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Two novel impedimetric biosensors for highly sensitive and rapid quantitative detection
of diazinon in agueous medium were developed using two types of lipase, from
Candida Rugosa (microbial source) (CRL) and from porcine pancreas (animal source)
(PPL) immobilized on functionalized gold electrode. Lipase is characterized to specifically
catalyze the hydrolysis of ester functions leading to the transformation of diazinon into
diethyl phosphorothioic acid (DETP) and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP).
The developed biosensors both presented a wide range of linearity up to 50 wM with a
detection limit of 10nM for Candida Rugosa biosensor and 0.1 wM for porcine pancreas
biosensor. A comparative study was carried out between the two biosensors and results
showed higher efficiency of Candida Rugosa sensor. Moreover, it presented good accuracy
and reproducibility, had very good storage and multiple use stability for 25 days when
stored at 4°C.
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INTRODUCTION

Chemicals released from agriculture or industry may potentially
develop toxic effects in the environment and ecological systems.
Among them, pesticides are actively applied and globally used for
crop control and to prevent damage to plants, animals, humans,
and aliments. Organophosphates constitute the most extensive
and manifold group of pesticides, they were developed at the
beginning of this century by chemical manipulation of nerve
gasses that are so toxic compounds (Osterauer and Kohler, 2008).
Their mode of toxicity is the inhibition of acetyl cholinesterase,
an enzyme responsible for the hydrolysis of the neurotransmit-
ter acetylcholine (Cabello et al., 2001; Gordon and Mack, 2003;
Pesando et al., 2003). This inhibition leads to a continuous stim-
ulation of cholinergic neurons and eventually paralyzes the target
organs (Wiener and Hoffman, 2004).

Diazinon after malathion is one of the most commonly used
organophosphate pesticides (OPs) in the world, it is extensively
used as an insecticide in agriculture to control juvenile forms
of insects in soil, plants, fruit, vegetable crops and to control
external pet parasites (i.e., mites, leaf miner flies, black cherry
aphid, and apple maggot) (Karpouzas and Singh, 2006; UAP. Ca,
2007), it can enters the body via skin contact, feeding, and inhala-
tion (Villeneuve et al., 1972). Furthermore, diazinon is one of
the substances most responsible for acute poising via insecti-
cides of humans and wildlife (Keizer et al., 1995). Once applied
on crops and other plants, it is easily washed by surface waters
and enters the ground water. Eventually, it enters the aquatic
environment in large quantities as described in a number of
studies and thus may affect a wide range of non-target organ-
isms. The high acute toxicity of diazinon to freshwater fish and
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aquatic invertebrates is reflected by the 96h LC50 of 2g/L in
Daphnia magna, of 1.35mg/L in O. mykiss, and of 8 mg/L in
Danio rerio (Osterauer and Kohler, 2008). Therefore, the persis-
tence and mobility of diazinon and its metabolites suggest the
potential for groundwater contamination, an increasing concen-
tration of diazinon and OPs residues are found to be present in
many sampled soils, aquatic eco collected in the United States
and Canada and it was the most frequently detected insecticide
in surface waters prior to the phase-out of urban uses in 2004
in United States. It degrades in water as a result of hydrolysis,
especially under acidic conditions. In sterile water, diazinon was
determined to have a half-life of 12 days in acidic water (pH 5),
138 days in neutral water (pH 7), and 77 days (pH 9). Moreover,
because diazinon is fat soluble, there is potential for delayed tox-
icity if significant amounts of diazinon are stored in fatty tissues
and causes diseases with long-term (US NPIC, 2009). Diazinon
applied to soils can be also absorbed by plant roots and translo-
cated in plants, soil metabolism studies report soil half-lives for
diazinon ranging from 21 to 103 days depending on the type of
soil. In addition, oxypyrimidine which is the principal metabo-
lite of diazinon hydrolysis is very mobile in the environment and
has been measured up to 72 inches below the surface of soils.
Oxypyrimidine appears to be more persistent under at least some
conditions compared with diazinon (US NPIC, 2009).

