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The purpose of this work was to elucidate the repercussion of changing pH, incubation

time and As(V) competition on fluoride (F−) sorption on forest and vineyard soil samples,

pyritic, and granitic materials, as well as on the by-products pine sawdust, oak wood

ash, mussel shell ash, fine and coarse mussel shell, and slate processing waste fines.

To reach this end, the methodological approach was based on batch-type experiments.

The results indicate that, for most materials, F− sorption was very high at the start, but

was clearly diminished when the pH value increased. However, oak wood ash and shell

ash showed high F− sorption even at alkaline pH, and pine sawdust showed low F−

sorption for any pH value. Specifically, F− sorption was close to 100% for both ashes at

pH <6, and around 70% at pH 10, while for forest soil it was close to 90% at pH <2, and

around 60% at pH values near 8. Regarding the effect of incubation time on F− sorption,

it was very low for both soils, pyritic material, granitic material, and both kinds of ashes,

as all of them showed very rapid F− sorption from the start, with differences being lesser

than 10% between sorption at 30min and 1 month of incubation. However, sawdust

and slate fines sorbed 20% of added F− in 30min, remaining constant up to 12 h, and

doubling after 30 days. And finally, mussel shell sorbed 20% at 30min, increasing to

close to 60% when incubation time was 30 days. This means that some of the materials

showed a first sorption phase characterized by rapid F− sorption, and a slower sorption

in a second phase. As regards the effect of the presence of As(V) on F− sorption, it was

almost negligible, indicating the absence of competition for sorption sites. In view of that

all, these results could aid to appropriately manage soils and by-products when focusing

on F− removal, in circumstances where pH value changes, contact time vary from hours

to days, and potential competition between F− and As(V) could take place.
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INTRODUCTION

Fluoride (F−) is present in rocks, soil, air, water, and plants.While
low intake of F− can be beneficial for teeth in humans (preventing
caries) and bone growth, excessive F− concentrations can result
in fluorosis and other adverse effects on human health, such
as those regarding correct mental development in children, as
previously shown by Oruc (2008), Yadav et al. (2009), Patel et al.
(2014), and Yesilnacar et al. (2016). In fact, Chen et al. (2012)
stated that fluorosis is becoming a global toxicological concern.

Msonda et al. (2007) indicated that F− concentrations are
usually lower than 0.3mg L−1 in non-polluted waters, but
concentrations higher than 1.0–1.5mg L−1 are considered
problematic (WHO, 2004). Fluoride concentration in
groundwater can range from less than 1 to more than 35mg
L−1 (Maheshwari, 2006), depending on soil acidity, porosity,
geology, chemical parameters, temperature, and other variables
(Chaudhary et al., 2008).

Cronin et al. (2003) and Kumar et al. (2014) indicated
that the geological substrate is of great importance regarding
F− concentration in soils, taking into account its presence
in minerals such as apatite, topaz, cryolite, and fluorite. But
other authors, such as Gago et al. (2002), Weinstein and
Davison (2004), and Gago et al. (2014), have signaled that
industrial sources are also important, especially aluminum
and phosphate-fertilizer factories. In aluminum smelters, Al
is produced by electrolysis of alumina (Al2O3) dissolved in
molten cryolite (Na3AlF6), which causes the emission of fluoride
(appearing as gaseous HF or in particulate form); and this F−

is considered as the highest-impact phytotoxic pollutant derived
from the aluminum reduction process (Kumar and Rani, 2011).
Furthermore, agriculture and forestry also affect soil F− content,
mainly due to some agrochemicals (Loganathan et al., 2001).
Specifically, long-term phosphate fertilization on farmlands may
cause very relevant F− accumulation in soils (Loganathan et al.,
2008; Kim et al., 2016), because F− concentrations in P fertilizers
are much higher (up to 150 times) than in soils (Stacey et al.,
2010). Kalinic et al. (2005) reported that 300–500mg kg−1 are
normal values for total-F in soils, while, as commented by
Brougham et al. (2013), concentrations higher than 500–600mg
kg−1 are indicative of F-rich minerals, industrial or agricultural
pollution.

Brougham et al. (2013) also indicated that, even more
important than total-F content, F availability in soils is very
relevant, and it is highly dependent on factors such as pH and
clay content, as well as on P, Ca, and Al concentrations. Authors
such as Elrashidi and Lindsay (1986a,b), Khare et al. (2005)
and Zhu et al. (2006) have remarked the high affinity of F− for
Al3+, with AlFx complexes being the main F− species in the soil
solution of natural soils at pH 4–5.5 (Álvarez et al., 2002, 2003,
2005). In addition, these complexes are toxicologically relevant,
acting as phosphate analogs for different enzymes (Strunecka
et al., 2012). Fluoride is preferentially adsorbed by amorphous
Al oxy-hydroxides, frequently found in acid soils (Zhu et al.,
2006; Kaufhold et al., 2010; Gago et al., 2012, 2014). In fact,
Arnesen and Krogstad (1998) detected maximal F− adsorption
on soils at pH 4.8–5.5, decreasing at pH values >5.5 due to the

generation of negative charges (Barrow and Ellis, 1986; Gago
et al., 2012, 2014). However, Wenzel and Blum (1992) found low
F− pollution risk in slightly acid soils, which increased in alkaline
and strongly-acidic conditions.

