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The oxidation of hypophosphite to phosphate is the key to recover the phosphorus

resource from the hypophosphite wastewater. In the present work, Ti4O7/g-C3N4

composites were synthesized at two different temperatures (100 and 160◦C) and

their performance on photocatalytic oxidation of hypophosphite under visible light

irradiation and the corresponding mechanism were evaluated. A hydrolysis method

using g-C3N4 and Ti4O7 was applied to synthesize the Ti4O7/g-C3N4 composites with

their hybrid structure and morphology confirmed by X-ray diffraction (XRD), scanning

electron microscopy (SEM), and X-ray photoelectron spectra (XPS). The annealing

temperature significantly affected the photocatalytic performance of Ti4O7/g-C3N4 that

the 160-Ti4O7/g-C3N4 composite (fabricated at 160◦C) showed the highest oxidation

efficiency of hypophosphite of 81% and the highest photocatalytic oxidation rate of

0.467 h−1 comparing with the 100-Ti4O7/g-C3N4 composite (fabricated at 100◦C)

and pure g-C3N4. The enhanced photocatalytic performance of 160-Ti4O7/g-C3N4

could be ascribed to the effective charge separation and enhanced photoabsorption

efficiency. Additionally, electron spin resonance (ESR) results showed that hydroxyl

radicals and superoxide anion radicals were mainly responsible to the oxidation

of hypophosphite with superoxide anion radicals accounting for a more significant

contribution. Moreover, Ti4O7/g-C3N4 photocatalysts showed the remarkable stability

in the repetitive experiments.

Keywords: graphitic carbon nitride, sub-stoichiometric titanium oxides, hypophosphite, hydroxyl radicals,

superoxide anion radicals

INTRODUCTION

Hypophosphite is commonly used as a reducing agent in metallurgy industries especially in the
processes of plating and surface finishing thereby generating large amounts of hypophosphite
wastewater (Bulasara et al., 2011; Li et al., 2015). The hypophosphite contaminant should be
further treated before being discharged into the river or lake, because it may lead to algae growth
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and cause eutrophication (Wang et al., 2016; Ge et al., 2017).
In addition, phosphorus is a non-renewable resource mainly
used as a nutrient in agricultural production (Montangero and
Belevi, 2007). Due to an increase in the global demand for
phosphorus resource, it will be depleted in the next 50–100
years (Takeda et al., 2010; Ye Y. Y. et al., 2017; Ye Z. L. et al.,
2017). Therefore, the phosphorus recovery from wastewater is
of considerable interest. However, a high solubility constant
of the hypophosphite precipitants limits the transformation
of hypophosphite into the precipitated products. In contrast,
phosphate is easier to be recovered than hypophosphite by
precipitation. As such, a highly efficient approach for the pre-
oxidation of hypophosphite to phosphate becomes of great
importance for phosphorus recovery. Photocatalysis, a nano-
enabled technology, has been recognized for its promising
applications with the generation of activated radicals such as
hydroxyl radicals and superoxide anion radicals, which herein
can be applied for hypophosphite oxidation.

Semiconductor photocatalysts have been recognized as a
potential strategy to solve some serious challenges of the twenty-
first century, such as energy shortage, environmental pollution,
and global warming (Lin et al., 2017). TiO2 photocatalyst has
attracted much attention due to its strong oxidizing power,
low cost and high chemical stability. However, a large band
gap (3.2 eV) of TiO2 means that it can only absorb ultraviolet
light (only about 3–5% of total sunlight), which greatly limits
its performance in industrial applications (Teng et al., 2017;
Noman et al., 2018). Therefore, it is urgent to develop novel
semiconductor photocatalysts that respond to visible light.

