcinaceae species

(Polycarpo et al., 2006; Wang et al., 2012c). There are many
seminal works of orthogonal pairs that have been developed for
NSAA incorporation to help drive the field forward (Hughes and
Ellington, 2010; Wan et al., 2010; Young et al., 2011; Bianco et al.,
2012; Wang et al., 2012a,b; Ko et al., 2013; Lee et al., 2013; Niu
et al., 2013; Bröcker et al., 2014; Ma et al., 2014). For codon
selection, researchers tend to incorporate NSAAs in response to
a non-sense stop codon or quadruplet codon (Wang et al., 2007;
Neumann et al., 2010; Niu et al., 2013). The amber codon (TAG)
has been the most widely used, because of its low frequency as a
stop signal compared to other stop codons (TAA, TGA) (Hoesl
and Budisa, 2012).

Figure 1 shows a cartoon representation of an OTS for
amber suppression. It also highlights the systems biology chal-
lenges associated with NSAA incorporation (O’Donoghue et al.,
2013). The orthogonal synthetases have poor catalytic efficiency
(Tanrikulu et al., 2009; Nehring et al., 2012; Umehara et al., 2012).
Elongation Factor Tu (EF-Tu) has a limited capability to incor-
porate bulky or charged NSAAs (Park et al., 2011; O’Donoghue
et al., 2013). The presence of release factor 1 (RF1) can cause early
termination of proteins when using amber suppression technol-
ogy (Johnson et al., 2011; Hong et al., 2014). Recent advances
have addressed some of these challenges by improving NSAA
incorporation efficiency by engineering o-tRNA (Young et al.,
2010; Chatterjee et al., 2012), o-aaRS (Liu et al., 1997; Chatterjee
et al., 2012), or EF-Tu (Doi et al., 2007; Park et al., 2011) as well
as controlling transcription and translation rate (Young et al.,
2010; Chatterjee et al., 2013), and removing RF1 competition
(Mukai et al., 2010; Johnson et al., 2011; Loscha et al., 2012;
Lajoie et al., 2013). While further efforts to re-engineer transla-
tion are still needed, these improvements are accelerating rapid
growth in synthetic biology efforts to “upgrade protein synthesis”
(O’Donoghue et al., 2013). The bulk of this work is being car-
ried out in vivo; however, complementary in vitro systems are also
emerging, which we focus on below.

CELL-FREE PROTEIN SYNTHESIS
CFPS is the synthesis of proteins in vitro without using intact, liv-
ing cells (Jewett et al., 2008; Caschera and Noireaux, 2014). Over
the last 50 years, CFPS systems have significantly advanced our
ability to understand, exploit, and expand the capabilities of bio-
logical systems (Carlson et al., 2012; Swartz, 2012; Murray and
Baliga, 2013). As a complement to in vivo systems, CFPS systems
offer some interesting benefits. First, the open environment of the
reaction allows the user to directly influence the biochemical sys-
tems of interest and as a result, new components can be added
or synthesized and can be maintained at precise concentrations
(Figure 2). For example, NSAAs that do not enter the cell can
be utilized in CFPS. Second, cell-free systems are not constrained
by cell-viability requirements, allowing protein synthesis to pro-
ceed with otherwise toxic reagents or protein products. Third,
CFPS systems can use linear DNA fragments (e.g., PCR products)
for a target gene expression, which avoids time-consuming gene
cloning steps commonly required for in vivo protein synthesis.

Finally, from a biomanufacturing perspective, cell-free systems
separate catalyst synthesis (cell growth) from catalyst utiliza-
tion (protein production) (Swartz, 2012). This concept represents
a significant departure from cell-based processes that rely on
microscopic cellular “reactors.”

Although CFPS technologies offer many exciting advantages,
challenges remain that provide opportunity for improvement. For
example, CFPS platforms still have few examples industrially. In
addition, cell lysis procedures can be difficult to standardize, lead-
ing to different extract performance and limited reaction scales
for academic research labs. Thus, while protein yields (mg/L) are
often higher in CFPS, the total amount of protein purified from
cells in research labs is typically more because the reaction scales
are greater. Despite these challenges, the advantages of CFPS are
stimulating new application areas. Dominant amongst these are
high-throughput protein production (Calhoun and Swartz, 2005;
Swartz, 2012; Catherine et al., 2013; Chappell et al., 2013; Murray
and Baliga, 2013), clinical manufacture of protein therapeutics
(Murray and Baliga, 2013), genetic circuit optimization (Shin
and Noireaux, 2012), the construction of synthetic ribosomes
(Jewett et al., 2013), and incorporation of NSAAs (Goerke and
Swartz, 2009; Bundy and Swartz, 2010; Ugwumba et al., 2010;
Mukai et al., 2011; Ugwumba et al., 2011; Loscha et al., 2012;
Albayrak and Swartz, 2013a; Hong et al., 2014; Shrestha et al.,
2014).

