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This paper describes a study in which the emulsifying properties of cocoa material

with and without its lipid fraction were explored. This study was motivated by the

commercial interest in naturally-occurring particulate emulsifiers as opposed to the

chemically modified emulsifying particles presently available for commercial use. The

hypothesis was that endogenous lipids from cocoa were responsible for driving the

formation of stable oil-in-water (o/w) emulsions. The data presented includes relative

quantification of phospholipids from different commercially available cocoa material using
31P NMR spectroscopy and analyses of the emulsifying power of delipidified cocoa

material. The commercially available cocoa material comprised several phospholipids,

with phosphatidylcholine being the most abundant in all samples. Dispersions of

delipidified cocoa material were found to drive the formation of o/w emulsions despite the

absence of lipids. We therefore concluded that the emulsifying behavior of cocoa material

is not entirely reliant upon the endogenous lipids. This suggests that cocoa material may

have a new and potentially widespread use in industrial food preparation and may inform

manufacturing strategies for novel food grade emulsifiers.
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INTRODUCTION

Emulsions comprising oil as the dispersed liquid fraction andwater as the continuous one are found
across a considerable variety of foods, including soups, salad dressings, mayonnaise, sauces and the
majority of dairy products. The emulsification of oil into water to produce such oil-in-water (o/w)
emulsion based consumer goods requires the addition of an emulsifying agent. Such agents facilitate
emulsion processing through reduction in interfacial tension and contributing to emulsion stability
during shelf-life by counteracting thermodynamically driven instability mechanisms. Typical
emulsifying agents in foods are amphiphilic proteins and surfactants such as lecithin, although,
in recent years, the use of solid particles as emulsifiers has attracted significant research interest
(Dickinson, 2012; Lam et al., 2014; Berton-Carabin and Schroën, 2015). Solid particles have been
reported to impart a higher emulsion stability with respect to proteins and surfactants, as their
energy of desorption from the interface is several orders of magnitude higher than in the case
of proteins and surfactants (Aveyard et al., 2003; Hunter et al., 2008). Thus, coalescence and
Ostwald ripening are less favored, imparting prolonged microstructure stability which in turn
increases the shelf-life of edible emulsion based consumer goods. This property also facilitates
formation of stable multiple emulsions, a system that is sought-after for low fat food formulations
(Lobato-Calleros et al., 2008; Dickinson, 2011), and for the encapsulation of bioactive species for
targeted release (Lamba et al., 2015; McClements, 2015). An additional attraction of formulating
food emulsions with particulate material is that artificial surfactants are not required. However,
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to date, the application has been limited due to the scarcity of
food grade particulate emulsifier ingredients.

Recently, we demonstrated that o/w emulsions comprising
only sunflower oil, water and a particulate material from
several parts of the Theobroma cacao bean showed no evidence
of emulsion instability in form of droplet coalescence (≥100
days) or free oil (≥2 years) (Gould et al., 2013) for storage
periods well above the requirements of most emulsion based
manufactured foods. While the use of food grade particles is an
obvious requirement for application in the food industry, cocoa
material is not only food grade but can be classified as natural
emulsifying food particles as there is no requirement for chemical
modification to impart emulsifying ability. This is in contrast
to hydrophobised starches (Yusoff and Murray, 2011); the only
particulate emulsifier ingredient applied in the food industry to
date.

The efficacy of cocoa material as an emulsifier (Gould
et al., 2013) raises the question of which molecular species
is/are responsible for it. It has been understood for some time
that cocoa comprises up to around 0.4% (w/w) phospholipids
(Knapp, 1937; Parsons et al., 1969). Phospholipids, as a class of
biomolecules, are well-established emulsifying and surface-active
agents in the context of food (Guzey and McClements, 2006;
Singh et al., 2009; Pichot et al., 2013). The presence of such species
in this quantity is consistent with the commonly used food
emulsifier lecithin, which contains a mixture of phospholipids
(Furse et al., 2013), and can drive the formation of o/w emulsions
at concentrations as low as 0.5% (w/w) (Pan et al., 2002). The
presence of these species in all of the cocoa material therefore
led us to the hypothesis that the cocoa material used previously
(Gould et al., 2013) was an emulsifying agent because of the
presence of phospholipids.

