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N-benzyl-N-cyclopropylamine (BCA) has been attracting great interests for decades
for its partial suicide inactivation role to cytochrome P450 (P450) via a ring-opening
mechanism besides acting as a role of normal substrates. Understanding the mechanism
of such partial inactivation is vital to the clinical drug design. Thus, density functional
theoretical (DFT) calculations were carried out on such P450-catalyzed reactions, not
only on the metabolic pathway, but on the ring-opening inactivation one. Our theoretical
results demonstrated that, in the metabolic pathway, besides the normal carbinolamine,
an unexpected enamine was formed via the dual hydrogen abstraction (DHA) process,
in which the competition between rotation of the H-abstracted substrate radical and
the rotation of hydroxyl group of the protonated Cpd Il moiety plays a significant role in
product branch; In the inactivation pathway, the well-noted single electron transfer (SET)
mechanism-involved process was invalidated for its high energy barrier, a proton-coupled
electron transfer [PCET(ET)] mechanism plays a role. Our results are consistent with other
related theoretical works on heteroatom-hydrogen (X-H, X = O, N) activation and revealed
new features. The revealed mechanisms will play a positive role in relative drug design.

Keywords: cytochrome P450, hydrogen atom transfer, proton-coupled electron transfer, suicide inhibition,
mechanism-based inactivation

INTRODUCTION

Suicide inhibitors, or called mechanism-based (k.4) inactivators, are attractive of great interests
in enzymology and drug industry, because the action of such inhibitors is intimately related to the
enzymatic mechanism, well knowledge of the latter often provides an excellent starting point for the
rational design of highly specific and effective drugs in clinical use (e.g., penicillin) (Meunier et al.,
2004; Ortiz de Montellano and De Voss, 2005). Besides, discovery of such inhibitors for an enzyme,
e.g., cytochrome P450, whose mechanisms are not well-characterized should provide an equally
specific and effective probe. Metabolism of these alternative substrates could result in the generation
of reactive species that inactivates the enzyme through either covalent modification or tight binding
(Orr et al,, 2012). Cyclopropylamines are one kind of such prototypical inhibitors for cytochrome
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P450 enzymes (P450s), which are widely found in biologically
active natural products, synthetic drugs and also widely used
as mechanistic probes to reveal elusive reaction mechanisms,
such as that involved in P450-catalyzed amine oxidations (Bhakta
and Wimalasena, 2002; Ortiz de Montellano and De Voss, 2002;
Totah and Hanzlik, 2002; Bhakta et al., 2005).

N-benzyl-N-cyclopropylamine 1 (Figure 1, hereafter as BCA
in brief) functioning as a suicide inhibitor of P450 was first
reported by Hanzlik et al. (1979), and toward understand
the special inactivation role, they proposed a Cgy-hydrogen
atom transfer (Cy-HAT, I in Figure 1) mechanism in which
a Schiff base intermediate 3 was deemed to account for
the inactivation. However, Hanzlik (Hanzlik and Tullman,
1982) and Guegerich (Macdonald et al., 1982) further found
that the 1’-methyl-substituted analog of 1, N-benzyl-N-(1-
methylcyclopropyl)amine lacking hydrogen atom at the C,
position of cyclopropyl group, was also capable of inactivating
P450 almost as effectively as 1. Thus, the C,-HAT mechanism was
ruled out. Instead, a single electron transfer (SET) mechanism
(Macdonald et al., 1982) (II in Figure 1) was postulated that
the inactivation involved an initial heteroatom oxidation to
aminium cation radical 4, which could undergo rapid ring-
opening process to form highly reactive carbon-centered radical
species 5 and subsequently covalently bound to the amino
residue within the enzyme active site (Macdonald et al,
1982).