Considering the situation of Galicia (NW Spain) as an
example, F− pollution is mainly related to aluminum smelter
activities (a very relevant anthropogenic source for F−), and to
P fertilization practices (due to F− present in P fertilizers), which
is a common practice in acidic soils, poor in nutrients (Gago et al.,
2012, 2014).

Various F− removal strategies have been investigated in the
last decades (Raichur and Basu, 2001; Maheshwari, 2006), with
growing research on the use of various agricultural by-products,
as noted by Khalil (1996), Toles et al. (1998), or Wafwoyo et al.
(1999), and more recently by Elizalde-González et al. (2008), and
by Soleimani and Kaghazchi (2008). In addition, an increasing
interest on waste recycling and valorization of by-products has
been evidenced (Núñez-Delgado et al., 2015), and different bio-
sorbents, such as pine bark, wood ash, or mussel shell, have
been investigated, focusing on their potential to retain or remove
cationic and/or anionic pollutants (see for example Fernández-
Pazos et al., 2013; Ramírez-Pérez et al., 2013; Seco-Reigosa et al.,
2013a,b; Osorio-López et al., 2014; Otero et al., 2015).

Regarding the effect of incubation time, previous studies have
shown different velocities for F− sorption on various materials.
As an example, Peek and Volk (1985) found that sorption
was rapid on the soils they studied, with 90% of the sorption
occurring within 24 h. Tripathya et al. (2006) detected rapid
F− sorption (within 3 h) on impregnated alumina, whereas
Tripathya and Raichur (2008) found two phases for F− sorption
on activated alumina (one fast, and another slower), and Bharali
and Bhattacharyya (2015) indicated that the equilibrium time for
F− sorption was 60min when using neem leaf powder as sorbent.

As regards competitive sorption, Ma et al. (2017) indicated
that the concurrence of inorganic As and F− in groundwater
has been reported in many countries, with levels well above
those set by World Health Organization as allowable maxima.
Wu et al. (2007) found that increasing As concentrations added
to a Fe-Al-Ce oxide did not affect F− sorption, suggesting
heterogeneous adsorption on the surface of the oxide. Ismail
and AbdelKareem (2015) found that competing anions did not
show significant repercussion on F− removal capacity when
using waste lamb or bones as sorbents, which could be due
to the abundance of sorption and exchangeable sites on these
materials. Jadhav et al. (2015) reviewed technologies allowing
removal of As and F− simultaneously, including adsorption,
indicating that each technology has shortcomings and benefits.
These last authors highlight the importance of the simultaneous
removal of both F− and As, concluding that it would be
clearly interesting to develop and implement an hybrid and
sustainable low-cost technology, which could be reached by
means of extensive research. In addition, researching about
competence for sorption sites among F− and other anions
than those related to As would be clearly interesting for future
works.

In recent works we studied F− sorption and desorption
on different soil samples, wastes, by-products and waste

Frontiers in Chemistry | www.frontiersin.org 2 March 2018 | Volume 6 | Article 51

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Quintáns-Fondo et al. Fluoride Retention on Various Materials

mixtures (Quintáns-Fondo et al., 2016a), and on individual
and amended materials (Quintáns-Fondo et al., 2016b). These
different materials were: forest and vineyard soil samples, pyritic
and granitic materials, pine sawdust, oak wood ash, mussel
shell ash, fine and coarse mussel shell, and slate processing
waste fines. They were selected for these previous works taking
into account the following facts: (a) an aluminum facility
in Galicia (NW Spain) is a source of F− pollution affecting
surrounding soils; (b) pyritic mine tailings and slate waste
dumping sites are degraded areas subjected to restoration
treatments, which implicate the addition of waste and by-
products, such as pine sawdust, oak wood ash, mussel shell,
or mussel shell ash, individually or as mixtures (Raichur and
Basu, 2001; Quintáns-Fondo et al., 2016a) (c) these degraded
areas also receive a variety of other waste and by-products,
potentially including F− and/or As(V) among pollutants. In these
studies, we adjusted data to adsorption isotherms, and found
overall promising results. However, the effects of changing pH,
incubation time or competition with other anions were not
studied.