Recently, graphitic carbon nitride (g-C3N4), constituted by
numerous layers of two-dimensional (2D) counterparts, has
attracted enormous attention given its advantages such as
low cost and visible light driven semiconductor photocatalyst
(Huang et al., 2017b; Liu et al., 2017a,b; Tian et al., 2017;
Wang et al., 2017). The metal free g-C3N4 can work as
photocatalyst under visible light irradiation with a suitable
band gap of 2.7 eV. In addition, g-C3N4 possesses excellently
structural stability, which is suitable for chemical modification.
Nevertheless, the photocatalytic property of g-C3N4 is still
limited for its low surface area, low photoabsorption efficiency
and high recombination rate of photo-induced electron-hole
pairs (Jourshabani et al., 2017; Shao et al., 2017).

Decreasing the recombination of photo-induced carriers
during the photocatalytic process would enhance the
photocatalytic activity of the as-prepared g-C3N4 photocatalyst
(Li J. D. et al., 2017). Therefore, some methods, such as porosity
engineering, doping with foreign elements, and compositing
with other semiconductors to facilitate charge separation, were
developed to enhance the photocatalytic performance of g-C3N4.
For example, the horn-like hollow mesoporous ultrathin g-C3N4

tubes were fabricated with high surface area, drastically boosted
bulk charge separation, carrier density and surface charge
transfer efficiency and showed the remarkably photocatalytic
performance for H2 evolution (Liu et al., 2017a). Meanwhile,
the 3D mesoporous g-C3N4 established by ultrathin self-doped
nanosheets exhibited the superior photocatalytic performance on
hydrogen evolution (Tian et al., 2017). Additionally, the porous

and thin g-C3N4 nanosheets, prepared via a novel thiourea-
assisted melamine-precursor hydrothermal pre-treatment
followed by a traditional thermal polymerization method,
profoundly enhanced visible-light photocatalytic performance
onH2 evolution andNO removal from the gaseous phase (Huang
et al., 2017b). Moreover, the Cl intercalated mesoporous g-C3N4

showed outstanding photocatalytic performance for water
splitting into H2, CO2 reduction, liquid and air contaminants
removal (Liu et al., 2017b).

Substoichiometric titanium oxides, known as Magnéli phases
(Sun et al., 2016), comprise a series of compounds with the
generic formula TinO2n−1 (4 ≤ n ≤ 10) (Kolbrecka and
Przyluski, 1994; Guo et al., 2016). Among these compounds,
Ti4O7 possesses high electrical conductivity, thermal stability,
and corrosion resistance in harsh conditions (Oturan et al., 2017).
Therefore, Ti4O7 is wildly used as catalyst coated material (Li
et al., 2010), wastewater treatment material (You et al., 2016),
support material in fuel cell (Chisaka et al., 2016), and additive to
positive materials in batteries (Cao et al., 2017). However, it was
also reported that pure Ti4O7 as the photocatalyst had limited
photocatalytic activity with the band gap of 2.9 eV (Maragatha
et al., 2017). Herein, coupling Ti4O7 and intrinsic g-C3N4

to construct the well-matched Ti4O7/g-C3N4 heterojunction
would be an alternative novel pathway to address the intrinsic
drawbacks of g-C3N4 for photocatalytic applications.

In this study, novel Ti4O7/g-C3N4 photocatalysts were
synthesized at two different temperatures (100 and 160◦C) and
their performance in photocatalytic oxidation of hypophosphite
under visible light irradiation and the corresponding
mechanism were compared and investigated. Ti4O7/g-C3N4

photocatalysts exhibited an enhanced photocatalytic activity for
hypophosphite oxidation under visible light irradiation and the
annealing temperature significantly affected the photocatalytic
performance. The separation mechanism of photogenerated
electrons and holes of the photocatalysts was investigated
by UV-Vis diffuse reflectance spectra, photoluminescence
emission spectra, cyclic voltammetry (CV), and electrochemical
impedance spectroscopy (EIS). The activated species generated
in the photocatalytic process were measured by electron spin
resonance (ESR). The enhanced photocatalytic performance
could be ascribed to the efficient charge separation and
transfer across the heterojunction interface and the enhanced
photoabsorption efficiency. Our work demonstrated that the
rational design and construction of isotype heterojunction was an
effective strategy for the development of efficient photocatalysts
under visible light irradiation.