The SET mechanism can also explain some other observations
for amine oxidations, such as the inhibition role of 4-alkyl-
1,4-dihydropyridine derivatives which could extrude an alkyl
radical during the P450-catalyzed oxidation (Augusto et al.,
1982), the small deuterated kinetic isotope effect (KIE) (Miwa
et al, 1983), the correlation of free energy relationship to
one-electron oxidation potential (Guengerich et al., 1984),
the large negative Hammett p in N-demethylations of para-
substituted N,N-dimethylanilines by both P450 (Burka et al.,
1985) and its nonheme biomimics (Nehru et al., 2007), thusly
was widely accepted as a general mechanism involved in amine
oxidation (Guengerich et al., 1996). However, the validity of such
evidence for the SET mechanism was subsequently challenged.
Dinnocenzo et al. found that the KIE profiles for a series of
dimethylaniline (DMA) oxidations catalyzed by P450 correlated
linearly with those measured in the reactions of the same
DMAs with tert-butoxyl radical which actually involved a
typical hydrogen atom transfer (HAT) mechanism (Dinnocenzo
et al., 1993; Karki and Dinnocenzo, 1995; Karki et al., 1995;
Manchester et al., 1997). Shaffer et al. reported that the oxidation
of N-methyl-N-cyclopropylaniline by horseradish peroxidase
(HRP), a conventional SET oxidant, led to yields of ring-
opened intermediates and subsequently inactivated the enzyme,
conversely, as an oxidant whose reduction potential was higher,
the P450-catalyzed oxidation of N-methyl-N-cyclopropylaniline
produced ring-intact metabolites exclusively and no inactivation
was observed (Shaffer et al.,, 2001a,b). In addition, the use of
clock substrate and other experimental criteria seemed to rule out
the involvement of the amine cation radical intermediate (Shaik
et al,, 2010). To determine the complete fate of 1 in vivo by P450

as well as to reconcile the discrepant behaviors in HRP- and P450-
catalyzed reactions, Cerny and Hanzlik (2005, 2006) performed
a series of experiments, and eventually proposed an N-HAT
mechanism (III in Figure 1) through the product study. This
novel N-HAT mechanism was proposed upon a ring-opening
process of the cyclopropyl group, i.e., hydrogen abstraction from
the N-H bond of the secondary cyclopropylamine 1 gave a
neutral aminyl radical species 6 which could undergo rapid ring-
opening process to form 7, such reactive C-centered radical
species accounted for the enzyme inactivation by means of
covalently binding to the amino residue in the active site.
Moreover, such N-HAT mechanism was subsequently validated
by Hirao et al. in their investigation on P450 inactivation by
1,1-dimethylhydrazine (Hirao et al., 2013a). However, previous
investigations have revealed that there might be an alternative
proton-coupled electron transfer (PCET) mechanism for the
polar X-H (X = O, N) bond activation (Mayer et al., 2002;
Usharani et al., 2013; Hirao and Chuanprasit, 2015; Li et al.,
2015). Thus, an obvious question to be answered is: Ring-opening
of BCA is initiated by a direct HAT mechanism or a PCET
one?

Furthermore, according to Hanzlik, the incubation of 1
with microsomes indeed caused a time-, concentration- and
cofactor-dependent loss of cytochrome P450 activity, which was,
however, not vanished completely but instead remained 25-
30% of it (Cerny and Hanzlik, 2005). In an effort to reveal
the genuine mechanism of P450 inactivation by N-benzyl-N-
cyclopropylamine that involved in the physiological process,
and thereby making contributions to pharmacy, we performed
a series of density functional theory (DFT) -calculations.
Two distinct pathways, inactivation and metabolic ones, were
examined in which BCA reacted with P450 efficiently. Moreover,
we also demonstrated that in the inactivation pathway, the N-
H bond activation/ring-opening process was a prior reaction
route for the low energy barrier of its rate-limiting step, 0.6/0.4
kcal/mol for the high quartet spin-state (HS)/low doublet spin-
state (LS). Essentially, the validity of the PCET mechanism that
involved in the H-abstraction at the N-H bond of BCA by P450
was confirmed.

THEORETICAL METHODS

Due to the key role of the computational modeling on
the investigation of enzyme reaction (Li et al, 2012; de
Visser et al, 2014), we employed an iron-oxo open-shell
porphyrin with an axial thiolate ligand to model CpdI
[Fe*+t 02~ (CyN4H12)~(SH) ] (Shaik et al., 2005; Wang et al.,
2006, 2007a, 2010), and used the N-benzyl-N-cyclopropylamine
as the substrate. All DFT calculations were performed with
the Gaussian 03 suite of quantum chemical packages (Frisch
et al, 2004). The spin-unrestricted B3LYP (Lee et al., 1988;
Becke, 1992a,b, 1993) functional was employed with two basis
sets: (a) The LACVP(Fe)/6-31G*(H, C, N, O, S) (denoted as
LACVP*, henceforth B1) for geometry optimizations without
symmetry constraint; (b) The LACV3P(Fe)/6-3114++G™*(H,
C, N, O, S) (denoted as LACV3P++**, henceforth B2) for
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FIGURE 1 | Proposed mechanisms involved in BCA-induced inactivation of cytochrome P450.

