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This work describes a novel approach based on advanced molecular similarity to predict

the sweetness of chemicals. The proposed Quantitative Structure-Taste Relationship

(QSTR) model is an expert system developed keeping in mind the five principles

defined by the Organization for Economic Co-operation and Development (OECD) for the

validation of (Q)SARs. The 649 sweet and non-sweet molecules were described by both

conformation-independent extended-connectivity fingerprints (ECFPs) and molecular

descriptors. In particular, the molecular similarity in the ECFPs space showed a

clear association with molecular taste and it was exploited for model development.

Molecules laying in the subspaces where the taste assignation was more difficult

were modeled trough a consensus between linear and local approaches (Partial Least

Squares-Discriminant Analysis and N-nearest-neighbor classifier). The expert system,

which was thoroughly validated through a Monte Carlo procedure and an external set,

gave satisfactory results in comparison with the state-of-the-art models. Moreover, the

QSTR model can be leveraged into a greater understanding of the relationship between

molecular structure and sweetness, and into the design of novel sweeteners.

Keywords: sweetness, QSAR, molecular descriptors, classification, expert system

INTRODUCTION

Taste chemistry has become an important field of research for many disciplines, especially food
chemistry. In fact, there exists a keen interest in research related to taste perception, since
developments inmolecular biology and biochemistry have provided the background for sweet-taste
chemistry. Taste evocation is the result of soluble chemicals with different osmotic, endothermic
and exothermic properties that interact with biological membranes on the taste buds on the tongue
in different ways. Thus, the different tastes could be separated on the basis of the nature of such
reactions; however, the mechanisms of how these interactions occur are not completely elucidated.
Five accepted basic tastes exist: sweetness, bitterness, saltiness, sourness, and umami (also known
as savory; Damodaran et al., 2008).

Li et al. (2002) described for the first time the sweet taste chemoreceptor, which is a G protein-
coupled receptor (GPCR) constituted by the T1R2 and T1R3 subunits. This sweet chemoreceptor
is able to recognize sweet stimuli produced by distinct sweeteners, such as carbohydrates, artificial
sweeteners, amino acids, peptides, and proteins. Subsequently, Morini et al. (2011) proposed the
use of the term “receptor-mediated taste” instead of “basic taste” due to the fact that the tastes
are sensed by means of specific receptors and other mechanisms not necessarily mediated by the
receptors. Thus, the human perception of these tastes varies from person to person, and it may be
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related to slight differences in psychology, anatomy, receptor
function, concentration of the taste, or interaction with other
substances.

Among the receptor-mediated tastes, sweetness is considered
as the most important in a wide variety of foods, since it produces
a pleasant sensation. Sucrose, the most common sweetener, is
used as the international standard for measuring the sweetness of
chemical compounds. Sucrose imprints a clean-sweet sensation
without other aftertastes even at high concentrations, and it
is obtained from economic renewable sources (sugar cane and
sugar beets). Unlike the sweet taste, bitterness is usually perceived
as an unpleasant receptor-mediated taste, although in some
products such as tea, cocoa, coffee, beer, tonic water, or olives,
the bitter taste is considered desirable. In this case, the quinine
alkaloid is used as the standard for measuring relative bitterness.
It is frequently used as a food additive. Finally, tastelessness
could be defined as the lack of taste (insipid) or the loss of a
perceived taste (e.g., sweet, bitter, sour, salty; Damodaran et al.,
2008). Since both diabetic/dietetic medicines and foods should
contain low-calorie sweeteners, preferably with a clean-taste, the
pharmaceutical and food industries deal with the rational design
and synthesis of potential compounds to be used as alternative
sweeteners (Damodaran et al., 2008; Morini et al., 2011).

During the synthesis of new sweeteners, some variations
in the chemical structure of a scaffold may change sweet
molecules to non-sweet chemicals (tasteless, bitter, sour, and
salty; Damodaran et al., 2008). In order to deal with this problem,
scientist have been using approaches based on the Quantitative
Structure-Activity/Property Relationships (QSAR/QSPR) to
predict the sweetness of compounds to be synthesized. The
QSAR/QSPR theory is an effective tool to build mathematical
relationships between activities/properties of substances and
their chemical structures, which is encoded by means of
molecular descriptors (Todeschini and Consonni, 2009).
Several Quantitative Structure-Taste Relationships (QSTRs)
for predicting the sweetness of chemicals were proposed in
the past years and are summarized in Table 1. The earlier
work included compounds such as perillartine and aniline
derivatives (Iwamura, 1980; van der Wel et al., 1987), sweet and
bitter aldoxime derivatives (Kier, 1980), perillartine derivatives,
aspartyl dipeptides, and carbosulfamates (Takahashi et al.,
1982, 1984; Miyashita et al., 1986a,b; Okuyama et al., 1988),
as well as sulfamate derivatives (Spillane and McGlinchey,
1981; Spillane et al., 1983, 1993, 2000, 2002, 2003, 2006, 2009;
Spillane and Sheahan, 1989, 1991; Drew et al., 1998; Kelly et al.,
2005). Moreover, two QSTR models to discriminate sweet,
tasteless and bitter compounds have been proposed (Rojas et al.,
2016a). Recently, Chéron et al. (2017) performed a predictive
model for the discrimination of sweet and bitter molecules and
the subsequent use of sweet compounds for predicting their
relative sweetness (RS) property. In addition, some other recent
studies remark the importance of the conformation-independent
QSPR models for predicting the RS of sweet molecules (Rojas
et al., 2016b; Ojha and Roy, 2017). Additionally, several recent
scientific reviews regarding the applications of QSTRs are also
available (Walters, 2006; Spillane and Malaubier, 2014; Rojas
et al., 2016c).