MATERIALS AND METHODS

Chemicals
Melamine (C3H6N6), urea [CO(NH2)2], sub-stoichiometric
titanium oxide (Ti4O7), sodium hypophosphite
(NaH2PO2), sodium sulfate (Na2SO4), isopropanol [IPA,
(CH3)2CHOH], ethylenediaminetetraacetic acid disodium salt
(C10H14N2Na2O8), sodium hydroxide (NaOH), and sulfuric acid
(H2SO4) were provided by Sinopharm Chemical Reagent Co.,
Ltd. (Beijing, China). 5,5-dimethylpyrroline-N-oxide (DMPO)
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was bought from Dojindo Co., Ltd. (Shanghai, China). The
entire chemical reagents were analytical grade and all solutions
were prepared using Milli-Q water (Millipore, 18.2 M�

cm).

Synthesis of g-C3N4 Materials
The g-C3N4 materials were prepared using a liquid-based growth
method (Sun et al., 2018). In a typical process, the mixture
of melamine and urea (molar ratio = 1:1) was dissolved
with 50mL deionized water and then vigorously stirred for
1 h at room temperature. After that, the mixture suspension
was centrifuged at 7,500 r/min for 15min, and then dried
at 60◦C for 24 h under the vacuum to obtain the white
powder. After that, the prepared white powders were further
grinded into smaller powders in a mortar and placed in a
muffle furnace. The powders were then annealed at 550◦C in
a muffle furnace for 4 h in static air at a ramp rate of 2.5◦C
min−1. The resulting yellow products were collected for further
usage.

Preparation of Ti4O7/g-C3N4

Photocatalysts
The preparation procedure of Ti4O7/g-C3N4 photocatalysts
was shown below: g-C3N4 powder (2.0 g) and Ti4O7

(1.0 g) were dispersed into 100mL NaOH (0.1 mol/L) by
ultrasonication for 0.5 h. Subsequently, the mixed liquor
was transferred to reaction still and then annealed in
different temperatures (100 and 160◦C) for 20 h. After that,
the obtained precipitates were collected by centrifugation
and washed with distilled water, and then dried at
60◦C for 12 h. Samples fabricated at different annealing
temperatures were noted as 100-Ti4O7/g-C3N4 (fabricated
at 100◦C) and 160-Ti4O7/g-C3N4 (fabricated at 160◦C),
respectively.

Samples Characterization
The concentration of NaH2PO2 was measured by ion
chromatography using a 732 IC detector (McDowell et al.,
2004). The crystal phase composition and fineness of the
samples were analyzed by X-ray diffraction (XRD) with Cu
Kα radiation in the scanning range of 2θ = 5–80◦ (model
D/max RA, Rigaku Co., Japan). The surface morphology of
the as-developed samples was examined by scanning electron
microscopy (SEM) (JEOL JSM-6701F). The valence state of
the deposition was measured by X-ray photoelectron spectra
(XPS) (PHI-5300/ESCA, ULVAC-PHI, INC). The UV–vis diffuse
reflection spectra (UV–vis DRS) of the samples was obtained
by a UV–vis spectrophotometer (UV-2450, Shimadzu, Japan).
Electrochemical properties of the Ti4O7/g-C3N4 and g-C3N4

photocatalysts, including photocurrents (PC), CV, and EIS, were
measured on a CHI 660B electrochemical system. Electron spin
resonance (ESR) (ESRA-300, Bruker, Germany) signals were
recorded by the probe molecular 5,5-dimethyl-1-pyrroline-N-
oxide (DMPO) to identify the radicals generated under visible
light irradiation (λ > 420 nm) (Tian et al., 2015).

FIGURE 1 | Structure and morphology analyses. (a) XRD patterns of the

g-C3N4, Ti4O7 and 160-Ti4O7/g-C3N4 photocatalysts; (b) SEM image of the

160-Ti4O7/g-C3N4 photocatalyst.