OH

single point energy (SPE) calculations (Hay and Wadt, 1985).
Transition states were ascertained by vibrational frequency
analysis to possess a single mode along the reaction path with
only one imaginary frequency. Bulk polarity effects of the
active site in the protein environment were evaluated with the
polarizable continuum model (PCM) using a nonpolar solvent,
chlorobenzene (¢ = 5.697).

The “@IMggr species (whose occupation diagram and
Mulliken spin density are shown in Supplementary Figure 2
and Supplementary Table 3) involved in the SET process were
obtained by shifting one electron from the highest occupied
orbital of N-benzyl-N-cyclopropylamine (ocp) to the lowest
vacant orbital of porphyrin moiety (az,) of CpdlI on the reactant
complex (*@RC) (Li et al., 2006). Any attempt to optimize the
structure of 4(2)IMSET species will result in their collapse to the
ground state.

The kinetic isotope effect for the hydrogen abstraction process
was determined using Gaussian frequency data based on the
semi-classical Eyring equation (Melander and Saunders, 1987),
where the KIE is given as.

b\ | (6h-ck) - -ch)
E . =€exp | — RT

k denotes the reaction rate constant, G is the Gibbs free energy of
abstraction, R is the gas constant, T is the absolute temperature.

All data were collected in the Supplementary Material
document, while we discussed the highest-level results,
UB3LYP/B2//B1, in the text. Thus, the SPE B2//B1 value with the
zero point energy (ZPE) correction referred to E1, whereas E2
included the bulk polarity effects and ZPE corrections.

RESULTS AND DISCUSSION

The Inactivation Pathway
In retrospect, Hirao et al. recently investigated the mechanism-
based inactivation of cytochrome P450 by 1,1-dimethylhydrazine

(UMDH) (Hirao et al., 2013a), they examined four possible
reaction pathways including H-abstractions from the primary
amine moiety and the methyl moiety, as well as the direct
oxidations on two nitrogen atoms. Owing to the lower energy
barriers, they concluded that the H-abstraction from the N-
H bond of the primary amine moiety was the most favorable
pathway, on which our investigation is based.

As for the inactivation of P450 by BCA (Figure 2) which
involves the PCET mechanism, the substrate is initially bound
to CpdI through the N-H+~O hydrogen-bonding interaction,
the subsequent H-abstraction from the N-H bond results in an
amino radical intermediate (IM species). Owing to the newly-
formed hydrogen-bonding between O-H and N, dichotomous
behaviors are encountered at the following step. The amino
radical IM species could undergo either a traditional O-rebound
process to yield hydroxylamine which has been deemed to
be the precursor to oxime (Cerny and Hanzlik, 2005; Hirao
et al., 2013b), or a rapid ring-opening of the cyclopropyl group
forming a C-centered radical species, which is essential for the
enzyme inactivation and could be converted to 3HP via a further
oxidation.

On the exploration of the inactivation mechanism of P450
by BCA, two controversial mechanisms (II and III in Figure 1)
have been postulated by Guengerich (Macdonald et al., 1982) and
Hanzlik (Cerny and Hanzlik, 2006), respectively. Figure 3 shows
the energy profiles for the SET and PCET processes, accompanied
by the geometries of the involved key intermediates. First of
all, we evaluate the energy barriers of the SET process for both
quartet and doublet spin states through DFT calculations. It is
obvious that the SET energy barrier (IMggT, 31.0/38.2 kcal/mol
for the HS/LS) is much higher compared with the direct hydrogen
abstraction from N-H bond via a PCET mechanism (0.6/0.4
kcal/mol for the HS/LS). Such sharp energetic comparison
between SET and PCET processes definitely rules out the
former and favors the latter. On RC, two spin states are
nearly degenerated with the LS lying under the HS by -0.3/-
0.1 kcal/mol at the E1/E2 level. Intriguingly, the following
essential H-abstraction from the N-H bond of the secondary
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FIGURE 2 | Proposed mechanisms of H-abstraction and the following ring-opening/O-rebound processes of BCA by P450.