The purpose of the work presented here was to build a
QSTR-based expert system for the prediction of sweetness using
a dataset of 649 molecules (435 sweet, 133 tasteless, and 81
bitter chemicals). To the best of our knowledge, this is the
largest database of sweet chemicals ever used for predicting the
sweetness of substances. The proposed expert system combines
a structural similarity analysis and two QSTR models. Similarity
structural analysis is based on extended-connectivity fingerprints
(ECFPs), while the QSTR models are based on molecular
descriptors (MDs) and N3 (N-nearest neighbors) and PLSDA
(partial least squares discriminant analysis) classifiers. The
proposed QSTR-based expert system was developed keeping
in mind the five principles defined by the Organization for
Economic Co-operation and Development (OECD) to make it
applicable (OECD, 2007). The predictive ability of the model was
properly evaluated by means of appropriate internal and external
validation procedures. In addition, the chemical information
of the molecular descriptors included in the QSTR models
was interpreted and the model applicability domain properly
defined.

MATERIALS AND METHODS

Experimental Dataset and Data Curation
Each chemical compound can be experimentally associated
with a predominant taste such as sweet, bitter, sour, and salty
standards by trained panelists using a sip and spit method
(Spillane et al., 1993, 2009). The initial experimental database,
which is named TastesDB, was comprised of 727 chemicals
retrieved from several scientific publications (refer to Table S1
for details of these publications). Each substance was associated
with an experimental taste class (sweet, tasteless, or bitter).
In this study, the tasteless and bitter categories were merged
into a general non-sweet class, because the major scientific
interest was in the identification of sweet compounds rather
than bitter or tasteless chemicals. In fact, several studies on
sweetness and taste have been conducted to discover and
describe natural and synthetic sweeteners, sweetness potentiators
and bitter blockers, to propose methods for characterizing
different aspects of consumers’ perception of sweetness. These
perceptions are crucial aspects to be considered in order to
improve the flavor, sweetness, texture, appearance, and physical
properties in the development of food products (Damodaran
et al., 2008).

The dataset was curated to remove molecules associated with
wrong or problematic molecular structures, according to the
following steps:

1. Pentadin, thaumatin, monellin, curculin, miraculin, brazzein,
and mabinlin sweet proteins, were removed;

2. Disconnected molecular structures (salts), such as
tripotassium glycyrrhizinate or aspartame-acesulfame
salts, were retained;

3. For each molecule, the canonical Simplified Molecular Input
Line Entry System (SMILES) strings were obtained from the
designed molecular structure;
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TABLE 1 | Summary of the performances of the QSTR classification models reported in the literature for predicting sweet taste of molecules.

Models Tastes Classes Method d Ntrain Ntest NERtrain NERcv NERtest

Iwamura, 1980 Sweet and bitter 2 SLR 3 49 –a – – –

Kier, 1980 Sweet and bitter 2 LDA 2 20 9 0.850 – 0.775

Spillane and McGlinchey,

1981

Sweet and non-sweet 2 Plot 2 35 12 0.914b – 0.917b

Takahashi et al., 1982 Sweet and bitter 2 LLA 3 22 – 1 – –

kNN 6 22 – 0.909 – –

Spillane et al., 1983 Sweet and bitter 2 LDA 3 33 – 0.807 – –

Takahashi et al., 1984 Sweet and bitter 2 LDA 3 22 9 1 – 0.775

2 0.955 – 0.775

Miyashita et al., 1986a Sweet and non-sweet 2 SIMCA 4 50 – 0.798 – –

Miyashita et al., 1986b Sweet and bitter 3 SIMCA 5 91 – 0.840 – –

Okuyama et al., 1988 Sweet and non-sweet 2 SIMCA 1c 25 – 0.868 – –

20 – 0.808 – –

Spillane and Sheahan,

1989

Sweet and non-sweet 2 LDA 3 23 – 0.642 – –

Spillane and Sheahan,

1991

Sweet and non-sweet 3 Plot 2 57 – 0.860 – –

2 LDA 3 33 – 0.848b – –

23 – 0.870b – –

Spillane et al., 1993 Sweet and non-sweet (bitter, bitter

followed by sweet aftertaste, sour

and aniline- or hydrocarbon-like taste)