CRUDE EXTRACT-BASED CFPS FOR NSAA INCORPORATION
Efforts to use crude extract-based CFPS for the production
of proteins containing single and multiple NSAAs are rapidly
increasing. Key advances have centered on optimizing the per-
formance of OTSs, expressing the OTS components in the
source strain to create one-pot reactions, and removing RF1
competition.

OTS OPTIMIZATION
The Swartz group has made marked contributions to CFPS
development for high yielding NSAA incorporation (Goerke and
Swartz, 2009; Bundy and Swartz, 2010). Showcasing the freedom
of design in adjusting cell-free system components by direct
addition to the reaction, their approach typically adds the NSAA
and its purified o-aaRS directly to the reaction, while the o-tRNA
is expressed during the cell growth prior to making the extract.
As compared to in vivo systems, an advantage of this approach is
that the toxicity associated with overexpressing the o-tRNA and
o-aaRS is not observed. This is because the OTS elements are
sequestered from each other until the protein synthesis reaction.
Another advantage is that NSAAs with low solubility or poor
transport characteristics can be used. For example, the tyrosine
analog p-propargyloxy-L-phenylalanine (pPaF), which can be
used in site-specific bioconjugation with the copper-catalyzed
azide-alkyne cycloaddition, has low solubility. This is a known
limitation in vivo. However, site-specific pPaF incorporation in
the CFPS reaction was improved ∼27-fold (as based on protein
yield) for producing a modified protein when compared to
previous in vivo approach (Bundy and Swartz, 2010).

Cell-free systems are not only useful for making protein
product but also for assessing the catalytic efficiency of the
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FIGURE 1 | Schematic representation of non-standard amino acid

incorporation using an orthogonal translation system.

Orthogonal aminoacyl tRNA synthetase, o-aaRS; orthogonal tRNA,
o-tRNA; wild-type aminoacyl tRNA synthetase, wt-aaRS; wild-type

tRNA, wt-tRNA; elongation factor Tu, EF-Tu,; non-standard amino
acid, NSAA. Anti-codon sequence on wt-tRNA is NNN, where N
is A, C, G, or U. Anti-amber codon sequence on o-tRNA
is CUA.

OTSs. A growing number of studies, for example, have shown
that o-aaRSs are poor catalysts, up to 1000 times worse than
natural aminoacyl tRNA synthetases, mainly due to the fact
that the evolution of the orthogonal pairs occurs under high
concentrations of non-standard amino acids (Tanrikulu et al.,
2009; Nehring et al., 2012; Umehara et al., 2012; Albayrak and
Swartz, 2013b). Future efforts for improving site-specific NSAA
incorporation will require the development of o-aaRSs with
higher catalytic rates and stronger affinity for the o-tRNAs. One
approach to achieve such desired properties is to find strategies
to remove fitness and the health of the cell on evolutionary
outcomes. Ellington’s lab recently published such an approach,
compartmentalized partnered replication (Ellefson et al., 2014),
but there are other opportunities as well.

In the meantime, NSAA incorporation in cell-free systems is
being improved by increasing the amount of o-tRNA and o-
aaRS in the CFPS reaction. One approach to achieving increased
o-tRNA levels was pioneered by Albayrak and Swartz (2013a)
and validated by Hong et al. (2014). Namely, the o-tRNA is co-
produced in the CFPS reaction as a transzyme construct. The
transzyme construct is a DNA fragment containing hammer-head
ribozyme sequence between T7-controlled promoter and o-tRNA
sequences. Upon transcription, the hammer-head ribozyme
cleaves 5′-end of tRNA liberating active tRNA into the reaction
(Fechter et al., 1998) and thereby increased o-tRNA is supplied
to the CFPS reaction. With the transzyme technology, up to 0.9–
1.7 mg/mL of a modified protein containing NSAA was produced
(Albayrak and Swartz, 2013a) and multiple site NSAA incorpora-
tion was improved (Hong et al., 2014). As another approach, there

are efforts to co-express all the OTS components in the source
strain. While there are potential concerns of expressing both the
o-tRNA and the o-aaRS in the source strain prior to lysis, Bundy
and colleagues recently showed that this was not only possible,
but improved CFPS yields of a modified protein (Smith et al.,
2014). As an alternative approach, natural amino acids have been
depleted from crude extracts to allow for the incorporation of
NSAA analogs (Singh-Blom et al., 2014).