amine moiety proceeds through an extremely low energy barrier
(0.6/0.4 kcal/mol for the HS/LS at the E1 level, indicating an
involvement of two-state reactivity mechanism (Shaik et al.,
1998; Schroder et al., 2000; de Visser and Tan, 2008), which is
similar to our previous finding about the oxidation of 4-alkylated
DHPs (Li et al,, 2015) as well as that reported by Hirao et al.
(2013a) but different from that obtained by Rydberg and Olsen
(2011). Hirao et al. attributed the tiny energy barrier to weak
bond disassociation energy (BDE) of N-H bond rather than the
involvement of PCET mechanism, which has been proved in
our previous work. Whereas, in Rydberg’s work which studies
the P450-catalyzed hydroxylation of propan-2-amine, the energy
barrier of such H-abstraction was much higher, 12.6/11.6 kcal for
the HS/LS in the gas phase, such significant energetic discrepancy
is attributed to that the N-H bond BDE decreases when going
from primary to secondary amines (Lalevée et al., 2002; Luo,
2002). The inclusion of the bulk polar effect even changes the
H-abstraction into a barrierless process (—2.9/—2.7 kcal/mol for
the HS/LS). The IM species which comprises the N-centered
radical substrate and the ferryl-hydroxyl closed-shell porphyrin
(protonated CpdlII) is generated after the H-abstraction at the
N-H bond. Unlike the IMcy species in most P450-catalyzed
C-H bond hydroxylation which always lies upon the RCcy
species (Ogliaro et al., 2000; de Visser et al., 2002, 2004; Kumar
et al., 2003; Li et al., 2006; Olsen et al,, 2006; Wang et al,
2006, 2007a,b, 2010), the IM species in N-H bond activation
lies under the RC species by —7.7/—7.9 kcal/mol for the HS/LS
at the E1 level. That is because compared with the IMcy in
which the carbon radical interacts with the protonated Cpdll, the
OH~N hydrogen bonding in IM is quite significant for stabilizing
the amino radical, and consequently lowering the systematic
energy (Korzekwa et al., 1990; Jones et al., 2002; Olsen et al.,

2006). As mentioned above, the following step is dichotomous.
Through the novel ring-opening route, the N-centered radical
rapidly rearranges to a ring-opened C-centered radical that could
covalently bind to the amino residue within the active site, and
therefore inactivating the enzyme. The TS,y species is more
stable than the RC species in an energy of —3.6/—3.6 kcal/mol
at the EI level and —2.0/—1.8 kcal/mol at the E2 level for the
HS/LS, while lies 4.1/4.3 kcal/mol higher relative to the IM for the
HS/LS at the E1 level. Thus, the ring-opening process should be
the rate-limiting step on such hydrogen abstraction/ring-opening
route. Additionally, the relative “high” energy of the ring-opened
product PCiing (—13.4/—13.5 kcal/mol for the HS/LS at the E1
level) implies that it may be reactive and could be further oxidized
to 3HP. Alternatively on the conventional O-rebound route,
it would form hydroxylamine in a same manner as the well-
known C-H bond hydroxylation by CpdlI (Ogliaro et al., 2000;
de Visser et al., 2002; Kumar et al., 2003; Wang et al., 2006).
During the O-rebound process, the spin state order exchanges
with an energy barrier of 2.4/3.6 kcal/mol for the HS/LS at
the E1 level. Such energy barrier is higher than that of the
PCET process, thus making the O-rebound process the rate-
limiting step on this hydrogen abstraction/O-rebound route.
While in P450-catalyzed C-H bond hydroxylations (Ogliaro
et al., 2000; de Visser et al., 2002; Kumar et al., 2003; Wang
et al., 2006), the O-rebound process proceeds via a quite low
energy barrier, even it often becomes barrierless on the doublet
spin state. Rydberg et al. also reported the similar higher
rebound energy barrier in their recent investigation regarding
the P450-catalyzed hydroxylation of primary amines, such
distinct energetic discrepancy between C-H bond and N-H bond
hydroxylations was ascribed to different radical orientations and
the existence of strong O-H~N hydrogen-bonding interaction
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in the intermediate species (Rydberg and Olsen, 2011). On the
whole, the energy barrier of O-rebound process is significantly
higher than that of ring-opening process by 6-7 kcal/mol,
indicating that the hydrogen abstraction/ring-opening route
is prior to the hydrogen abstraction/O-rebound one. Such
conclusion also coincides with the observation of the major ring-
opened product, i.e., 3HP, in Hanzlik’s experiments (Cerny and
Hanzlik, 2006).