Evaluation of Photocatalytic Activity
The photocatalytic activities of as-synthesized samples were
evaluated by the oxidation of hypophosphite in aqueous solution
under visible light irradiation. For hypophosphite oxidation,
the light source was a 35W metal-halide lamp (Philips) with
a 420 nm UV-cutoff filter. The lamps were located 12 cm away
from the surface of reaction solution (about 5 mW cm−2).
In each experiment, photocatalyst (10mg) was dispersed in
hypophosphite (100ml, 100mg L−1) aqueous solution. Before
irradiation, the solution was continuously stirred in the dark
for 2 h to reach adsorption-desorption equilibrium between the
hypophosphite and the photocatalyst. During the photocatalytic
reaction, the solutions were kept magnetically stirring, and 4ml
mixture was collected at 1 h intervals followed by centrifugation
(10,000 rpm, 5min) to remove the photocatalyst.
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FIGURE 2 | XPS spectra of the 160-Ti4O7/g-C3N4 photocatalyst. (A) C 1 s; (B) N 1 s; (C) Ti 2 p; (D) O 1s.

Radicals Quencher Experiment for
Photocatalysis
In order to identify the contributions of the radicals generated
in the photocatalytic oxidation process, IPA and N2 purging
were applied with IPA acting as the ·OH radicals quencher
and N2 purging reducing the superoxide ·O2

− radicals (Yang
et al., 2016). Adding different radical scavengers into reaction
solutions would affect the photocatalytic performance. As
such, the contributions of ·OH radicals and ·O2

− radicals
on photocatalytic oxidation of hypophosphite under visible
light irradiation can be evaluated based on the change
of photocatalytic oxidation efficiency of hypophosphite
with and without IPA (1mM) and N2 purging (continuous
purging).

RESULTS AND DISCUSSION

Structure and Morphology Analyses
The crystal structures of g-C3N4, Ti4O7, and 160-Ti4O7/g-
C3N4 photocatalysts were characterized by XRD. As shown in
Figure 1a, two pronounced diffraction peaks in pure g-C3N4

were observed at 13.20◦ and 27.60◦, respectively. The peak
at 13.20◦ was corresponded to (1 0 0) plane of tri-s-
triazine units (Zhang et al., 2012a). The peak at 27.60◦indexed
as (0 0 2) peak was due to the interlayer-stacking of
aromatic systems as in graphite (Zhang et al., 2012b). The
characteristic peaks of Ti4O7 were matched well with the
standard card (JCPDF 50-0787). The main diffraction peaks
of 160-Ti4O7/g-C3N4 photocatalyst did not change obviously,
indicating that the fabrication process did not destroy the
main structure of both counterparts. The microstructure of
the 160-Ti4O7/g-C3N4 photocatalyst was shown in Figure 1b.
It was mainly composed of spheroidal crystals, and the shape
of synthesized 160-Ti4O7/g-C3N4 photocatalyst was relatively
uniform.

XPS measurements were carried out to investigate the
compositions and elemental chemical states of the samples. As
shown in Figure 2, the XPS spectra revealed that the elements
of C, N, Ti and O existed on the surface of 160-Ti4O7/g-C3N4

photocatalyst. The corresponding high resolution spectra of C
1s, N 1s, Ti 2p, and O 1s were also analyzed. The XPS spectra of
C 1s core level for 160-Ti4O7/g-C3N4 photocatalyst was shown
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FIGURE 3 | Photocatalytic activity of different photocatalysts. (A) The

oxidation efficiency of hypophosphite; (B) The comparison of oxidation rate

constant k.