In order to determine the contribution of such endogenous
lipids to the kinetic stability of the microstructure of o/w
emulsions with cocoa material, the phospholipid fraction of
four different types of cocoa was profiled using 31 P NMR.
Surface tension and emulsion assays were used to determine the
interfacial functionality of both the untreated and the delipidified
cocoa material and, by comparison, indicate what contribution
non-lipid species make to the emulsifying power of cocoa
material.

MATERIALS AND METHODS

Cocoa Material
Cocoa powders (CPs) were a gift from Barry Callebaut (Banbury,
Oxfordshire, UK) and cocoa fiber (CF) was donated by
Food Ingredient Technology (Sandy, Bedfordshire, UK). Data
including the total lipid content are given inTable 1. The samples
codes used in a previous study are included for comparison
(Gould et al., 2013).

Lipid Extraction
Extraction solvents (petroleum ether, chloroform, ethanol and
triethlyamine) were HPLC grade (Sigma-Aldrich, Gillingham,
Dorset, UK) and used without further purification. CUBO
solvent for NMR was prepared freshly before use following

TABLE 1 | Cocoa material investigated for impact of lipid composition on

emulsifying ability.

Sample

code

Sample

description

Total lipid fraction

according to supplier

specification [%

(w/w)]

Equivalent sample

in (Gould et al.,

2013)

CP-l Fat-reduced alkalized

cocoa powder

<1 CP1(1)

CP-m Medium brown

alkalized cocoa

powder

10–12 CP5(10–12)

CP-h Medium brown

alkalised cocoa

powder

20–22 CP10(20–22)

CF Cocoa fiber 5 CF(5)

The sample code signifies whether the cocoa material is a cocoa powder (CP) or a cocoa

fiber (CF) with the size of the lipid and triglyceride fraction indicated for the CPs as l, low;

m, medium; and h, high. The fourth column shows the sample coding used in previous

work (Gould et al., 2013).

published protocol (Bosco et al., 1997; Culeddu et al., 1998;
Cremonini et al., 2004) using guanidinium chloride (Fisher
scientific, Loughborough, UK), deuteriated dimethylformamide
(d7-DMF) (Sigma-Aldrich, Gillingham, Dorset, UK) and
triethlyamine. NMR tubes were obtained from Wilmad
(Vineland, NJ, USA). To extract the triglyceride fraction, a 50 g
sample of cocoa was mixed with petroleum ether (300mL)
and agitated (1 h at 4◦C). The remaining solid was isolated
by centrifugation (11,400 × g, 1 h, 4◦C; J2-21M Induction
Drive Centrifuge, Beckman, High Wycombe, Buckinghamshire,
UK). The solid was re-suspended in CET (Furse et al., 2013,
2015a) (chloroform: ethanol: triethylamine, 3:1:1, 300mL) and
agitated (1 h at 4◦C) to extract the phospholipid fraction. The
organic solutions were concentrated to dryness separately under
reduced pressure. The cocoa solids were suspended in CET
for a second time, agitated, filtered and the organic solution
dried; however no further lipid was extracted. All traces of
solvent were removed by drying the delipidified cocoa (40◦C, 4
days, Vacuum Oven, Weiss Gallenkamp, Leicester, UK). Three
independent extractions were carried out for each type of cocoa
material.

Profiling of Lipid Fractions
Lipid isolates (80 mg) were dissolved in 200µL CUBO solvent
and after agitation centrifuged at 21,100 × g for 30min at
4◦C (Heraeus Fresco 21 Microcentrifuge, Thermo Corporation,
Waltham, USA). The organic solution was then transferred
to a 5mm NMR tube and diluted (CUBO solvent, overall
sample volume 500µL). The 31P NMR spectra were obtained
from a Brucker AV400 spectrometer (Brucker, Coventry, UK).
The phospholipids were identified using the reported shifts of
phosphorous resonances (Bosco et al., 1997; Culeddu et al., 1998;
Cremonini et al., 2004; Furse et al., 2013), which were 5.12
ppm for phosphatidic acid (PA), 1.25 ppm and 1.21 ppm for
phosphatidylglycerol (PG), 1.07 ppm for phosphatidylinositol
(PI), 0.48 ppm, and 0.44 ppm for lyso-phosphatidylcholine (LPC)
and phosphatidylcholine (PC) was calibrated to 0.00 ppm. NMR
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data was processed (including deconvolution) using TopSpin 2.0
and 3.1.