Geometrically on RC (see Figure 3), the H-O distance along
the reaction coordinate is 2.07/2.06 A for the HS/LS, thus
an N-H~O hydrogen-bonding interaction exists which might
be essential for the following step. Such hydrogen-bonding
interaction not only orientates the substrate, therefore facilitating

the H-abstraction from the N-H bond, but might weaken the
N-H bond in some degree, due to the larger electronegativity
of oxygen than nitrogen. On TS, the N-H distance (1.15/1.16
A for the HS/LS) is much shorter than H-O distance (1.36/1.34
A for the HS/LS), such transition states are asymmetric and
exhibit an significant “earlier” characteristic. Similarly in Hirao’s
work, the transition states of the H-abstraction from the N-H
bond were even much earlier, due to its shorter N-H distance
(1.04/1.06 A for the HS/LS) and longer H-O distance (1.76/1.71
A for the HS/LS).(Hirao et al., 2013a) On the contrary, the H-
O distance in P450-catalyzed H-abstraction from the C-H bond
was shorter (Ogliaro et al., 2000; de Visser et al., 2002; Kumar
et al., 2003; Wang et al., 2006), and thus corresponding to a
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“later” transition state compared with ours. As expected, the
“later” transition state in C-H bond H-abstraction with a higher
energy barrier follows the correlation between the transition state
and the energy barrier (Shaik et al., 2008; Kumar et al., 2013).
Additionally, along the reaction coordinate, the angle of the N-
H-O moiety is 167.3°/167.0°For the HS/LS, which is not as linear
as the C-H-O moiety in C-H bond H-abstraction. While on IM,
the newly-formed O-H~N hydrogen-bonding interaction with a
H-N distance of 1.88/1.89 A for the HS/LS, becomes stronger
than that in RC. Such strong hydrogen-bonding interaction, as
Rydberg concluded, results in the disadvantage of the following
O-rebound process (Rydberg and Olsen, 2011). Besides, the weak
nucleophilicity of nitrogen might somehow account for such
interference as well. On TS}, the Fe-O distance is 1.91/2.00 A for
the HS/LS, whereas the O-N distance is slightly longer (2.15/2.13
A for the HS/LS). Along the rebound reaction coordinate, the
angles of the Fe-O-N moiety is quite different for the quartet
(168.9°) and doublet (144.1°) states, the higher energy barrier
for the LS of this O-rebound process may be a consequence of
such bent TS geometry. Such distinct linearities of the Fe-O-
N moiety for HS and LS during the O-rebound process were
also obtained by Rydberg and Olsen (2011). Whereas, in C-
H bond hydroxylations (Ogliaro et al., 2000; de Visser et al.,
2002; Kumar et al., 2003; Wang et al, 2006), the transition
states of O-rebound process are not as symmetric as those in
N-H bond hydroxylations, the Fe-O distance (~1.8 A) is clearly
shorter than the O-C distance (~2.4 A), and as for the linearity,
the rebound transition states in N-H bond hydroxylation are
more bent, the angle of Fe-O-C moiety is approximate 158°For
the HS. On hydrogen abstraction/ring-opening route, the C;-
C3 (~1.55 A) distance does not increase until the IM species is
generated which involves an amino radical. On TS;ing, the C;-
Cs distance increases to 1.90A for both spin states, however the
O-H~N hydrogen-bonding distance remains almost permanent,
thus indicating the radical substrate is always anchored during
the ring-opening process.

Inspection of the spin density (Supplementary Table 2) on TSs
reveals a confusing result that the distribution on “substrate” is
0.92/-0.88 for the HS/LS, which is suspected exhibiting a PCET
character, even if the large KIE values (6.1/5.9 for the HS/LS)
supports the HAT mechanism. In retrospect, Hirao et al. obtained
the similar tiny energy barrier and distribution on TS1A in the
favorable N-HAT pathway, but they ruled out the involvement of
PCET mechanism eventually (Hirao et al., 2013a). Thus, to reveal
the genuine mechanism involved in the present H-abstraction
from N-H bond, the spin-natural orbitals (SNOs), which are
useful for distinguishing between the hydrogen atom transfer
(HAT) transition state and the proton-coupled electron transfer
transition state, have been analyzed for 4TS species (Figure 4). It
is obvious that two m-type lobes on both of the substrate nitrogen
atom and the oxidant oxygen atom are perpendicular to the N-
H-O axis, which is a typical feature of the PCET transition state.
This is similar to the findings of previous studies (Mayer et al.,
2002; Usharani et al., 2013; Hirao and Chuanprasit, 2015).