2 Plot 2 40 – 0.833 – –

Drew et al., 1998 Sweet and bitter 3 DA 11d 50 – 1 – –

Spillane et al., 2000 Sweet and non-sweet 2 LDA 4 101 – 0.665 – –

QDA – 0.801 – –

CART 3 – 0.650 – –

Spillane et al., 2002 Sweet and bitter 2 Plot 2 23 – 0.862 – –

LDA 4 – 0.850 – –

QDA – 0.900 – –

Spillane et al., 2003 Sweet and non-sweet 2 LDA 4 132 – 0.693 – –

QDA – 0.683 – –

CART 3 – 0.815 – –

Kelly et al., 2005 Sweet 3 LDA 8 75 8 0.547b 0.413b 0.500b

QDA 0.773b 0.493b 0.250b

CART classification 0.773b – –

CART regression

(R2
= 0.792)

7 0.813b – 0.750b

Spillane et al., 2006 Sweet 3 CART classification 6 82 – 0.753 – –

7 82 – 0.580 – –

6 70 12 0.810 – 0.583b

CART regression

(R2 = 0.870)

7 70 12 0.807 – 0.909

Spillane et al., 2009 Sweet and non-sweet (bitterness,

blandness or tastelessness)

2 LDA 2 58 – 0.655b 0.603b –

2 QDA 3 58 – 0.759b 0.603b –

2 CART 6 48 10 0.950 – 0.700

3 CART 6 48 10 0.908 – 0.611

Rojas et al., 2016a Sweet and tasteless 2 kNN 9 396 170 0.866 0.874 0.753

Sweet and bitter 4 356 152 0.927 0.921 0.901

Chéron et al., 2017 Sweet and bitter 2 RF 5 796 191 0.997 – 0.902

CART, classification and regression tree; d, number of descriptors; DA, discriminant analysis; kNN, k-nearest neighbors; LDA, linear discriminant analysis; LLA, linear learning machine;

Ntrain, number of molecules in the training set; Ntest, number of molecules in the test set; SIMCA, soft independent modeling by class analogy; QDA, quadratic discriminant analysis;

RF, Random Forest; SLR, simple linear regression.
aNot available.
bCalculated as the ratio of correctly classified molecules to the total number of molecules (Accuracy).
cNumber of components for SIMCA analysis.
dNumber of components considering for the DA analysis.
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4. Tasteless and bitter classes were merged into a non-sweet class,
as we wanted to focus on the prediction of sweetness vs.
non-sweetness;

5. Compounds were merged according to their SMILES strings
and then multiple-valued compounds were verified for the
agreement between the annotated tastes:

a. Stereoisomers belonging to different taste classes
(ambiguous molecules) were excluded (e.g., D-Arginine
and L-Arginine, which are experimentally sweet and bitter
compounds, respectively).

b. Amongst sweet molecules with the same SMILES strings,
only one was retained (e.g., maltose and lactose).

The curated TastesDB dataset consisted of 649 molecules
divided into two subsets of 435 sweet and 214 non-sweet
(133 tasteless and 81 bitter) compounds, respectively (Table
S1). QSTR studies regarding the prediction of the sweetness
receptor-mediated taste were conducted by considering only
homogeneous families of sweeteners (Iwamura, 1980; Kier,
1980; Spillane and McGlinchey, 1981; Takahashi et al., 1982,
1984; Spillane et al., 1983, 1993, 2000, 2002, 2003, 2006,
2009; Miyashita et al., 1986a,b; van der Wel et al., 1987;
Okuyama et al., 1988; Spillane and Sheahan, 1989, 1991;
Drew et al., 1998; Kelly et al., 2005), limiting their ability to
predict the sweetness of other kinds of sweeteners. In order to
generalize the predictiveness of the QSTR-based expert system,
we used a dataset that covered a large chemical space of both
sweet and non-sweet molecules. For example, derivatives of
sucrose, abruside, acesulfame, isovanillic, mogroside, periandrin,
saccharin, rebaudioside, cyclamate, suosan, aspartame, aspartyl
dipeptides, glycyrrhizin, as well as several other heterogeneous
compounds were included.

Molecule Representation
Structural characteristics of molecules were represented by
means of both binary fingerprints and molecular descriptors.
Binary fingerprints provide a holistic view of the molecular
structure in terms of the presence/absence of identifiedmolecular
fragments. In particular, ECFPs (Rogers and Hahn, 2010) were
used to represent molecular structures taking into account the
information of the circular atom neighborhoods. ECFPs can be
rapidly calculated and capture the common structural features
of molecules by representing the presence/absence of particular
substructures in a binary manner. For each molecule, a binary
vector with 2,048 bits was calculated by using 2 bits per structural
pattern and a maximum pattern length of 2.

In addition, classical molecular descriptors (MDs)
were calculated, which are numbers that encode specific
chemical/structural information of molecules (Todeschini and
Consonni, 2009). The calculation of molecular descriptors on
disconnected structures has been widely studied during the last
years (Mauri et al., 2016). In the study presented here, the Dragon
7 approach (Kode srl, 2016) has been chosen, which consists
of the application of the original definition and algorithm of
the considered descriptors. If the original algorithm cannot
be directly applied on disconnected structures, the Dragon
approach provides a modification of the descriptor’s original

definition to allow the calculation since such modification is
consistent with the theoretical sense of the descriptor.