Emulsion Preparation
The oil phase of the emulsions consisted of commercially
available sunflower oil (J Sainsbury Plc, London, UK) and double
distilled water. Surface active impurities present in sunflower oil
were removed by adding magnesium silicate [4% (w/w), Sigma-
Aldrich, Dorset, UK] followed by stirring (30min, 600 rpm,
RCT Basic, IKA—Werke GmbH & Co, Staufen, Germany).
The magnesium silicate was removed by centrifugation (2700
× g, 30min, Jouan CR3i multifunction Centrifuge, Thermo
Fisher Scientific, Massachusetts, USA). Absence of surface active
molecules in the purified oil was confirmed by measuring
interfacial tension against water using the pendant drop
technique (see method below) verifying that interfacial tension at
20◦C was constant at a value of 27.3 ± 1.5 mN.m−1. It remained
unchanged for at least 29 days of storage at room temperature in
the dark which was the longest storage period for purified oil used
for emulsion preparation in this study. Sodium azide (Sigma-
Aldrich, Gillingham, Dorset, UK) was added as anti-microbial
agent to all aqueous emulsion phases at a final concentration of
0.02% (w/w). Emulsions (o/w, 20% (w/w) oil) were produced on a
100 g scale. Water (75.2 g) and cocoa material (4.8 g) were placed
in a glass beaker (250mL) and mixed briefly by hand to produce
an aqueous dispersion of 6% (w/w) cocoa material. Sunflower oil
(20 g) was added to the dispersion prior to homogenization using
a high shear overhead mixer (L5M Series fitted with emulsor
screen, Silverson, Chesham, Hertfordshire, UK) operating at
8000 rpm for 2min.

Characterization of Emulsions
Particle size analysis was used to assess the coalescence stability
of the emulsions; no significant increase in droplet size over
the storage period deemed a stable emulsion in this study. Size
distributions of prepared emulsions were measured with a low
angle laser diffraction particle size analyser (LS 13 320, Beckman
Coulter, High Wycombe, UK) fitted with an aqueous dispersion
cell (Universal liquid module, LS13 320, Beckman Coulter, High
Wycombe, Buckinghamshire, UK). Data was analyzed using the
Fraunhofer approximation optical model from the instrument’s
software. Graphical representations of the surface area based
mean, d3,2,are presented. Three independent measurements of
each sample were used to calculate the values given.

Interfacial Tension and Surface Tension
Measurement
A drop shape tensiometer (PAT-1, Sinterface, Berlin, D) was used
to quantify interfacial tension and surface tension of samples.
Interfacial tension measurement was used to confirm the absence
of surface active impurities in the oil, whereas the surface tension
of the aqueous dispersions of cocoa material was used to assess
the contribution of the lipid fraction to the surface activity of
cocoa. All measurements were taken at 20◦C and values recorded
for 600 s after drop formation. The values reported in the results
section represent an average of the equilibrium surface tension,
recorded at 600 s. Three independent measurements of each

sample were used. For interfacial tension measurement at the
purified sunflower oil/water interface a straight capillary with a
diameter of 2mm (outer diameter) was used to dose a water drop
of 35mm3 constant volume into the oil phase contained in a
quartz glass cuvette. The surface tension of aqueous dispersions
of 6% (w/w) cocoa material was measured using the same straight
capillary and constant drop volume of 35mm3. Due to the low
surface tension of the 6% (w/w) aqueous dispersion of cocoa fiber
the volume of the droplet was reduced to 25mm3 for this sample.
It was previously verified that reducing the droplet volume did
not change the result.

Statistical Analysis
Mean droplet size and standard deviation are reported based
on three independent samples. Whether or not significant
increases in emulsion droplet diameter occurred over storage
was determined using an ANOVA and Tukey’s statistical test was
carried out. In order to compare the mean droplet diameter of
emulsions stabilized by the same type of cocoa material either
untreated or delipidified, a t-Test was used to assess difference
between the two samples. The level of significance was set at
p = 0.05 for both statistical tests.