Furthermore, Figure 5 depicts the spin density on ferryl-oxo
(green line), “substrate” (red line) and “porpine+thiolate” (blue
line) moieties along the reaction coordinate in a stepwise manner.

4TS

FIGURE 4 | Single occupied spin-natural orbitals for transition state
species of the H-abstraction process.

As the hydrogen approaching the oxygen by every 0.05 A, the
spin density on “substrate” is decreasing from 0 to —1 gradually,
contrarily, that on “porphyrin+thiolate” is increasing from —1
to 0. Besides, the spin density on ferryl-oxo remains about 2 all
along. Inspection of Figure 5, it can be seen that the electron
transfer occurs at a H-O distance of 1.4 A with an obvious change
of spin densities on both “substrate” and “porphyrin+thiolate”
moieties. From Figure 3, we see that the H-O distance of the
transition state is 1.34 A. This indicates that the electron transfer
and the proton transfer are concerted but asynchronous. In other
words, the present N-H bond activation should be achieved via a
PCET(ET) mechanism as the findings of Usharani et al. (2013).

As mentioned by Cerny and Hanzlik (2005), cytochrome
P450 activity was not vanished completely but instead remained
25-30% during the incubation with BCA. Consequently, they
attributed this partial inactivation to that BCA reacted with
P450 in two reaction pathways (Supplementary Figure 1): a
conventional metabolic one on the methylene (-CH,-) and
cyclopropyl groups, respectively, and a novel inactivation one
on the heteroatom, on which our theoretical investigations are
based.

The Metabolic Pathway

Figure 6 depicts the mechanisms involved in the reactions on
the methylene (route A) and cyclopropyl (route B) groups of
BCA. Resembling each other, an initial hydrogen atom transfer
(HAT) occurs to form the radical and a ferryl-hydroxyl closed-
shell porphyrin complex which is unstable. The subtle geometric
feature of the radical moiety is responsible for the dichotomous
behaviors of the reactions in the second step, which are
determined by the action of the radical or the newly-generated
hydroxyl group as shown in Figure 7. Specifically, when the
hydroxyl rotates independently, it will generate carbinolamine
via a direct O-rebound process, while the rotation of the
hydroxyl and the radical is coupled, an unexpected enamine
product will be produced via another HAT process from the
adjacent heteroatom (the overall reaction is a dual hydrogen
abstraction process, DHA). The competitive DHA mechanism is
also a conventional mechanism involved in the P450-catalyzed
cholesterol side-chain cleavage reaction and other oxidations
(Vanlier and Rousseau, 1976; Sono et al., 1996; Kumar et al., 2004;
Oh et al,, 2005; Wang et al., 2007b; Ji et al.,, 2015).
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FIGURE 5 | Diagram of group spin density during the H-abstraction
from nitrogen.

A Reaction on the methelene group

Ph\_NJ>
= 4
Ph J> Ph_ J> H" oH
o N""’H o8 N""’H (i) O-rebound +3
H H\ H ———— —Fé—
(i) \/ (i) |
o H SH N
o g H-abstraction |+4 Ph
—F m— T e e F g — —
I | ) >=N
SH SH H,0
L — &
(ii) H-abstraction |
SH
B Reaction on the cyclopropyl group
_—Ph
Ph Ph [>‘_N""’H
—
N"”’H D__N{_ ) OH
H\ H (i) O-rebound‘ _F:g
(i)\/zi) |
o) OH SH
LF”M H-abstraction _El +4 | Ph
| N D=n"
SH SH N
H,O
—Fé
(i) H-abstraction |
SH

FIGURE 6 | Proposed mechanisms of hydroxylation and dual hydrogen
abstraction (DHA) on both methylene (route A) and cyclopropyl (route B)
groups of BCA by P450.

Figure 8 shows the energy profiles for both reactions on routes
A and B accompanied by the geometries of the key intermediates
involved. On RC, the high-spin quartet state (HS) and the low-
spin doublet state (LS) are nascent from the degenerate states of
CpdlI, with the LS lying 0.1/0.2 kcal/mol lower under the HS on
route a/b in the gas phase. The energy differences are eliminated
by the inclusion of bulk polar effect.