in Figure 2A that it could be divided into two components
including the standard reference carbon (284.8 eV) and the sp2

bonded C in N=C(–N)2 (288.3 eV) (Jo and Natarajan, 2015).
The N 1s spectra of Ti4O7/g-C3N4 could be divided into four
peaks as shown in Figure 2B. The main peak at 398.7 eV was
assigned to sp2 nitrogen (C=N–C) involved in triazine rings,
and the peak at 399.8 eV originated from the tertiary nitrogen
bonded to carbon atoms in the form of N–(C)3 (Wu et al., 2013).
The peak at 401.3 eV was ascribed to amino functions (C–N–
H). Another peak centered at 404.4 eV was associated to charging
effects or positive charge localization in heterocycles (Gao et al.,
2014). These assignments of C 1s and N 1s were agreed well with
the XPS results of g-C3N4 reported previously. Ti4O7 is a mixed-
valence compound with two evenly occupied Ti4+ (3d0) and Ti3+

(3d1) configurations. As shown in Figure 2C, two broad peaks at
about 458.6 and 464.7 eV were observed, corresponding to the

FIGURE 4 | Optical properties of different photocatalysts. (A) UV–vis DRS

spectra of the photocatalysts; (B) PL spectra of the photocatalysts.

characteristic Ti 2p1/2 and Ti 2p3/2 peaks of Ti4+, respectively.
Additionally, two peaks at 457.97 and 463.8 eV corresponding
to Ti3+ also appeared, as reported elsewhere (Zeng et al., 2017).
The O 1 s spectra of Ti4O7/g-C3N4 were shown in Figure 2D.
The peak with binding energy of 533.5 eV was assigned to the
C–O functional groups, and the peaks centered at the binding
energies of 531.8 and 529.7 eV were ascribed to the OH–Ti and
O–Ti bonds (Li Z. Q. et al., 2017). These results confirmed
the presence of Ti4O7 on the g-C3N4 surface with covalent
bonds.

Photocatalytic Activity Analysis
The photocatalytic oxidation of hypophosphite over various
samples was analyzed. As shown in Figure 3A, the blank
experiment indicated that the concentration of hypophosphite
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FIGURE 5 | Electrochemical properties analysis of the 160-Ti4O7/g-C3N4

photocatalyst. (A) photocurrent density of different photocatalysts; (B) cyclic

voltammogram scan of different photocatalysts.

was stable under visible light irradiation (λ > 420 nm) if
there was no photocatalyst presented. Pure g-C3N4 showed
weak photocatalytic activity with the oxidation efficiency of
only 10% possibly owing to the rapid recombination of photo-
generated charge carriers and low charge transfer ability (Shi
et al., 2017). The 160-Ti4O7/g-C3N4 photocatalyst had the
highest photocatalytic activity with the oxidation efficiency of
81% compared with the pure g-C3N4 and 100-Ti4O7/g-C3N4

photocatalysts.
The photocatalytic oxidation kinetic of the prepared samples

was fitted by a pseudo-first-order model, which was depicted by
the following Equation (1) (Lu et al., 2018):

ln (C0/C) = kt (1)

FIGURE 6 | EIS Nyquist plots of the g-C3N4, 100-Ti4O7/g-C3N4, and

160-Ti4O7/g-C3N4 photocatalysts under visible light irradiation.

FIGURE 7 | The stability analysis of the 160-Ti4O7/g-C3N4 photocatalyst

under repetitive experiments.

Where C0 and C are the hypophosphite concentrations in
solution at times 0 and t, respectively, and k is the first-order
rate constant. As shown in Figure 3B, the 160-Ti4O7/g-C3N4

photocatalyst showed the highest photocatalytic oxidation rate
of 0.467 h−1, which was 2.5 and 26 times higher than that
of 100-Ti4O7/g-C3N4 and pure g-C3N4, respectively. Therefore,
the results showed that the 160-Ti4O7/g-C3N4 photocatalyst
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FIGURE 8 | Radials analyses. (A) DMPO spin-trapping ESR spectra for ·OH

radials analysis; (B) DMPO spin-trapping ESR spectra for ·O2
− radials

analysis; (C) Effect of scavengers on the photocatalytic oxidation process.

exhibited an excellent activity in photocatalytic oxidation of
hypophosphite under visible light irritation.