Taking all that into account, in this research we focused
on the effects of changing pH, incubation time, and
As(V) competition, on F− retention capacity on different
soil samples, pyritic and granitic materials, as well as
on different by-products: pine sawdust, oak wood ash,
mussel shell ash, fine and coarse mussel shell, and slate
processing waste fines. The results could be of aid in order
to manage soils and by-products such as those here studied.
Specifically, they would be interesting when focusing on F-
retention/removal in the following circumstances: (a) when
pH and contact time change, and (b) when F- and As(V) are
present simultaneously in the solid or liquid media under
investigation.

MATERIALS AND METHODS

Materials
We used: a forest soil sample, a vineyard soil sample, pyritic
material, granitic material, fine (<1mm), and coarse (0.5–3mm)
mussel shell, mussel shell calcination ash, oak wood ash, pine
sawdust, and slate processing waste fines. These materials were
described in previous papers by Seco-Reigosa et al. (2013a),
Osorio-López et al. (2014), Seco-Reigosa et al. (2014, 2015),
and Otero et al. (2015). See more details, as well as maps and
tables corresponding to characterization of these materials, in
Supplementary Material.

Methods
F− Sorption for Different pH Values

Triplicate 1-g samples of each of the various soil samples,
by-products and waste materials were added with 10mL of
solutions containing F− at 100mg L−1 (prepared from analytical
grade KF, Panreac, Spain) and different concentrations of HNO3

(0.005, 0.05, and 0.1M) or NaOH (0.005, 0.01, 0.02, 0.04,
0.08, and 0.1M), also including 0.01M NaNO3 as background
electrolyte (HNO3, NaOH and NaNO3 from Panreac, Spain).
Different control samples were constituted by each of the

sorbents with 10mL of solutions containing 0.01M NaNO3

and F− at 100mg L−1, but without HNO3 or NaOH. All
these samples were shaken (for 24 h), centrifuged (for 15min
at 4000 rpm, equivalent to 6,167 × g), and filtered (using
acid-washed paper). The resulting liquid was analyzed for pH
by means of a glass electrode (Crison, Spain) (Tan, 1996),
and an ion-selective electrode to quantitatively determine F−

(measured after adding a total ionic strength adjuster and the

FIGURE 1 | Sorption results (mg kg−1) for F− on the soils, by-products and

waste materials studied, at different pH values. Average values (three

replicates), with coefficients of variation <5%.

Frontiers in Chemistry | www.frontiersin.org 3 March 2018 | Volume 6 | Article 51

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Quintáns-Fondo et al. Fluoride Retention on Various Materials

TISAB IV buffer -Orion Research, Cambridge, USA). Sorbed
F− was calculated as the difference between the added-F−

concentration and the F− concentration in the equilibrium
solution.

F− Sorption for Different Incubation Times

Triplicate 10-g samples corresponding to the soils, by-products
and waste materials were added with 100mL of a 0.01M NaNO3

solution containing F− at 100mg L−1 (1:10 solid:solution ratio),
maintaining the contact during 1 month (720 h). The resulting
pH values at time zero were: forest soil 6.11, vineyard soil 5.54,
pyritic material 4.67, granitic material 6.06, fine mussel shell 8.77,
coarse mussel shell 9.06, mussel shell calcination ash 10.16, oak
wood ash 11.02, pine sawdust 4.74, and slate processing waste
fines 7.09.

Aliquots (5mL each) were taken at different incubation times:
0.5, 1, 2, 4, 8, 12, 24, 168, and 720 h, then the suspensions were
centrifuged (for 15min at 4000 rpm (6,167 × g)) and filtered
using acid-washed paper. The resulting filtrate was analyzed for
F− as indicated above.

F− Sorption in Competition With As(V)

Triplicate 3-g samples (<2mm fraction) of each of the soils, by-
products and waste materials were added simultaneously with
F− and As(V): specifically, 30mL of 0.01M NaNO3 solutions

containing in all cases the same F− concentration (3 mmol L−1),
and different As(V) concentrations (0, 0.5, 1.5, 3, and 6 mmol
L−1), prepared from analytical grade Na2HAsO4·7H2O (Panreac,
Spain).

In parallel, other samples were added with 3 mmol L−1

of As(V) in all cases, and, simultaneously, with different F−

concentrations (0, 0.5, 1.5, 3, and 6 mmol L−1).
The resulting suspensions were shaken (for 24 h), centrifuged

(at 4000 rpm for 15min, 6,167 × g), and filtered through
acid-washed paper. In the equilibrium dissolutions, pH and
F− were determined as indicated above, whereas As was
quantified by means of ICP-mass (820-NS, Varian, USA). Sorbed
As and F− were calculated as the difference between added
As(V) and F−, and As and F remaining in the equilibrium
solution. As and F− were determined by triplicate in all
samples.