REMOVING RF1 COMPETITION
NSAA incorporation using amber codon suppression is limited by
RF1 competition (Lajoie et al., 2013). The presence of RF1 causes
the production of truncated protein and low yields of protein
product in the case of multiple identical site-specific NSAA incor-
poration (Park et al., 2011; Hong et al., 2014). Deletion of RF1 is
lethal in native biological systems. However, this limitation was
recently addressed by making a more promiscuous release factor
2 (Johnson et al., 2011, 2012), and genome engineering (Mukai
et al., 2010; Heinemann et al., 2012; Ohtake et al., 2012). Most
notably, the development of the first genomically recoded E. coli
strain was completed; all 321 TAG stop codons were reassigned
to synonymous TAA codons allowing the deletion of RF1 without
observing growth defects (Lajoie et al., 2013).

With RF1-deficient E. coli strains at hand, efforts are under-
way to utilize these strains in vivo for improved production of
proteins with NSAAs, but also to develop RF1-deficient CFPS sys-
tems. In one example, human histone H4 protein was produced
with site-specific incorporation of AcK at four amber sites by
using a RF1-deficient cell extract (Mukai et al., 2011). In another
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FIGURE 2 | Cell-free protein synthesis system for producing proteins or

(poly)peptide-based materials. CFPS requires cell extract, an energy
regeneration system, and chemical substrates and salts (e.g., NTPs, amino

acids, salts, and cofactors). Cell-free transcription and translation is initiated
by adding DNA template (plasmid or PCR-amplified linear DNA templates)
into the CFPS reaction.

case, the effect of RF1 deletion was systematically assessed for sin-
gle and multiple site pPaF incorporation using cell extracts from
genomically recoded E. coli with or without RF1 (Hong et al.,
2014). The production of modified soluble superfolder green flu-
orescent protein (sfGFP) containing pPaF was 2.5-fold higher in
the RF1-deficient cell extract compared to the RF1-present cell
extract. The authors showed that the yield improvement was due
to an increase in full-length modified sfGFP synthesis, observing a
shift from 20% full-length product (with RF1) to 80% full-length
product (without RF1). In a complementary approach, RF1-
depleted cell extracts were constructed from selective removal of
a RF1 variant tagged with chitin-binding domains (Loscha et al.,
2012) or His-tag (Gerrits et al., 2007). Looking forward, we antic-
ipate that RF1-deficient E. coli strains will become an important
chassis for NSAA incorporation.

RECONSTITUTED IN VITRO TRANSLATION FOR NSAA
INCORPORATION
Although crude extract-based CFPS systems have shown tremen-
dous growth, there are limitations to the number of open coding
channels available because one must grow E. coli to obtain cellu-
lar lysate. To address this limitation, researchers have turned to