The enhanced photocatalytic activity of Ti4O7/g-C3N4

and the effect of annealing temperature on Ti4O7/g-C3N4

photocatalytic activity were further investigated and explained
from the perspectives of photoabsorption efficiency, band gap,

FIGURE 9 | The mechanism of the hypophosphite oxidation over the

Ti4O7/g-C3N4 photocatalyst under visible light irradiation.

separation, transformation, and recombination processes of
photogenerated carriers in the following sections.

Optical Properties Analysis
The optical properties of Ti4O7/g-C3N4 and pure g-C3N4

photocatalysts were evaluated by UV–vis diffuse reflectance
spectra. As shown in Figure 4A, the photoabsorption efficiency
of Ti4O7/g-C3N4 was remarkably enhanced compared with
the pure g-C3N4. The pure g-C3N4 held an absorption edge
of around 430 nm while the Ti4O7/g-C3N4 photocatalysts
showed a distinct red-shift, indicating that the Ti4O7/g-C3N4

photocatalysts were more efficient in light harvesting under
visible light irradiation. The enhanced photoabsorption efficiency
of Ti4O7/g-C3N4 was due to the narrowed band gap. The
band energy gap of the photocatalysts was determined from the
formula αhν = A (hν – Eg)

n/2 (Eg, α, h, ν, and A indicate
the band gap, optical absorption coefficient, Plank’s constant,
photonic frequency and a proportionality constant, respectively)
(Huang et al., 2017b; Liu et al., 2017a,b; Tian et al., 2017). The
band gap calculated from the plot of absorption1/2 vs. energy
was 2.70, 2.32, and 2.13 eV for g-C3N4, 100-Ti4O7/g-C3N4, and
160-Ti4O7/g-C3N4, respectively.

Photoluminescence (PL) spectra was used to investigate
the separation, transformation and recombination processes
of photogenerated carriers. The band–band PL spectrum can
directly reflect the separation performance of photo-induced
charge carriers, viz. the stronger of the band-band PL signal,
the higher of the recombination rate of photo-induced carriers.
The PL spectroscopy of the photocatalysts was shown in
Figure 4B. All photocatalysts exhibited a broad emission peak
centered at around 460 nm, which was mainly caused by the
recombination of photogenerated electrons and holes produced
by g-C3N4 (Shi et al., 2017). The PL emission intensity
was highest for the pure g-C3N4, while the intensity was

Frontiers in Chemistry | www.frontiersin.org 7 March 2018 | Volume 6 | Article 37

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Guan et al. Ti4O7/g-C3N4 Visible Light Photocatalytic Performance

significantly lowered for Ti4O7/g-C3N4. This indicated that
the charge carrier recombination was effectively suppressed
for the Ti4O7/g-C3N4 photocatalysts. It is well known that
the noble metals, such as Ti4O7, are good conductors with
excellent electric properties. After formation of noble metals-
semiconductors heterostructures, the photogenerated electrons
of semiconductors could transfer through these noble metals
rapidly and the lifetime of these electrons and holes are prolonged
(Cui et al., 2017). In addition, the PL intensity of 160-Ti4O7/g-
C3N4 wasmuch lower than that of 100-Ti4O7/g-C3N4, indicating
that 160-Ti4O7/g-C3N4 had the effectively decreased charge
carrier recombination compared with 100-Ti4O7/g-C3N4. The
higher annealing temperature could etch and tailor g-C3N4

with the possibly smaller and thinner nanosheet structure of
160-Ti4O7/g-C3N4 compared with 100-Ti4O7/g-C3N4 and thus
shortened the distance between the photogenerated electrons and
the heterostructure surface, which suppressed the recombination
probability of photo-generated electron–hole pairs with the
photogenerated electrons rapidly transferring through Ti4O7

(Dong et al., 2015).