Thus, the need to be understood and evaluate the biological
effects of pollutants on aquatic ecosystems has generated (Reddy
et al., 2013). In this sense, a large number of studies have used
biosensors as functional tools to evaluate the toxicity of such
compounds for natural populations (Kumar and D’Souza, 2011).
Recently, there has been an intense research effort to develop
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enzymatic biosensor devices for the detection of organophos-
phorus pesticides. Many enzymes were used for this purpose
(Pogacnik and Franco, 1999; Deo et al., 2005; Sajjadi et al., 2009).
Among them, we find the lipase which it is an important enzyme
in biological systems, where is catalyzes the hydrolysis of ester
functions and the transformation of triacylglycerol to glycerol
and fatty acids, it is a subclasses of esterases (Bhalchandra et al.,
2008).

This paper describes a new biosensor system devoted for
environmental application, based on impedimetric transduction
incorporating two types of enzymes, lipase from Candida Rugosa
CRL (microbial source) and lipase from porcine pancreas PPL
(animal source) for the detection of diazinon in aqueous medium.
This is the first time that lipase is proposed for the design
of diazinon biosensor. This enzyme was used to catalyze the
hydrolysis of diazinon (O,0-diethylO-(2-isopropyl-6methyl-4-
pyrimidyl phosphorothioate) into Diethyl phosphorothioic acid
(DETP) and 2-isopropyl-4methyl-6 hydroxypyrimidine (IMHP)
(Figure 1). In this work, bioselective membranes were prepared
by functionalization of microelectrodes with SAMs and enzyme
cross-linking using glutaraldehyde vapor and bovine serum albu-
min (BSA). As a detection mode, we used electrochemical
impedance spectroscopy (EIS) which is one of the electrochem-
ical techniques that have been widely employed to study various
chemical and biological phenomena on surfaces and to develop
sensors (Yagati et al., 2011). EIS has emerged as a powerful tool
to study the biomolecular interactions by detecting changes in
capacitance and interfacial electron transfer resistance at the sur-
face electrode occurring during these processes (K’Owino and
Sadik, 2005; Ferreira et al., 2010). It is a rapidly developing
technique for the label free detection of different types of biosens-
ing events occurring at the surface electrode, example: antigen-
antibody enzyme-substrate reaction, cell adsorption (Bourigua
et al., 2010), it allows such complex recognition events to be
probed in a simple, sensitive, label-free, and mediator free strategy
(Sadik et al., 2002; Farcas et al.,, 2010). In this study, the dif-
ferent functionalization steps of gold microelectrodes were first
characterized by EIS and cyclic voltammetry (CV), afterward, the
analytical characteristics of the developed biosensors were deter-
mined. Finally, a comparison study between the two biosensors
was carried out.

EXPERIMENTAL

CHEMICAL AND BIOLOGICAL REAGENTS

All reagents used in this study were purchased from Sigma Aldrich
(Saint Quentin Fallavier) France, including, lipase from Candida
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FIGURE 1 | Degradation pathway of diazinon by lipase (Hydrolysis
reaction).

Rugosa enzyme (CRL, type VII, >700 unit/mg solid), Lipase from
porcine pancreas (PPL, type II, 30-90 units/mg protein), bovine
serum albumin (BSA), diazinon, parathion methyl, paraoxon
methyl, atrazine, sevin, simazine, fenitrothion, sodium phosphate
dibasic, sodium phosphate monobasic, KH,PO4, K;HPOy, glu-
taraldehyde (grade II, 25% aqueous solution), glycerol (>99%),
6-methyl-5propyl-4  pyrimidinone,  N-hydroxysuccinimide
(NHS), 1-ethyl-3(3-(dimethyl-amino)propyl)carbodiimide
(EDC), acidthiol(16mercacaptohexadecanoicacid). Sulfuric acid
(96%), hydrogen peroxide (30%), ethanol (99%) was purchased
from Fluka. All solutions were made up with ultrapure water
(resistivity no less than 18 M2 cm and obtained from a Millipore
purification system).

ELECTRODE GOLD PREPARATION AND ENZYME IMMOBILIZATION
Gold cleaning

Before analysis, in order to improve the adhesion of the enzymatic
membrane on the electrode surface, gold electrode was firstly
immersed in acetone for 10min under sonication to remove
the resin layer; then, it was immerged for 3min in Piranha
solution (H;0,:H,SO04: 3:7 v/v). Finally the electrode was thor-
oughly rinsed with ultrapure water and dried under a nitrogen
flow.