Results
The cocoa used in this study reflected the cocoa material from
different parts of the cocoa bean, and different treatments during
isolation. The latter represent the range of sizes of the lipid
fraction in commercially available cocoa and are low, medium
and high lipid and denoted CP-l, CP-m, and CP-h, respectively.
The fourth cocoa material is powdered cocoa fiber (CF).

Endogenous Lipid Composition
A sequential extraction approach (Furse et al., 2015a) was
adopted in order to separate the triglyceride (TG) fraction and
the phospholipid (PL) fractions clearly. This approach has been
shown to remove more than 99.99% of the TGs and thus
gives practically no contamination of the PL fraction (Furse
et al., 2013). The triglyceride fraction of the cocoa materials
was therefore isolated using petroleum ether, after which the
PL fraction was isolated using the CET solvent system (Furse
et al., 2013) The size of the TG and PL fractions was assessed
gravimetrically (Figure 1) and the profile of the PL fraction
determined using31P NMR spectroscopy (Figure 2).

The overall size of phospholipid fraction of the cocoa varied
between 0.9% (w/w) and 2.4% (w/w) for the CPs with the lowest
(CP-l) and the highest (CP-h) lipid content, respectively.

31P NMR spectroscopy showed that the same five
phospholipids PA, PG, PI, LPC, and PC are present in all
cocoa material, regardless of the mass or profile of the lipid
fraction or origin (Figure 2). Signals were identified using
literature values for chemical shift (Murgia et al., 2003; Furse
et al., 2013, 2015b). Phosphatidyl ethanolamine and phosphatidyl
serine have been previously identified in cocoa beans (Parsons
et al., 1969) but were not found in all the cocoa material tested in
this study.

The relative proportions of the phospholipids were
determined by integrating the resonances of the different
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phosphorus environments. This indicated the composition of
the phospholipid fraction of each cocoa material (Figure 3).
Phosphatidylcholine (PC) dominated in each type of cocoa
material. Not all of the signals could be identified, however,
unidentified signals contributed less than 10% of the total
phospholipid for the cocoa powders. 31P NMR spectra of all
samples showed additional peaks at chemical shifts of 0.18 and

FIGURE 1 | Relative sizes of the phospholipid and triglyceride fractions

of four cocoa materials. The percentage of lipids and triglycerides isolated

was based on initial dry sample weight and the triglyceride (TAG, ) and

phospholipid ( ) proportions are shown. CP-l, m and h indicate the low,

medium, and high lipid and triglyceride fraction of the original cocoa powders,

respectively. The error bars represent standard deviation.

0.7 ppm. The peak at 0.75 ppm may be evidence for the presence
of cardiolipin (Culeddu et al., 1998), which was present in a
much higher concentration for CF (24%). The unknown signals
(0.18, 1.4, 3.7, and 4.8 ppm) may be ascribed to small molecules,
e.g., glycerol phosphate. Inorganic phosphates such as sodium
phosphate, and pyrophosphates such as ADP can be ruled out as
they do not dissolve in the solvent system used to disperse lipids
samples for NMR spectroscopy. Full structural determination is
required for unambiguous identification of these phosphorylated
species.

Characterization of the Emulsifying Ability
of Delipidified Cocoa Material
All types of delipidified cocoa material stabilized o/w
emulsions. Figure 4 shows that there was no significant
increase in droplet size of the emulsions stabilized with
untreated or delipidified cocoa material measured over
100 days of storage at 20◦C (p < 0.05). In addition there
was no evidence of a coalesced oil layer after 2 years of
storage at 20◦C. This indicates that the removal of lipid did
not affect the coalescence stability of cocoa stabilized o/w
emulsions.