In both cases, a two-dimensional molecular representation
was selected instead of a geometrical representation to avoid
irreproducible 3D structure optimizations. 3D descriptors could
add valuable chemical information; however, since they require
the geometrical optimization of molecules, the descriptor values
can be affected by differences between 3D conformers with
similar energies (Pearlman, 1998). In addition, the search
of the minimum in the conformational energy hypersurface
of molecules by means of an adequate optimization method
involves high computational costs and long time. For this reason,
the use of a conformation-independent molecular representation
emerges as an alternative when dealing with the prediction of the
sweetness and the relative sweetness (Rojas et al., 2016a,b; Chéron
et al., 2017; Ojha and Roy, 2017).

Multidimensional Scaling
Multidimensional scaling (MDS; Kruskal, 1964) is a well-
known multivariate method for unsupervised data exploration.
MDS reconstructs similarities/dissimilarities between pairs of
molecules by projecting data in a reduced hyperspace. In this way,
data interpretation is facilitated. After the selection of a suitable
number of dimensions to consider, a scatter plot of molecules
provides a visual representation of the projected distances and
can be used to analyze the relationships between chemicals as well
as to identify clusters.

Classification Models
Since sweetness is a qualitative discrete response, classification
approaches were used to establish mathematical relationships
between the chemical/structural features of molecules and the
modeled classes (sweet and non-sweet).

Partial Least Squares Discriminant Analysis (PLSDA)
PLSDA (Wold et al., 2001) is a well-known classifier that
combines the properties of partial least squares regression (PLS2-
based method) with the linear discrimination capability of a
classification technique. In brief, this analysis finds relationships
between the matrix of molecular descriptors and the class
vector by calculating latent variables (LVs), which are orthogonal
linear combinations of the original variables (descriptors). When
dealing with PLSDA, molecular descriptors were autoscaled.

N-Nearest Neighbors (N3)
The recently proposed N3 classifier (Todeschini et al., 2015)
is based on local molecular similarities. Thus, a molecule
is classified by taking into account the class to which the
most similar molecules (i.e., neighbors) belong. The neighbor
contribution is weighted by the molecule similarity rank, whose
role is modulated by an alpha parameter to be optimized. Range
scaling and the average Euclidean metric were used when dealing
with the N3 classifier.

The optimal number of latent variables (PLSDA) and the
alpha parameter (N3) were optimized according to the lowest
classification error in cross-validation.
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Reduction and Selection of Molecular
Descriptors
The V-WSP unsupervised variable reduction method (Ballabio
et al., 2014) was used to reduce the presence of multicollinearity,
redundancy, and noise in the initial pool of molecular
descriptors. This method is a modification of the algorithm
proposed by Wootton, Sergent, and Phan-Tan-Luu (WSP)
for the selection of a subset of well-distributed points
for design of experiments (DOE). In brief, V-WSP selects
a subset of descriptors from the pool of candidates, in
such a way as to have a minimal correlation from each
descriptor in the defined multidimensional space. In addition,
one of the fundamental steps of QSAR studies is the
supervised selection of descriptors in order to build a
parsimonious and predictive model based on a subset of
informative descriptors. To this end, the Genetic Algorithms-
Variable Subset Selection (GA-VSS) technique (Leardi and
González, 1998) was coupled with both PLSDA and N3
classification methodologies in order to find the optimal subset
of molecular descriptors. The essence of the GA-VSS is to
start from an initial random population of chromosomes (i.e.,
models), which are binary vectors indicating the presence
or absence of a given descriptor within the model. Then,
an evolutionary process is performed and new chromosomes
are generated by combination of chromosomes of the initial
population (crossover) and/or random inclusion/exclusion of
variables (mutation). If the new models have a reduced
classification error, they are included in the population of
chromosomes at the expenses of the worst ones, which are
discarded.

Model Validation
Models were validated by means of an external test set
constituted by 30% of the total number of molecules. Since
the initial dataset was populated by a significant number
of sweet substances, test molecules were randomly selected
by maintaining the class proportion. Thus, the training set
included 488 molecules (327 sweet chemicals and 161 non-
sweet chemicals) and the test set was comprised of the
remaining 161 molecules (108 sweet chemicals and 53 non-sweet
chemicals). This partition guaranteed similar representation
of the modeled classes. Training molecules were used for
the supervised selection of molecular descriptors and the
calibration of the QSTR-based expert system, while test molecules
were used only to evaluate its prediction ability. A cross-
validation protocol based on five cancelation groups divided
in venetian blinds was used during the GA-VSS procedure
(Ballabio and Consonni, 2013). The QSTR-based expert system
was further validated by Monte Carlo (leave-many-out) random
sub-sampling validation (Krakowska et al., 2016). The Monte
Carlo approach defines many subsets by drawing samples in
a random way from the available classes, based on a chosen
number of iterations. Therefore, in each iteration, molecules
were randomly divided into training (80%) and evaluation
(20%) sets. The QSTR-based expert system was calibrated each
time on the training molecules and then used to predict

the class of evaluation molecules. The performance of the
Monte Carlo validation was finally assessed by comparing
the cumulative predictions vs. the experimental classes of test
molecules.