Functionalization and activation process

The gold electrode was incubated overnight in 10 mM solution
of thiolacid in ethanol, overnight at a temperature of 4°C, which
allowed the formation of a self-assembled monolayer (SAMs) on
the surface of the electrode. The thiol functionalized electrode
was then rinsed with ethanol in order to remove the unbonded
thiol molecules. The resulting monolayer ending with carboxylic
acid groups were then activated by an [EDC/NHS] mixture at a
concentration of 0.1 mol-17! for 1 h.

Enzyme attachment

Afterward, the pretreated electrode was rinsed with PBS and dried
under nitrogen flow, 10 wL of enzyme based solution containing
CRL (5%), BSA (5%), glycerol (10%) in phosphate buffer solu-
tion 20 mM, pH = 7.2 (90%) was thoroughly homogenized and
deposited onto the surface of the working electrode. Then, the
sensor was placed in saturated glutaraldehyde vapor (cross-linker)
for 30 min, and dried in air at room temperature for 40 min, the
biosensor was stored at 4°C until further use.

ELECTROCHEMICAL SET-UP: CYCLIC VOLTAMMETRY (CV) AND
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS)
Electrochemical measurements were carried out in a conventional
one compartment three electrode cell with an internal volume of
5 ml (Verre equipments Collonges au Mont d’or, France), hermet-
ically closed on one side with a planar gold electrode (300 nm
thickness, deposited on insulated silicon with 0.19 cm? surface
area) used as the working electrode. On the other side, a planar
platinum electrode (0.59 cm?) was used as the counter electrode.
A saturated calomel electrode from Hach Lange (France) was used
as reference electrode. This electrochemical cell was designed to
maintain a fixed distance between the electrodes. It was manu-
factured with two inlets; one for the positioning of the reference
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electrode and the other for OP injections. This feature prevented
further manipulation or movements of the electrodes, fixing the
geometry of the cell and also ensuring the reproducibility of
measurements.

The electrochemical measurements were performed with an
electrochemical impedance analyzer “Voltalab PGZ 402” (Hach
Lange, France). Data acquisition and processing via “Voltamaster
4” software was provided by Thesame company. CV measure-
ments were performed in 8 mM solution of [Fe (CNg)>~7* at
scan rate of 100 mV/s. All electrochemical measurements were
taken at a frequency range of 100 mHz-100kHz at room tem-
perature. Measurements were performed at room temperature
in 20 mM PBS buffer solution, pH 5.2, under magnetic stirring
in Faraday cage. A DC potential of —400 mV was applied; as
shown in Figure 2, applying a DC potential of —400 mV allowed
the total impedance of the modified electrode to be minimized
before the injection of diazinon. The measured impedance spec-
tra were analyzed in terms of electrical equivalent circuits using
the analysis program Zview (Scribner Associates, USA). A classi-
cal Randles equivalent circuit presented in Figure 3 was used to fit
Nyquist plots, including the two resistive elements R; and Ry, in
which the double layer capacitive was replaced by CPE, a constant
phase angle element and Warburg impedance Zw (cf. Figure 3).
R; corresponds to the Ohmic resistance of the bulk electrolyte
and of electrical contacts and R, to the charge transfer resis-
tance between the solution and the modified electrode surface.
R; is equal to the diameter of semi-circle. Warburg impedance
(Zw) is the specific electrochemical element of diffusion and can
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FIGURE 2 | Nyquist plots obtained for the developed biosensor at
different applied potentials. Measurements were performed in PBS
20mM, pH 5.2, for frequencies ranging from 100 mHz to 100 kHz.
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FIGURE 3 | Randles equivalent circuit.

be defined as (Z,,) = (1 —j)’0‘5, where, o denotes the Warburg
coefficient. CPE takes into account the non-homogeneity of the
layer and the impedance of such a non-ideal layer that can be
expressed as Z(w) = CPE_I(ju))_“, where ® is a circular fre-
quency and n a parameter describing the deviation from an ideal
capacitor, varying from 0 to 1 (Katz and Willner, 2003).

RESULTS AND DISCUSSION

ELECTROCHEMICAL CHARACTERIZATION OF THE DIFFERENT STEPS OF

BIOSENSOR ELABORATION

Cyclic voltammetry characterization (CV)

Figure 4 shows the electrochemical characterization by CV of the
bare and modified electrode in the presence of 8 mM solution of
[Fe (CN)g]*~/3. The potential was swept between —0.4 and 0.6 V,
at the scan rate of 100 mV/s. As it is clear in the figure, the com-
plete disappearance of the oxidation and reduction peaks after
functionalization with the thiol layer confirms the high insulating
proprieties of the dense acid thiol layer.