On route A, the energy barrier of the rate-limiting step, which
refers to HAT process, is 5.1/5.0 kcal/mol for the HS/LS in the gas

A Reaction on the methylene grou > ) SIS
y group ;»a P .,Qe

B Reaction on the cyclopropyl group B R

TG
oo e mare
: 3‘@9

FIGURE 7 | Dichotomous reaction routes after HAT process on the
methylene (route A) and cyclopropy! (route B) groups.

phase, which increases to 6.3/5.2 kcal/mol when bulk polar effect
is included. As discussed above, the following step is competitive
and depends on the rotation of the hydroxyl and the radical.
Once after the barrierless O-rebound process, the carbinolamine
(—57.2/—58.1 kcal/mol for the HS/LS) is produced, which might
subsequently decompose to benzaldehyde and cyclopropylamine,
probably in a non-enzymatic environment assisted by water
molecule. By contrast, the DHA process, in which the second
H-abstraction from nitrogen atom is also barrierless, is a more
exothermic process due to the lower energy (—61.6/—64.3
kcal/mol for the HS/LS) of enamine product complex (PC).
Along the C-H-O reaction coordinate, the C-H distance is
1.27/1.21 A for the HS/LS which is shorter than 1.33/1.42 A
of the H-O distance, and consequently making >TS an earlier
transition state compared to *TS. Inspection of the spin density
(Supplementary Table 6) reveals that, for the HS/LS, the spin
density populated on “substrate” (BCA-H moiety) is 0.53/—0.35,
while “porphyrin+thiolate” moiety holds 0.45/—0.48. Thus, the
TS species are deemed to exhibit an “HAT-type” character. In
addition, the semi-classical Eyring KIE value (see Computational
methods above) for each state is 5.9/4.5, which is relatively large
and supports the HAT mechanism.

Whereas on route B, there are still a few discrepancies
compared to those on the similar route A. The energy barrier
of the rate-limiting step (6.2/5.7 kcal/mol in the gas phase and
7.0/5.8 kcal/mol in solvent for the HS/LS) is about 1 kcal/mol
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higher than that on route A. However, given that the tiny
difference of the energy barriers between these two reactions,
they probably occur competitively. Alternatively on route B, the
carbinolamine product is generated via a more exothermic
HAT/O-rebound process compared to the competitive
DHA process. The carbinolamine from this route would
undergo following decomposition to yield cyclopropanone and
benzylamine identified in Hanzlik’s experiments (Cerny and
Hanzlik, 2005, 2006). Geometrically, the *TS species is the only
one that possesses a “later” transition state geometry in both
reactions, in which C-H distance (1.31 A) is longer than H-O
distance (1.24 A).

CONCLUSION

For decades, the mechanism-based inactivation role of N-benzyl-
N-cyclopropylamine to cytochrome P450 has been attracting
great interests. Theoretical investigation on the way they function
is contributory to clinical drug design. Thereby we performed
DFT calculation on P450-catalyzed BCA reaction, in which it
proceeded on dichotomous metabolic and inactivation pathways.
In metabolic pathway, besides the carbinolamine, which is
the precursor to the product identified experimentally, an
unexpected enamine product was formed via the competitive
DHA route switched by the coupled rotation of the radical and
hydroxyl group. In inactivation pathway, the SET process was
invalidated for its high energy barrier. Whereas, an amino radical
was formed after the initial H-abstraction from nitrogen atom,
the energy barrier involved was 0.6/0.4 kcal/mol for two spin
states, and then dichotomous behaviors were encountered again.
Owing to the steric hindrance caused by the hydrogen-bonding
between O-H and N on IM, the reaction would primarily proceed
through the rapid ring-opening rather than the O-rebound

process to generate a C-centered radical species. Such carbon
radical species may not only subsequently convert to 3HP,
which was identified as the major product experimentally, but
essentially account for the inactivation by covalent binding to
amino residue. Intriguingly, in addition to the extremely low
energy barrier of the H-abstraction in inactivation pathway, the
spin density distribution on “substrate” moiety is approaching
=+1, exhibiting several PCET characters. Furthermore, the SNOs
for the transition state in such H-abstraction together with the
analysis of spin densities on “substrate” and “porpine+thiolate”
moieties along the reaction coordinate definitely demonstrate a
PCET(ET) mechanism.
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