Quality of the classification models was evaluated by means
of sensitivity (Sn) and specificity (Sp) of classes (Ballabio and
Consonni, 2013). Sensitivity of the sweet class was calculated as
the ratio of the number of sweet compounds correctly classified
to the total number of sweet compounds, while the specificity
of the sweet class was calculated as the ratio of the number of
non-sweet compounds correctly classified to the total number
of non-sweet compounds. Since it is a two-class problem, the
sensitivity of the sweet class corresponds to the specificity of the
non-sweet class and vice versa. In addition, the non-error rate
(NER) was calculated as the average of sensitivity values of sweet
and non-sweet classes (Ballabio and Consonni, 2013). NER was
used instead of Accuracy (which is the ratio of correctly classified
molecules to the total number of molecules) to better estimate
classification performance in the presence of unbalanced classes;
non-sweet molecules are in fact less represented and constitute
the 33% of the total number of molecules only.

Software
HyperChem software (Hypercube Inc.)1 was used for
representing the molecular structure, and the SMILES strings
were obtained by using Babel software (O’Boyle et al., 2011).
Molecular descriptors and extended connectivity fingerprints
were calculated by means of DRAGON version 7 (Kode srl,
2016), while data curation and filtering of the dataset were
carried out by means of a KNIME workflow written by the
authors (Berthold et al., 2008). Data analysis and model
calculations were performed in a MATLAB environment
(MathWorks)2. The V-WSP variable reduction toolbox (Ballabio
et al., 2014) was used to perform descriptors reduction, the
classification toolbox for MATLAB (Ballabio and Consonni,
2013) was used for model calibration and the PCA toolbox for
MATLAB (Ballabio, 2015) was used for both multidimensional
scaling and molecular descriptors analysis. Genetic Algorithms
variable subset selection was performed in MATLAB by means
of code written by the authors. Classification toolbox and PCA
toolbox are available at the Milano Chemometrics and QSAR
Research Group website (http://michem.disat.unimib.it/chm/
download/softwares.htm).

RESULTS AND DISCUSSION

Clustering Sweet and Non-sweet
Chemicals
The 488 training molecules were initially used to perform
a structural similarity exploratory analysis based on their
extended connectivity fingerprints. To this end, molecular
similarities were quantified by means of the Jaccard-Tanimoto
similarity coefficient (Jaccard, 1912) and used to produce a

1Hypercube Inc. “HyperChem”. http://www.hyper.com
2MathWorks “MATLAB”. http://www.mathworks.com
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multidimensional scaling (MDS) of the dataset. Figure 1 presents
the MDS scores of the first two coordinates.

Three clusters (S1, S2, and C3) were identified in the
MDS space, corresponding to three groups of molecules with
specific structural similarities. Cluster S1 was comprised of 143
sweet molecules (Table S2), which have a common scaffold, as
represented in Figure 2. Themain characteristic of thismolecular
scaffold is the presence of the aspartic amino acid. However,
other sweet chemicals with the same scaffold, but also containing
benzene rings, are located in cluster C3, such as aspartame
and N-(L-aspartyl)-1,1-diaminoalkane 5, along with some special
cases of aspartyl derivatives (e.g., super aspartame, cyanoarylurea
aspartame, aspartic acid fenchyl ester, and aspartame-acesulfame
salt). The 107 molecules grouped in Cluster S2 (Table S3)
included 100 sweet compounds (e.g., sucrose) and just 7 non-
sweet compounds, such as the 6-Chloro-6-deoxy-D-galactose
(tasteless), as well as a limited number of molecules exhibiting
bitter taste (e.g., picrocrocin, methyl-α-D-2,6-dideoxy-gluco-
pyranoside, methyl-α-D-3,6-dideoxy-gluco-pyranoside, methyl-
α-D-4,6-dideoxy-gluco-pyranoside, and solanine). Finally, the
remaining 399 chemicals and, in particular, the majority of non-
sweet compounds are grouped in cluster C3 (Table S4).

Since the structural similarity analysis provided a satisfactory
grouping of chemicals in terms of their taste, a QSTR-based
expert system was considered as a suitable strategy to optimize
the discrimination of sweet and non-sweet molecules. This
system was structured as follows: the first step consisted of the
identification of the cluster associated with a target molecule,
using the ECFP-based structural similarity analysis; for example,
if the molecule was assigned to cluster S1 or S2, it was likely
to be predicted as sweet molecule. The second step consisted of
the application of the QSTR models based on specific molecular
descriptors which were calibrated using molecules included in
cluster C3 to enhance the class discrimination in this chemical
space.