EIS response of the enzymatic biosensor

In Figure 5, a 2.5 fold increase of R, was observed by assembling
the first layer on the electrode surface, which basically reflects the
insulating proprieties of SAMs (Chen et al., 2005). Contrariwise,
a decrease of interfacial impedance, correlated to 1.5 fold decrease
of R, was observed following the injection of diazinon, confirm-
ing that the hydrolysis of diazinon induces charge redistribution
at the functionalized gold electrode/electrolyte interface. The
n-value was 0.95 for the bare electrode and was reduced to 0.86—
0.91 after modification, reflecting only a slight deviation from ide-
ality and a rather capacitive behavior of the corresponding CPE.

ELECTROCHEMICAL DETECTION OF DIAZINON

Variation of impedance after diazinon injections

As can be seen in Figure6, after increasing concentrations
of diazinon contact with CRL biosensor, the total impedance
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FIGURE 4 | Cyclic Voltammograms for bare electrode (bold plot) and
for modified electrode by thiol (thin line). Measurements were
performed in 8mM Fe (CNg)3~/4~, scan rate 100 mV/s.
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decreases, from 2 to 50 uM. For concentrations higher than
50 wM, a saturation effect is observed. The decrease of total
impedance is due to a decrease of R,, induced by charge redis-
tribution at the functionalized gold electrode/electrolyte interface
due to the enzymatic hydrolysis of diazinon, and an associated
increase of interface capacitance.

Calibration curves for CRL and PPL biosensors

The relationship between biosensor response and diazinon con-
centration was examined by recording impedance spectra after
injection of different concentrations of diazinon in PBS. For both
CRL and PPL biosensors, three measurements were performed
at each concentration level. To obtain calibration curves, the val-
ues of ARy = Ry —Ry(p) were deduced, where Ry(g) refers to
R, for [diazinon] = 0. Figure 7 presents the calibration plots
for both enzymes (a) CRL, (b) PPL, as can be seen, there is a
large linear variation of AR, with diazinon concentration up
to 50 uM for both sensors, with a detection limit of 10 nM
for the CRL biosensor and 0.1 wM for the PPL based one.
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FIGURE 5 | Nyquist diagrams for different layers of developed
biosensor with CRL. Measurements were carried out in PBS 20 mM, pH
5.2 with a frequency range of 100 mHz-100 kHz.
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FIGURE 6 | Nyquist diagrams obtained with CRL biosensor, after
injection of different concentrations of diazinon. Measurements were
carried out in PBS 20 mM, pH 5.2 with a frequency range of

100 mHz-100 kHz.

Besides, the relative variation of R, obtained with enzyme CRL
is larger (factor 2.5) than that obtained with PPL and as it is
shown in Table1 that the correlation coefficient and sensitiv-
ity of CRL biosensor (S = 0.78 k§2cm?) are better than those
obtained by PPL sensor (S = 0.49 k§2cm?). Therefore, the ana-
lytical performances of CRL based biosensor are the best. This
CRL based biosensor had a detection limit of 10nM which
is however higher than that biosensors based on inhibition of
AchE (Yi et al., 2013), but it presented a large linear range
and it was better than enzymatic biosensors already reported
like a potentiometric OPH based biosensor (Mulchandani
et al.,, 1999, 2001), an amperometric tyrosinase based biosen-
sor (Tanimoto de Albuquerque and Ferreira, 2007), a tyrosi-
nase based oxygen biosensor (Russell Everett and Rechnitz,
1998), (cf. Table 2). Furthermore, this value is sufficient to allow
diazinon determination in industrial waste waters and make
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FIGURE 7 | Calibration curves of diazinon enzymatic biosensors (A)
CRL, (B) PPL. Operational conditions: 20 mM phosphate buffer, pH 5.2 at
room temperature. Each point is the mean of three values.

Table 1 | Analytical characteristics of enzymatic biosensors.

Enzyme Sensitivity  Linear range (LM) Detection limit (. M)
CRL 0.78kQ/uM Up to 50 0.01
PPL 0.49kQ/uM Up to 50 0.1
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Table 2 | Analytical characteristics of enzymatic biosensors for the detection of diazinon.