Electrochemical Properties Analysis
The PC responses of g-C3N4, 100-Ti4O7/g-C3N4, and 160-
Ti4O7/g-C3N4 photocatalysts under visible light irradiation were
evaluated to further offer information about the separation
and transformation efficiency of photogenerated electrons and
holes. As shown in Figure 5A, the transient PC responses
of all photocatalysts at light on and light off were reversible
and stable, and the PC density of 160-Ti4O7/g-C3N4 was
much higher (0.30 µA cm−2) than that of 100-Ti4O7/g-
C3N4 (0.23 µA cm−2) and g-C3N4 (0.10 µA cm−2). This
indicated that the Ti4O7/g-C3N4 heterostructures promoted the
separation of photogenerated charge carriers (Kang et al., 2016),
in line with the PL spectra results as shown in Figure 4B.
Additionally, this was also supported by the CV test. As
shown in Figure 5B, a reduction peak at about −0.18V was
observed in g-C3N4, 100-Ti4O7/g-C3N4, and 160-Ti4O7/g-C3N4,
but 160-Ti4O7/g-C3N4 photocatalyst possessed much higher
reduction current, which indicated faster electron transfer
in 160-Ti4O7/g-C3N4 photocatalyst (Samanta and Srivastava,
2017).

Electrochemical impedance spectroscopy was used to
investigate the photogenerated charge separation process on
the photocatalysts. The radius of the circular arc reflected the
resistance of the interfacial charge transfer and separation
efficiency of the electron-hole pairs (Leng et al., 2005;
Liang and Zhu, 2016). As shown in Figure 6, the arc radius
decreased gradually when Ti4O7 was doped onto the g-
C3N4 photocatalyst. This meant that the photogenerated
charge separation process occurred more easily on Ti4O7/g-
C3N4 compared with the pure g-C3N4 because of the
decreased energy barrier that the electrode reaction needed
to overcome. Moreover, the arc radius of 160-Ti4O7/g-C3N4

was smaller than that of 100-Ti4O7/g-C3N4, meaning that
the separation of the photogenerated electron–hole pairs was
more effective and the interfacial charge transfer of the electron

donor/electron acceptor was faster on the 160-Ti4O7/g-C3N4

photocatalyst.

Catalyst Stability Analysis
The stability was another vital consideration for an excellent
photocatalyst. To evaluate the stability of the as-prepared
160-Ti4O7/g-C3N4 photocatalyst, the repetitive experiments of
photocatalytic oxidation of hypophosphite were carried out. As
shown in Figure 7, the oxidation efficiency of hypophosphite
in the four-round continuous reaction tests using 160-Ti4O7/g-
C3N4 photocatalyst was 75, 81, 80, and 84%, respectively.
The repetitive experiments results showed that the fabricated
Ti4O7/g-C3N4 photocatalysts had a stable structure possibly
with the strong binding force. The N-H groups or conjugated
structures in g-C3N4 could tightly bond with Ti

4+ (3d0) and Ti3+

(3d1) in Ti4O7, which effectively reduced the dissolution of bulk
g-C3N4 material during the photocatalytic process.

Proposed Mechanism
To clarify the reaction mechanism of photocatalytic oxidation of
hypophosphite, the ROS generated under visible light irradiation
were analyzed by ESR technique (with DMPO). As shown in
Figure 8A, no ESR signals were observed in the dark while ·OH
was observed under visible light irradiation with four peaks with
intensities of 1:2:2:1 attributing to DMPO-·OH generated via a
hole oxidative process on H2O and/or OH− (Tu et al., 2017).
Moreover, ·O2

− was also observed under visible light irradiation
with a four-line spectrum with the relative intensities of 1:1:1:1
assigned to DMPO-·O2

− adduct derived from O2 reduction
by electrons (Huang et al., 2015), however, no ESR signals
were observed in the dark as shown in Figure 8B. Therefore,
both ·OH and ·O2

− would contribute to the photocatalytic
oxidation of hypophosphite and their contributions were further
investigated with and without radical scavengers. Isopropanol
(IPA) and N2 purging were applied with IPA acting as the
·OH radicals quencher and N2 purging reducing the superoxide
·O2