QSTR Models Based on Molecular
Descriptors
The 297 training molecules belonging to cluster C3 were used
to calibrate two different QSTR models based on the N3 and
PLSDA approaches. The molecules were described by 3,763
conformation-independent Dragon descriptors. Descriptors with
constant and near-constant values or those descriptors affected
by missing values were excluded from the analysis. Moreover,
to reduce the potential overfitting of the models due to
highly correlated variables, the V-WSP unsupervised variable
reduction approach was applied to further exclude another 1,255
descriptors at a correlation threshold of 0.95. The remaining
875 molecular descriptors were submitted to the subsequent
supervised selection. This was carried out in two sequential
steps: (1) GA-VSS (coupled with both N3 and PLSDA classifiers)
was initially performed separately on each of the 18 blocks of
molecular descriptors, and (2) the descriptors selected from each
block were merged and a subsequent GA-VSS was carried out.
The selection of the final sets of descriptors was performed
by taking into account the NER classification parameter, as
well as a balanced ratio between specificity and sensitivity of
the sweet class. Two final models, each one based on six

FIGURE 2 | Common chemical scaffold of sweeteners grouped in cluster S1.

FIGURE 1 | MDS plot of the two first coordinates (explained variance equal to 69.85%) for the training set molecules. Sweet molecules are marked with blue circles,

and non-sweet molecules are market with cyan circles.
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conformation-independent descriptors, were obtained with an
optimal alpha of 1.5 for N3 and one latent variable (LV) for
PLSDA.

The classification performance of the N3 model in fitting
(NER = 0.748, Snsweet = 0.764, Spsweet = 0.732) and cross-
validation (NER = 0.738, Snsweet = 0.750, Spsweet = 0.726), and
the performance of the PLSDA classifier in fitting (NER= 0.722,
Snsweet = 0.636, Spsweet = 0.809) and cross-validation (NER
= 0.711, Snsweet = 0.607, Spsweet = 0.815) suggest a suitable
capability of these models for predicting sweet taste inside cluster
C3. The comparable performance in fitting and validation of the
models indicate that these classifiers exhibit an overall balanced
discrimination between the sweet and non-sweet classes with
absence of potential overfitting. Descriptor details of the N3 and
PLSDA models are shown in Table 2.

A graphical interpretation of the mechanistic effect of each
descriptor in predicting the sweetness in the N3 models is not
feasible because it is a local non-linear classifier; however, we
attempted to explain the role of descriptors according to their
chemical meaning. CATS2D_04_AL, CATS2D_05_AL (Renner
et al., 2006) represent the frequency of hydrogen-bond acceptors
and lipophilic atoms at a topological distance of 4 and 5
bonds, respectively. They indicate that sweetness of molecules
may be attributed to the molecular hydrophobicity or the
hydrophilic-lipophilic balance (HLB; Birch et al., 1994; Rojas
et al., 2016a). Thus, the hydrophilic group works as an anchor
allowing the fitting of the hydrophobic zone of the sweetener into
hydrophobic binding sites in the sweet taste receptor (Yuasa et al.,
1994). In fact, the presence of lipophilic atom pairs at a distance of
5 bonds (CATS2D_05_LL) already proved relevant in describing

TABLE 2 | Details of the conformation-independent Dragon molecular descriptors

included in the N3 and PLSDA models in cluster C3.

Name Description Block Model

F03[N-O] Frequency of N—O at

topological distance 3

2D Atom Pairs N3

Uindex Balaban U index Information indices

CATS2D_04_AL CATS2D

Acceptor-Lipophilic at lag

04

CATS 2D

CATS2D_05_AL CATS2D

Acceptor-Lipophilic at lag

05

C-026 R–CX–R Atom-centerd

fragments

nCconj Number of non-aromatic

conjugated C(sp2)

Functional group

counts

F03[C-S] Frequency of C—S at

topological distance 3

2D Atom Pairs PLSDA

MATS1s Moran autocorrelation of lag

1 weighted by I-state

2D autocorrelations

CATS2D_02_DN CATS2D Donor-Negative at

lag 02

CATS 2D

CATS2D_04_AP CATS2D Acceptor-Positive

at lag 04

ARR Aromatic ratio Ring descriptors

D/Dtr07 Distance/detour ring index

of order 7

molecular relative sweetness (Rojas et al., 2016b). In addition,
sweetness may also be influenced by the number of nitrogen
and oxygen atom pairs (Carhart et al., 1985) at a topological
distance of 3 bonds in the molecule (F03[N-O]) (Rojas et al.,
2016a). Finally, the nCconj descriptor [number of non-aromatic
conjugated carbon (sp2)], BalabanU index (Balaban and Balaban,
1991; which relates to the degree of branching of the molecule)
and the number of aromatic carbons bonded to two aromatic
carbon and one electronegative atom (O, N, S, P, Se, or halogens)
(C-026) (Ghose et al., 1998) are also important for predicting the
sweetness in the local non-linear N3 classifier.