While none of the emulsions showed coalescence, in the
case of the cocoa powders with medium and high lipid content
(CP-m and CP-h, respectively) the removal of the lipid fraction
had a significant impact on the mean droplet diameter of the
emulsions. In both cases it was significantly lower following lipid
extraction compared to the mean diameter of the emulsions
prepared with the original cocoa material (p = 0.01 and

FIGURE 2 | 31 P NMR spectra of the phospholipid fraction of the cocoa lipid extracts acquired by CET (chloroform, ethanol, and triethylamine) solvent

extraction. The identity of the phospholipids was established using reported shifts of phosphorous resonances for phosphatidic acid (PA), phosphatidylglycerol (PG),

phosphatidylinositol (PI), lyso-phosphatidylcholine (LPC), and phosphatidylcholine (PC). Assignments made by assigning the PC resonance to 0·00 ppm and

measuring the relative shift of each resonance and comparing with literature values (Cremonini et al., 2004; Furse et al., 2013, 2015b). CP-l, m and h indicate the low,

medium and high lipid and triglyceride fraction of the original cocoa powders respectively.
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FIGURE 3 | Profiling of phospholipid fraction of four cocoa materials using 31P NMR. PA, Phosphatidic acid; PG, Phosphatidylglycerol; PI,

Phosphatidylinositol; LPC, Lyso-phosphatidylcholine; and PC, Phosphatidylcholine. The contribution of the total phospholipid which was not identified is presented by

the chemical shift (ppm). CP-l, m and h indicate the low, medium and high lipid and triglyceride fraction of the original cocoa powders respectively. Error bars denote

standard deviation.

FIGURE 4 | Droplet diameter of emulsions stabilized with untreated and delipidified cocoa material measured after 1 day ( ), 53 days ( ) and 100

days ( ) of storage at 20◦C. CP-l, m and h indicate the low, medium, and high lipid and triglyceride fraction of the original cocoa powders respectively. The error

bars denote standard deviation.

p = 0.02, respectively). As emulsion droplet size has a linear
relationship with the size of the particles stabilizing the interface
(Binks and Lumsdon, 2001), the particle size of the cocoa
material was evaluated. Particle size measurement of the cocoa

material, shown in Table 2, confirms that lipid extraction caused
a significant reduction in particle size of cocoa materials CP-m
and CP-h. There was no significant change in particle size of CP-1
or CF.
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TABLE 2 | Particle size (d3,2) of aqueous dispersions of untreated and

delipidified cocoa material.

Type of cocoa material Particle size (d3,2) (µm)

Untreated Delipidified

CP-l 9.58 ± 0.24 9.90 ± 0.37

CP-m 10.58 ± 0.13 8.02 ± 0.76*

CP-h 13.66 ± 1.03 8.27 ± 0.31*

CF 16.87 ± 0.57 18.28 ± 1.69

CP-l, m and h indicates the low, medium and high lipid content of the original cocoa

powders respectively. The effect of lipid extraction on particle size was statistically tested

per cocoa material type. The presence of an asterisk (*) indicates the particle size of

the delipidified material was significantly different (p < 0.05) to the untreated material.

Differences between the types of cocoa material were not evaluated.

TABLE 3 | Surface tension of aqueous dispersions of untreated and

delipidified cocoa material.

Type of cocoa material Surface tension (mN.m−1)

CP-l 47.82 ± 0.13c

delipidified CP-l 48.84 ± 0.00c

CP-m 44.43 ± 0.73b

delipidified CP-m 50.35 ± 0.66c

CP-h 40.78 ± 0.59a

delipidified CP-h 50.05 ± 0.91c

CF 37.99 ± 0.87a

delipidified CF 48.34 ± 2.59c

CP-l, m and h indicate the low, medium and high lipid content of the original cocoa

powders respectively. Mean surface tension values after 600 s of measurement at 20◦C

are presented. The different letters represent a significant difference (p < 0.05).

Surface Tension of Delipidified Cocoa
Material
The surface tension of the aqueous dispersions of the four
cocoamaterials was measured to assess whether the phospholipid
fraction contributes to the interfacial activity of cocoa as
phospholipids are known to facilitate emulsion formation by
reducing the interfacial tension. The surface tension of the
aqueous dispersion of the cocoa material analyzed after 600 s are
shown in Table 3.

These data indicate that lipid extraction significantly
decreased the surface tension of the cocoa material except in the
case of the cocoa powder with the smallest proportion of lipid
(CP-l). Surface tension measurements of the aqueous dispersions
of the cocoa material indicated that the phospholipids contribute
to the surface activity of the dispersions as removal of the lipid
fraction decreased the surface tension.