Target analyte Transduction Linear range LOD (nM) Enzyme References
Diazinon Amperometric 5-50 uM 5 Tyrosinase Russell Everett and Rechnitz, 1998
Diazinon Potentiometric 0.13-2.8mM 5 OPH Mulchandani et al., 1999
Diazinon Amperometric 0.06-016 uM 0.06 Tyrosinase Tanimoto de Albuquerque and
Ferreira, 2007
Diazinon Amperometric 0.46-8.56 mM 2 OPH Mulchandani et al., 1998
Diazinon SiQDs fluorescence / 2.22 x 1074 AchE and ChOx Yietal., 2013
Diazinon Photothermal / 32.86 AchE Pogacnik and Franco, 1999
Diazinon Impedimetric 0.01-50 uM 0.01 CRL This work
Diazinon Impedimetric 0.1-50 uM 0.1 PPL This work
LOD, limit of detection.
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FIGURE 8 | Interference study using CRL impedimetric biosensor.
Experiments were performed in 20 mM PBS solution, pH 5.2 at room . L.
- FIGURE 9 | Stability of enzymatic biosensor, response to 50 1M
temperature. Each point is the mean of three values. . ]
diazinon in phosphate buffer, pH 5.2.

the biosensor suitable for on-line environmental monitoring
applications.

The enzymatic biosensor was also evaluated for matrix effect
of natural compounds in real samples. Diazinon was spiked in
water from La Chaudanne river—Lyon (pH of samples water was
adjusted from original 7.5 to 5.2 and analyzed within 24 h after
collection). the responses of the biosensor in the river water were
almost similar to that in the buffer, validating the potential util-
ity of the present biosensor for detection of OPs contaminated
natural waters.

Selectivity of biosensor

Selectivity is a fundamental component of biosensor, therefore,
it was tested for the detection of some compounds: parathion
methyl, paraoxon methyl, fenitrothion, (organophosphate pes-
ticides), atrazine, sevin, simazine (carbamates) and also for
oxypyrimidine; the metabolite of diazinon at the concentra-
tion of 50 WM, the results are presented in Figure 8. Such as
it is clear in the figure, this CRL biosensor is not specific for
individual pesticide but to a class of organophosphate pesti-
cides. Conversely, the carbamates and oxypyrimidine did not
interfere.

Stability and reproducibility of CRL biosensor

Reproducibility and stability are among the key factors of a sen-
sor’s performance, the reproducibility of the enzymatic biosensor
was tested for three different sensors in the concentration range
from 10 to 50 WM. The variation coefficient obtained from three
measurements was very good; it was between 2 and 5% in the
concentration range studied.

To investigate the long-term storage stability and multiple use
capability, the enzymatic biosensor was used for 1 month to
measure the response to 50 wM of diazinon. During that time,
the biosensor was stored at 4°C in 20mM phosphate buffer
(pH 7.2). As demonstrated in Figure9, the biosensor was sta-
ble for 25 days, after this, only 20% of the initial response
was lost. Therefore, life time of this biosensor can be esti-
mated to be one month. This storage time was as stable as
other previously reports of organophosphate pesticides detec-
tion (32 and 30 days) (Mulchandani et al., 2001; Kumar et al,,
2006). However, it exceeds those earlier reported in the literature
as amperometric screen printed tyrosinase-modified electrodes
(10 days) and microbial Sphingomonas sp biosensor for methyl
parathion detection (18 days) (Kumar et al., 2006; Tanimoto de
Albuquerque and Ferreira, 2007).
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CONCLUSION

In this work, two impedimetric biosensors were developed for
the detection of diazinon. Two different types of lipase were
immobilized on the surface of functionalized gold electrode. Both
biosensors presented a wide linear range and low detection lim-
its, but the performance of CRL based biosensor is better than
PPL biosensor (sensitivity and detection limit). This novel CRL
biosensor for direct determination of diazinon is simple, one step
with rapid response and large dynamic range. Moreover, it is low
cost and does not require any expensive measurement apparatus.
Unlike the other biosensors based on OPH or AchE, it is specific
only for organophosphate pesticides which make it very promis-
ing analytical tool for the detection of organophosphate pesticides
in real samples. Thus, it will be ideal for on line monitoring of
detoxification processes for the treatment of wastewaters gener-
ated by the industrial production of organophosphate-pesticides.
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