Considering the PLSDA classifier, analysis of the model
coefficients for the sweet class suggests that sweetness can be
described by the CATS2D_04_AP, CATS2D_02_DN, and F03[C-
S] descriptors. Figure 3 shows the coefficients of descriptors
describing the sweet molecules. The selected CATS2D descriptors
encode the presence of (1) pairs of hydrogen-bond donors (D)
and negatively charged atoms (N) at a topological distance of 2
(CATS2D_02_DN) and (2) pairs of bond acceptors (A) (i.e., all N
or O with at least one available lone pair electron) and positively
charged atoms (P) separated by 4 bonds (CATS2D_04_AP). In
fact, the presence of the positive-negative pharmacophores in
the scaffold at a topological distance of 2 bonds was introduced
for predicting the relative sweetness of molecules (Rojas et al.,
2016b). F03[C-S] suggests that the sweetness is also related to
the frequency of carbon-sulfur atom pairs in the skeleton at a
distance of 3 bonds.

Coefficients for the non-sweet class of molecules have the
same value but an opposite sign with respect to those of the sweet
class. Thus, the descriptors associated with the non-sweet class
correspond to the Moran autocorrelation of lag 1 weighted by I-
state (MATS1s), the aromatic ratio (ARR) and the distance/detour
ring index of order 7 (D/Dtr07). Moran autocorrelation of lag
1 weighted by I-state (MATS1s) is a descriptor calculated by
applying the Moran coefficient (Moran, 1950) to the molecular
graph by using the intrinsic state(s) as the atomic property.
Positive values of the Moran coefficient produce positive spatial
autocorrelations, whereas negative values of the coefficient are
related to negative spatial autocorrelations. The distance/detour
ring index of order 7 (D/Dtr07) (Randić, 1997) is a topological
descriptor reflecting the ratio between the lengths of the shortest
to the lengths of the largest through-bond paths between any pair
of vertices belonging to 7-membered rings. The distance/detour
ring in combination with other ring descriptors, such as the
aromatic ratio (ARR) (i.e., ratio of the number of aromatic
bonds to the total number of non-H bonds), indicates that
non-sweetness is related to the presence of aromatic rings.

Since N3 and PLSDA models are based on different
descriptors/modeling methods, a consensus analysis (Baurin
et al., 2004) was applied in order to join information and
predictions from these two sources. Individual models contain
varying extents of noise (especially when dealing with large
and heterogeneous datasets and noisy endpoints), which can
be reduced by averaging the predictions of the models. The
main assumption of consensus modeling is that the strengths
of one model should compensate for the weaknesses of others
models and vice versa. Therefore, each molecule was predicted
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FIGURE 3 | Coefficients for training descriptors in the PLSDA model for the sweet class.

only if the two QSTR models classified it in the same class;
otherwise, it was not classified. The classification performance
of the consensus approach in calibration (NER = 0.852, Snsweet
= 0.792, Spsweet = 0.913, not assigned = 33%) and cross-
validation (NER = 0.831, Snsweet = 0.772, Spsweet = 0.890, not
assigned = 32%) confirms the main assumption of the consensus
strategy by improving the overall prediction performance. On
the other hand, the number of non-assigned molecules increased
considerably. However, since the molecules of concern are those
of cluster C3, the drawback of having non-assigned chemicals can
be accepted in favor of increased classification performance.

Assessment of the QSTR-Based Expert
System
Once the models were calibrated using the molecules of the C3
cluster, the QSTR-based expert system was assembled for the
prediction of sweetness of the entire dataset. Figure 4 shows
the structure of the proposed QSTR-based expert system. In
particular, for any new target molecule, the sweetness prediction
can be carried out on the basis of the following procedure:

1. Calculate ECFP vector for the target molecule and then its
Jaccard-Tanimoto average distance to themolecules included
in Clusters S1 (ds1) and S2 (ds2), respectively;

2a. If ds1 and ds2 are lower than defined thresholds (0.6 and 0.8,
respectively), then the target molecule is classified as sweet,
because of its high structural similarity to sweet molecules of
clusters S1 or S2;

2b. Alternatively, if ds1 and ds2 are higher than the thresholds,
then the target molecule is predicted by means of the
consensus model based on the QSTR N3 and PLSDA
classifiers.

The thresholds described in step 2a. were rationally chosen by
analyzing the distribution of average similarities of each training
molecule with respect to molecules of the three clusters. These
distributions define a threshold value equal to 0.6 (Figure 5A)
and a threshold value of 0.8 (Figure 5B) for cluster S1 and cluster
S2, respectively.

FIGURE 4 | Workflow of the basic steps of the QSTR-based expert system for

predicting the sweetness of chemicals.

Performance in classification of the QSTR-based expert
system is listed in Table 3. Performance of the Monte Carlo
validation based on 1,000 iterations (NER = 0.887, Snsweet =
0.927, Spsweet = 0.848, non-assigned = 20.5%) confirms the
predictive power of the model. Finally, the 161 test molecules
were used to assess the external predictive ability of the QSTR-
based expert system. The results confirmed the predictive ability
of the model (NER = 0.848, Snsweet = 0.880, Spsweet = 0.816,
non-assigned = 19.3%). Model stability in fitting, validation and
prediction, indicates that the proposed model does not exhibit
potential overfitting, although the percentage of non-assigned
molecules is c.a. 20%. Thus, the expert system presented in this
paper could be useful to chemists who are dealing with the
prediction of sweetness of both synthesized (virtual screening)
and un-synthesized chemicals.
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FIGURE 5 | Histogram plot of the Jaccard-Tanimoto average similarity of the training molecules from molecules grouped in cluster S1 (A) and cluster S2 (B).