DISCUSSION

In this study the contribution of the endogenous lipid of
cocoa material was evaluated with respect to the emulsifying
ability of cocoa. The phospholipid fraction, quantified by
mass after extraction using organic solvents, was consistent
with supplier specifications and removal of the entire lipid

fraction from the cocoa material. Notably, the phospholipid
fraction [0.9–2.4% (w/w)] was higher than the 0.3–0.4% (w/w)
previously reported for cocoa beans (Knapp, 1937; Parsons et al.,
1969). However, the techniques used previously were based on
chromatographic rather than spectroscopic methods and thus
did not produce structural data to support identification of the
compounds present. The comparative advantages of the 31P
NMR spectroscopy is that it is a high resolution, quantitative
technique that gives structural data. Furthermore, the method
used to isolate the lipid fraction in the current study was designed
to isolate lipids with a variety of head groups. Earlier methods
were less general (Rydhag and Wilton, 1981; Furse et al., 2015a).
This may be why previously unreported phosphorylated species
(unknown species, Figure 3) were observed.

31P NMR spectroscopy of the cocoa indicated the presence
of phospholipids in all types of cocoa material tested with five
well-known phospholipids (PA, PG, PI, LPC, and PC) identified
in all samples. The proportion of each of phospholipid varied
between the types of cocoa material although PC was the
major phospholipid [25–57% (w/w)] in all samples. The same
high concentration of PC was previously reported for cocoa
beans where PC was found to contribute 36–40% of the total
phospholipid (Parsons et al., 1969). The presence of PC was of
particular interest as PCs are a major component of lecithin; a
commonly used emulsifier (Whittinghill et al., 2000; Pichot et al.,
2013).

The contribution of the (whole) lipid fraction to the
emulsifying ability of the cocoa material was quantified by a
comparison of the emulsions generated by cocoa before and after
extraction of the lipid fractions. All four cocoa materials were
found to be able to stabilize an o/w emulsion after delipification.
There was no significant increase in emulsion droplet diameter
over a period of 100 days which indicates that emulsions were
stable to droplet coalescence. Lipid extraction did affect the
droplet size of two of the emulsion samples prepared from cocoa
materials of originally medium and high lipid content. This
may be ascribed to the change in the size distribution of the
cocoa material to smaller diameters following lipid extraction,
as shown in Table 2, as smaller particle diameters are known
to enable stabilization of smaller droplets (Binks and Lumsdon,
2001; Luo et al., 2011). The shift in size distribution of the
particles may be due to removal of surface lipid that promotes
particle aggregation.

The role of the lipid fraction on the interfacial properties of
commercially available cocoa material was quantified by analysis
of the surface tension of aqueous dispersions of both untreated
and delipidified cocoa material. We found that the lipid present
in cocoa contributed to the surface activity of the dispersions.
This is consistent with the established behavior of phospholipid
as a surfactant. However, extracting the lipids decreased the
surface tension to values comparable to the cocoa powder with
the originally smallest lipid fraction, (CP-l), which was still
capable of driving the formation of an emulsion. The aqueous
dispersions of delipidified cocoa material were still surface active
which may explain why emulsions could be formed by the
delipidified cocoa. However, the stability of particle stabilized
emulsions is not reliant upon particle adsorption at the interface
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changing the interfacial tension as dispersions with known
emulsifying ability have been shown not to decrease interfacial
tension (Tzoumaki et al., 2011; Rana et al., 2012).

CONCLUSION

The evidence from this study indicates that several phospholipids
found in lecithin and other known surfactant mixtures are
present in cocoa material. Crucially, there is evidence that the
formation of o/w emulsions based on cocoa material is not only
driven by these molecules but also by other biomolecules that
do not dissolve in organic solvents or water. This observation
raises a number of questions. Naturally, what this component
is and how it works are important but also where else such
components are found and how they may be developed for
commercial use. Further research is required to characterize
this emulsifier properly. Cocoa is an heterogeneous material
containing lipids, polyphenol, proteins, starch and lignin, all of
which have known emulsifying ability. We suggest that the next
step in elucidating the behavior of these systems is to evaluate
role of these components on the emulsifying ability of the cocoa

material. The results of such a study would shape efforts in
identifying other naturally occurring material with emulsifying
ability as well as preparing emulsifying material from natural
material.
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