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We report here the total synthesis of 11-epi-lyngbouilloside aglycon. Our strategy

features a Boeckman-type esterification followed by a RCM to form the 14-membered

ring macrolactone and a late-stage side chain introduction via a Wittig olefination.

Overall, the final product was obtained in 20 steps and 2% overall yield starting from

commercially available 3-methyl-but-3-enol. Most importantly, the strategy employed is

versatile enough to eventually allow us to complete the synthesis of the natural product

and irrevocably confirm its structure.

Keywords: lyngbouilloside, total synthesis, Lyngbya bouillonii, Boeckman esterification, Mukaiyama aldol,

asymmetric Sharpless dihydroxylation, ring-closing metathesis

INTRODUCTION

Lyngbouilloside (1) is a glycosidic macrolide isolated by Gerwick et al. (Tan et al., 2002) from the
cyanobacteria Lyngbya bouillonii (Hoffmann and Demoulin, 1991), which also produce several
other structurally intriguing natural products including the tetrapeptide lyngbyapeptin (Klein
et al., 1999a,b), several macrolides such as laingolide, laingolide A, and madangolide (Klein et al.,
1996, 1999a,b), and various lyngbouilloside analogs such as lyngbyaloside (2) (Klein et al., 1997),
lyngbyaloside B (3) (Luesch et al., 2002; Matthew et al., 2010), and lyngbyaloside C (4) (Matthew
et al., 2010; Figure 1). The structure of lyngbouilloside was determined after exhaustive 1D and 2D
NMR analysis, HR-FABMS, IR, and UV absorption experiments, which unveiled the presence of
the pendant dienyl side chain, the 14-membered ring lactone, the presence of hydroxyl groups, the
chair conformation of the tetrahydropyran ring and the relative configuration of the stereogenic
centers in the aglycon portion of the natural product. The nature of the sugar, on the other hand,
was assigned by correlations in the 1H-1HCOSY andHMBC spectral data and comparison with the
sugar unit present in auriside A. Interestingly, lyngbouilloside exhibits only a moderate cytotoxic
activity (IC50 = 17 µM) toward neuroblastoma cell lines. Nonetheless, its structural resemblance
with several biologically active 14-memberedmacrolides, such as callipeltoside A (5), auriside A (6),
or dolastatin 19 (7), encouraged a few groups including ours to complete its synthesis (Gebauer
et al., 2008; Webb et al., 2009; ElMarrouni et al., 2012; Sabitha et al., 2014). In this context, we
recently reported the total synthesis of nominal lyngbouilloside aglycone via a flexible approach
featuring an acyl ketene macrolactonization and a late stage side chain introduction, which led us
to suggest a stereochemical reassignment at C11. With this hypothesis in mind, we embarked on
the synthesis of putative 11-epi-lyngbouilloside aglycon; we report here the results of our endeavor.
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FIGURE 1 | Structures of lyngbouilloside, lyngbyaloside, lyngbyaloside B, lyngbyaloside C, callipeltoside A, auriside A, and dolastatin 19.

MATERIALS AND METHODS

Experimental procedures and compound characterization data
are furnished in the Supplementary Material.

RESULTS AND DISCUSSION

Our initial route to 11-epi-lyngbouilloside 8 relied on the same
acyl ketene macrolactonization and Wittig olefination that were
previously used to complete the synthesis of the proposed
structure of lyngbouilloside aglycone. Unfortunately, the poor
yields obtained in the macrolactonization process, combined
with the difficulties encountered while trying to selectively reduce
the C8–C9 double bond in the presence of the pendant alkyne
side chain, led us to reconsider our strategy. We therefore opted
for a slightly modified route, which involved a Boeckman-type
esterification between an alcohol and an acyl ketene (Boeckman
and Pruitt, 1989) and a ring-closing metathesis to form the 14-
membered ring macrolactone, while a pendant hydroxyl group
was placed instead of an alkynyl group in order to introduce the
dienyl side-chain via a stereoselective Wittig reaction (Figure 2).
We projected to control the stereogenic centers at C7 and C13
via a Sharpless dihydroxylation (Jacobsen et al., 1988; Kolb et al.,
1994) and a 1,3-anti reduction respectively, while the C10 and
C11 stereogenic centers were to be controlled through a Leighton
type crotylation.

The synthesis of 11-epi-lyngbouilloside 8 began by first
converting 2,2,6-trimethyl-4H-1,3-dioxin-4-one 9 to the

corresponding silyl dienol ether (LDA, TMSCl, THF, −78◦C)
and subjecting the latter to 4-pentenal under asymmetric
vinylogous aldol conditions (Denmark et al., 2005a,b). Among
the various enantioselective catalytic processes developed so far
in the field of asymmetric Mukaiyama aldol, the ones reported
by Denmark et al. (Denmark et al., 2002, 2005a,b; Denmark
and Beutner, 2003), involving the combination of a catalytic
amount of chiral bis-phosphoramide and silicon tetrachloride to
promote a highly enantio- and diastereoselective addition of silyl
ketene acetals to aldehydes (SiCl4, CH2Cl2, −78◦C), appeared
particularly attractive. Unfortunately, the application of these
conditions to our system afforded the desired product 12 in a
modest 65% ee. The conditions reported by Sato [Ti(Oi-Pr)4
(20mol%), (S)-BINOL (20mol%), THF,−78◦C; Sato et al., 1995]
and more recently by Scettri [Ti(Oi-Pr)4 (8mol%), (S)-BINOL
(8mol%), and 2 equiv of silyl dienol ether instead of 1.4 equiv,
THF, −78◦C; De Rosa et al., 2003] were also tested but afforded
compound 12 in moderate yields albeit in up to 86% ee. With
these rather disappointing results in hand, we decide to perform
the aldol reaction in a racemic fashion (TiCl4, THF, −78◦C) and
separate the racemate by chiral preparative supercritical fluid
chromatography (SFC) (Scheme 1). This preparative separation

allowed to readily obtain large quantities of alcohol 12 in optically

pure form (>99% ee) and with an acceptable overall yield of 34%.