purified translation systems, such as the PURE system (protein
synthesis using purified recombinant elements) (Shimizu et al.,
2001). Since the user defines all of the elements in the PURE
system, single or multiple components (e.g., tRNA, aaRS) can
be omitted, increased, or decreased according to the experimen-
tal purpose (Hirao et al., 2009). This enables highly efficient
sense and non-sense suppression and provides unmatched flex-
ibility for genetic code reprogramming to incorporate NSAAs
(Shimizu et al., 2005). Efforts using purified translation for NSAA
incorporation have mainly centered on the production, screen-
ing, and selection of peptidomimetic, or non-standard peptides
(Josephson et al., 2005; Tan et al., 2005; Hartman et al., 2007;
Passioura and Suga, 2013). As an exemplary illustration, pep-
tidomimetic synthesis was achieved by adding pre-aminoacylated
tRNA with NSAAs corresponding to sense codons in the recon-
stituted translation system lacking aaRS activities (Forster et al.,
2003). In an alternative approach, Suga’s group has leveraged the
highly flexible tRNA acylation Flexizyme technology. Flexizyme
is an artificial ribozyme that was developed to charge virtually
any amino acid onto any tRNA in vitro, allowing the synthesis of
proteins and short peptides containing multiple distinct NSAAs
(Murakami et al., 2006; Ohuchi et al., 2007). A drug discovery
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pipeline has been enabled by combining a modified reconstituted
translation system with Flexizyme technology (Goto et al., 2011)
for the development of small peptides (Passioura and Suga, 2013),
such as macrocyclic peptides (Hayashi et al., 2012; Morimoto
et al., 2012). In yet a different approach, Szostak’s work has
demonstrated the ability to incorporate numerous amino acid
analogs using the endogenous machinery. Strikingly, the natural
aaRS machinery tolerates many kinds of side chain derivatives,
such as α,α disubstituted, N-methyl and α-hydroxy derivatives
(Hartman et al., 2007). Even D-amino acids have been shown to
be compatible with polypeptide elongation (Fujino et al., 2013).

Although PURE translation is a powerful research tool, the
cost of the PURE system is prohibitive for most commercial appli-
cations. For example, when compared to crude extract-based
CFPS systems, which have been scaled to 100 L (Zawada et al.,
2011), the PURE system costs ∼1000 times more on a milligram
protein produced/$ basis (Hong et al., 2014) and yields lower pro-
tein titers than the crude extract-based CFPS system (Lee et al.,
2012; Hong et al., 2014). Hence, an important design decision
for producing proteins with NSAAs using cell-free systems is
choosing between a crude extract and a purified system.

EMERGING APPLICATIONS
Marked advancements in productivity, improvements in OTS
efficiency, and increases in the ability to incorporate multiple
identical NSAAs (in crude extracts) and multiple distinct NSAAs
(in the PURE system) are rapidly expanding the possible applica-
tions of CFPS systems. In this section, we highlight several emerg-
ing applications made possible by these advances. These include
the production of protein-based materials and therapeutics.

PROTEIN-BASED MATERIALS
NSAA incorporation is being applied to create new types of
sequence-defined polymers for versatile applications in bioma-
terials synthesis. In an illustrative example, Albayrak and Swartz
reported direct polymerization of proteins containing two or
three copies of site-specifically incorporated NSAAs that allows
copper-catalyzed azide-alkyne cycloaddition to form linear or
branched protein polymers (Albayrak and Swartz, in press).

THERAPEUTICS
NSAA incorporation is being applied to (i) clinical scale produc-
tion of protein therapeutics and vaccines, (ii) discovery of novel
biologics through ribosome display methods (Murray and Baliga,
2013), and (iii) structure/function studies to identify protein
inhibitors. Swartz and colleagues, for example, have developed a
novel pipeline for the production of decorated virus-like parti-
cles that could function as potential vaccines and imaging agents
(Lu et al., 2013). In another example, Sutro Biopharma has
demonstrated the synthesis of site-specific antibody drug con-
jugates (ADCs) (Zimmerman et al., 2014). Their ADCs, which
were synthesized at ∼250 μg/mL titers, proved potent in cell
cytotoxicity assays. Rather than producing a therapeutic using
CFPS, Ugwumba et al. utilized the NSAA 7-(hydroxy-coumarin-
4-yl) ethylglycine to structurally probe a protein from the West
Nile Virus to identify novel inhibitors (Ugwumba et al., 2011).
Collectively, these recent reports highlight the utility of CFPS for

producing novel vaccines and therapeutics, as well for serving as
a rapid and attractive tool in drug discovery.

CONCLUSION AND OUTLOOK
CFPS has emerged as a promising approach to enable site-specific
incorporation of NSAAs into proteins and bio-based polymers.
With the ability to select peptides and proteins for novel drugs in
the PURE system and advent of scalable CFPS from crude extract
systems, we anticipate significant growth in the field in years to
come. Immediate challenges are (i) the evolution of more efficient
OTSs (ii) new codons that can be assigned to NSAAs, and (iii)
the development of genomically recoded organisms for prepar-
ing highly active cellular extracts. Addressing these challenges and
continuing to lower costs will expand the scale and scope of cell-
free biology, providing a transformative toolbox that enables new
frontiers in synthetic biology.
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