− radicals (Yang et al., 2016). As shown in Figure 8C, the
photocatalytic oxidation efficiency of hypophosphite decreased
from 83% (without radical scavengers) to 42% (with IPA) and
even 27% (with N2 purging). These results confirmed that both
·OH and O2·

− radicals were the major active radical species
for hypophosphite oxidation in the photocatalytic process with
O2·

− accounting for a more significant contribution. Note that
the photocatalytic oxidation efficiency of hypophosphite did
not decrease to zero with the lowest efficiency of 27% in the
presence of N2 purging, indicating that holes and some other
radicals may also contribute to the photocatalytic oxidation
process to some extent. It was reported that reactive oxygen
species (ROS), such as superoxide (·O2

−), hydroxyl radicals
(·OH), singlet oxygen (1O2), peroxyl (RO2·), and alkoxyl (RO-)
as well as hypochlorous acid (HOCl) are basically produced in
the photocatalytic process (Huang et al., 2017a), which may also
contribute to the photocatalytic oxidation of hypophosphite in
this case.

According to the above results and those reported in the
literature, the possible photocatalytic mechanism of Ti4O7/g-
C3N4 on hypophosphite oxidation was illustrated in Figure 9.
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The possible photocatalytic processes were as follows:

Ti4O7/g-C3N4 + hv → g-C3N4(e
−
+ h+) (2)

g-C3N4 (e
−)+ Ti4O7 → Ti4O7 (e

−) (3)

Ti4O7 + hv → Ti4O7 (e
−) (4)

Ti4O7 (e
−)+O2 → ·O−

2 (5)

·O−

2 + PO3−
2 → PO3−

4 (6)

g-C3N4 (h
+)+OH−

→ ·OH (7)

·OH+ PO3−
2 → PO3−

4 (8)

g-C3N4 (h
+)+ PO3−

2 → PO3−
4 (9)

Firstly, the electrons (e−) in valence band of g-C3N4 under visible
light irradiation could be excited to the conduction band, leaving
the holes (h+) in valence band of g-C3N4 (Equation 2). Then
the photogenerated electrons in the conduction band of g-C3N4

would continually transfer to Ti4O7 until the same Fermi levels
reached (Equation 3). Thus, the photogenerated electrons and
holes were located at Ti4O7 and g-C3N4, respectively, leading
to the effective separation of the photoinduced charge carriers.
Furthermore, the electrons might be also generated from the
Ti4O7 particles (Equation 4) with the product easily reacting
with the adsorbed oxygen molecules to produce ·O−

2 (Equation
5) followed by the oxidation of hypophosphite to phosphate
(Equation 6). Meanwhile, the photogenerated holes as the strong
oxidants could oxidize OH− to ·OH radicals, and then the
hypophosphite was directly oxidized to phosphate (Equations 7
and 8). In addition, some photogenerated holes could directly
oxidize hypophosphite to phosphate (Equation 9).

CONCLUSION

The enhancement of Ti4O7/g-C3N4 visible light photocatalytic
performance on hypophosphite oxidation and the effect of

annealing temperature and the corresponding mechanism were
investigated in this study. 160-Ti4O7/g-C3N4 (fabricated at
160◦C) photocatalyst showed the highest oxidation efficiency of
hypophosphite of 81% and the highest photocatalytic oxidation
rate of 0.467 h−1 comparing with 100-Ti4O7/g-C3N4 (fabricated
at 100◦C) and pure g-C3N4. The enhanced photocatalytic
performance of 160-Ti4O7/g-C3N4 could be ascribed to the
effective charge separation and enhanced photoabsorption
efficiency. Additionally, ESR results showed that hydroxyl
radicals and superoxide anion radicals weremainly responsible to
the oxidation of hypophosphite with O2·

− accounting for a more
significant contribution.Moreover, Ti4O7/g-C3N4 photocatalysts
showed the remarkable stability in the repetitive experiments.
Our work demonstrated that the rational design and construction
of isotype heterojunction was an effective strategy to develop the
efficient photocatalysts under visible light irradiation.
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