TABLE 3 | Performance of the QSTR-based expert system based on the “strict”

consensus.

NER Sn Sp % not assigned

Fitting 0.892 0.929 0.855 19.7

Monte Carlo 0.887 0.927 0.848 20.5

Test set 0.848 0.880 0.816 19.3

Applicability Domain Assessment
Every QSTR prediction should be associated with a specific
estimation of the applicability domain (OECD, 2007), in order to
get an assessment of the prediction reliability. The applicability
domain (AD) assessment of the QSTR-based expert system can
be implemented on the basis of the following procedure:

1. Calculate ECFP vector for the target molecule and
then its Jaccard-Tanimoto average distance to the
molecules included in Clusters S1 (ds1) and S2 (ds2),
respectively;

2a. If ds1 and ds2 are lower than defined thresholds (0.6 and 0.8,
respectively), then the target molecule is inside the AD of
the QSTR-expert model, because it can be assumed to be
grouped together with molecules included in clusters S1 and
S2;

2b. Alternatively, if ds1 and ds2 are higher than thresholds, the
applicability domain assessment is carried out by comparing
the leverage of the target molecule with respect to the
leverage threshold for the PLSDA classifier; while an analysis
of the distribution of average similarities is used for the N3
classifier.

Frontiers in Chemistry | www.frontiersin.org 9 July 2017 | Volume 5 | Article 53

http://www.frontiersin.org/Chemistry
http://www.frontiersin.org
http://www.frontiersin.org/Chemistry/archive


Rojas et al. QSTR Expert-System for Sweetness Prediction

Thus, any target molecule should satisfy one of these conditions
to be inside the AD of the QSTR-based expert system, otherwise
its sweetness prediction could be an extrapolation.

Comparison and Final Discussion of the
Classification Performance
The classification performance of both models included in the
proposed QSTR-based expert system is considered appropriate,
as well as the simplicity of the workflow of the expert system
and the small number of molecular descriptors included in N3
and PLSDA models. The models presented in Table 1 from
the existing literature were mainly calibrated by using small
datasets and homogeneous sets of molecules, thus hampering the
model generalization ability toward different types of chemicals
(i.e., limited applicability domain). In addition, the majority of
the studies did not perform validation of the QSTR models
(Iwamura, 1980; Takahashi et al., 1982; Spillane et al., 1983;
Miyashita et al., 1986b; Spillane and Sheahan, 1989, 1991). Thus,
our QSTR-based expert system can be considered as a more
general model for accurate prediction of sweetness of both un-
evaluated and un-synthesized potential sweeteners exhibiting
diverse scaffolds (i.e., a more general applicability domain).
Additionally, this study provides the first QSTR model for
sweetness prediction based on an expert system that (i) considers
the use of both extended connectivity fingerprints and molecular
descriptors and (ii) integrates the results from a structural
similarity analysis along with consensusQSTRmodel predictions.

Several factors may affect the calibration of QSTR models
for sweetness prediction such as the presence of unclear
tastes of some sweeteners (i.e., multisapophoric or potential
multisapophoric molecules). For instance, acesulfame potassium,
sodium saccharin, hernandulcin, stevioside, and isocoumarin
derivatives along with some sugar derivatives deliver bitterness in
addition to sweetness. Their taste depends on the concentration
of such molecules in solution (Birch et al., 1994). For molecules
having more than two tastes, the taste perception may be
complex (Shamil et al., 1987). For these reasons, humans are
unlikely to discriminate these differences when dealing with
multisapophoric molecules and this limitation may be due to
the receptor saturation on the taste buds of the tongue or the
polarization of the taste receptors (Birch et al., 1994).

On the other hand, sweeteners could exist in several
equilibrium conformations that minimize their energy (Morini
et al., 2011) and have more than one AH-B sites (Spillane
and Sheahan, 1989; Damodaran et al., 2008); therefore, it is
complex and difficult to define the active conformation and
how such AH-B sites interact with the sweet-taste receptor to

evoke the human sensation of sweetness. Moreover, the real
interaction receptor-sweetener is not completely known. For
instance, some compounds bind to the sweet receptor but they
are not recognized as sweet (false positives), and other substances
do not bind to the sweet receptor but are perceived as sweet (false
negatives; Bassoli et al., 2008).

The simplicity and the satisfactory predictive ability of the
QSTR-based expert system presented in this paper makes it a
valid tool for scientists attempting to propose sweet molecular
candidates either by synthesis or by virtual screening of
very large available libraries. Thus, this model constitutes a
starting point to understand the structure-taste relationships
of molecules in which further evaluations could be addressed:
(i) the conformational states of sweeteners, (ii) the mechanism
of interactions between receptors and sweeteners (molecular
docking and calculation of energies of binding), (iii) the
measurement of the relative sweetness, and (iv) the identification
of possible safety issues before using molecules as potential low-
calorie sweeteners.
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