The absolute configuration was secured after hydrogenating

the terminal double bond and comparing the optical rotation
of the resulting product {[α]20D −21.0 (c 0.1, CHCl3)} with the
one reported in the literature {[α]20D +19.0 (CHCl3)} (Sato
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SCHEME 2 | Synthetis of the C11–C16 fragment.
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et al., 1995). To complete the synthesis of the C1-C8 fragment,
alcohol 12 was eventually treated with SeO2 and t-BuOOH
(CH2Cl2, rt) to afford the corresponding diol, which was
subsequently engaged in a MnO2-mediated oxidation to provide
the desired enone 14 in 56% overall yield. A diastereoselective
anti-reduction [Me4NBH(OAc)3, MeCN/AcOH, −30◦C; Evans
et al., 1988] followed by the protection of the resulting diol as a
bis(triethylsilyl) ether (TESCl, imidazole, CH2Cl2, 0

◦C) finally
provided the C1–C8 fragment 16 in six steps and 14% overall
yield starting from the inexpensive dioxolenone 9.

The synthesis of the C9–C16 fragment started off from
commercially available 3-methylbuten-3-enol (11), which was
first protected as its PMP-ether under Mitsunobu conditions
(DIAD, PPh3, THF reflux) (Mitsunobu and Yamada, 1967) before
it was engaged in the asymmetric Sharpless dihydroxylation
(AD-mix-α, t-BuOH/H2O, 0

◦C) to quantitatively afford diol
17 in 94% ee (Scheme 2). Mesylation (MsCl, Et3N, CH2Cl2,
0◦C) and cyclization under basic conditions (K2CO3, MeOH)
then yielded epoxide 19 which, after Cu-catalyzed ring-opening
using vinyl magnesium bromide (Li2CuCl4, THF, −40 to
0◦C) and TIPS-protection (TIPSOTf, 2,6-lutidine, CH2Cl2, rt),
produced the corresponding homoallylic ether 20 in 88% overall

yield. Finally, hydroboration of the terminal double bond
(BH3·Me2S, THF, 0◦C) and benzylation of the primary alcohol
obtained upon oxidative workup (BnBr, NaH, THF/DMF, rt)
gave rise to the C11–C16 fragment 21 in 74% yield over two
steps.

To control the two stereogenic centers at C10 and C12 and
complete the synthesis of the C9–C16 fragment, we performed
a syn-crotylation of aldehyde 22 obtained upon sequential
PMP-deprotection (CAN, MeCN/H2O, rt)/oxidation [DMP,
CH2Cl2, rt] using a procedure recently developed by Leighton
and co-workers (Kim et al., 2011) (Scheme 3). This almost
quantitatively afforded a mixture of the two diastereoisomeric
homoallylic alcohols 23 (dr = 83:17), which could be converted
to the desired C9–C16 fragment 24 by simple protecting
group manipulation (TBAF, THF, rt, then TBSOTf, 2,6-lutidine,
CH2Cl2,−40◦C) in 75% yield.

The C1–C8 and C9–C16 fragments were eventually coupled
together using the approved intermolecular acyl ketene trapping
by mixing the two fragments in refluxing toluene, giving rise
to the fully functionalized carbon backbone of the natural
product in an excellent yield of 95% (Scheme 4). Hemi-acetal
formation (PPTS, MeOH, trimethyl orthoformate), ring-closing
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SCHEME 3 | Synthetis of the C9–C16 fragment.

SCHEME 4 | End game.
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metathesis using the Grubbs-Hoveyda 2nd generation catalyst
(GH-II) and a final catalytic hydrogenation allowed to isolate
the 14-membered macrolactone 27 possessing a hydroxypropyl
side-chain appropriate for the elongative olefination (3 steps,
37% overall yield). The latter could be achieved by a selective
TEMPO-mediated oxidation (BAIB, CH2Cl2, rt) followed by
a Wittig reaction of the resulting aldehyde 29 with tributyl
phosphonium bromide 30 (LiHMDS, THF, −78◦C), which
enabled the E,E-dienyl moiety to be installed in a highly
diastereoselective fashion but with a yet unoptimized yield of
27%. Finally, removal of the remaining TBS-protecting group
(HF, MeCN, rt) afforded the putative structure of 11-epi-
lyngbouilloside aglycone 32 as a single diastereoisomer in 20
steps and 2% overall yield starting from commercially available
3-methyl-but-3-enol (11). Unfortunately, comparison of the
NMR chemical shifts of our synthetic aglycon with the ones
reported for natural lyngbouilloside, particularly in the C9-C13
region, revealed some disparities suggesting one or more of the
stereochemical configurations of the natural product needed to
be reassigned.

CONCLUSION

In summary, we have completed the synthesis of what we
believed was the actual structure of lyngbouilloside aglycon.
Unfortunately, after careful analysis of the spectroscopic data
of our final product with the ones reported for lyngbouilloside,
some discrepancies still remained. This observation combined

with the recent syntheses of lyngbyaloside B and C by Fuwa
(Fuwa et al., 2016) and Taylor (Chang et al., 2015), suggest
not only a stereochemical reassignment for C11, but also for
C10 and C13. Nonetheless, our strategy featuring a ring-closing
metathesis (RCM) to form the 14-membered ring macrolactone,
a late stage side chain introduction via a Wittig olefination
and a glycosylation to introduce the rhamnose should allow
to complete the synthesis of lyngbouilloside and irrevocably
confirm its structure.
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