Data Analyses
Statistical analyses (mainly descriptive statistics, specifically
average values, standard deviation, and coefficients of variation,
as well as test for normality and analysis of variance when
applicable) were performed by means of SPSS 19.0 (IBM,
USA). When applicable, significance of statistical differences was
considered at the level P 0.005.

FIGURE 2 | Sorption results (expressed as %) for F− on the soils, by-products and waste materials studied, at different incubation times. Average values (three

replicates), with coefficients of variation <5%.
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RESULTS AND DISCUSSION

F− Sorption for Different pH Values
Figure 1 shows that F− sorption clearly decreased for most
materials when pH increased, especially, and significantly, from
pH 6, although shell ash and wood ash maintained high sorption
up to alkaline pHs (Figures 1C,D), and sawdust showed low F−

sorption at any pH value (Figure 1D).
F− sorption was close to 100% for both ashes at pH <6

(Figures 1C,D), and at pH 10 was still higher than 70% for
shell ash. F− sorption on the forest soil sample was also high,
close to 90% at pH <2, and around 60% at pH values close to
8 (Figure 1A). Mussel shells sorbed about 90% of added F− at
pH <7, showing a clear and significant decrease at alkaline pH
(Figure 1C).

It must be taken into account that, at acid pH, the non-
crystalline or low-crystallinity components present positive
charge, which allows F− sorption by means of electrostatic
interactions, forming outer-sphere complexes (Valdivieso et al.,
2006), or by exchange between F− and OH− groups, giving
inner-sphere complexes, as indicated by Simard and Lafrance
(1996), and by Shin and Han (2004). At these pH values, organic
matter compounds can sorb F− by means of H bindings or -
NH+

3 groups. At pH values close to 6, sorption on variable-
charge components negatively charged can take place through
cationic bridges, but it is also possible that the formation
of positively charged Al-F complexes (AlF+2 , AlF2+) takes
place, those being very abundant in solution at pH between
5 and 6 (Álvarez et al., 2002, 2005), and these complexes can
sorb directly on negatively charged components. Tang et al.
(2009) found a similar pH range (from 3 to 6) for maximum
F− sorption on Fe hydroxides, which they attributed to the
formation of HF species (which are more difficult to sorb) at
pH <3, and to the de-protonation of the sorbent surfaces at pH
>6.

Wood ash and shell ash maintained a high F− removal
capacity even at alkaline pH, since the non-crystalline
components are negatively charged, facilitating that sorption can
take place through a cationic bridge involving Ca. Also, fluorite
(CaF2) precipitation can occur (Fluhler et al., 1982; Elrashidi and
Lindsay, 1986a,b). In this regard, Turner et al. (2005) explained
F− sorption on calcite as a combination of sorption reactions
across the surface, and of mineral precipitation (in the form of
fluorite) in the edges, where Ca2+ dissolution is greater.

F− Sorption at Different Incubation Times
Figure 2 shows F− retention (in percentage) for the various soils,
by-products and waste materials for different incubation times.

In view of the results, three groups of materials can be
considered. The first group (soil samples, pyritic material,
granitic material, and both kinds of ashes) was characterized
by rapid F− sorption, with differences being lesser than
10% between sorption at 30min and 1 month of incubation
(Figures 2A–C). The initial rapid sorption on these materials
can be due to functional groups and surface sites very active in
F− sorption (Mohan and Karthikeyan, 1997). Tripathya et al.
(2006) obtained 92% sorption of the added F− in just 3 h using

impregnated alumina, indicating that this rapid sorption was
probably due to diffusion processes in the pores of the sorbent
surface.

In a second group, sawdust and slate fines sorbed 20% of
added F− in 30min, this percentage remaining constant up to
12 h, and doubling after 30 days of incubation (Figure 2E).

And finally, in a third group, mussel shells sorbed 20% of
added F− at 30min, increasing to percentages close to 60% when
incubation timewas 30 days, with the largest increase taking place
between days 7 and 30 (Figure 2D).

Therefore, in the last two groups of materials, at least two
phases were evidenced during the sorption process: a first one
requiring no more than 30min, and a second one resulting
in much higher F− sorption after 30 days of incubation.
Meenakshi and Viswanathan (2007) noted that when retention
is very fast (in <40min), it is due to the occurrence of a
process of ion exchange, whereas when sorption is clearly
increased after that time, it is indicative of surface sorption
processes. Studying F− sorption on activated alumina, Tripathya
and Raichur (2008) detected two stages, indicating that such
behavior can be explained by surface sorption phenomena
as well as by intra-particle diffusion. Srimurali et al. (1997)
indicate that, initially, all sorption sites are vacant, and the
gradient of the solute concentration is high, and in a second
phase process slow down due to the decrease of sorption
sites.

FIGURE 3 | Sorption results (mmol kg−1) for F− on the soils, by-products and

waste materials studied, when the concentration of F−added is always 3

mmol L−1 and added As(V) is increased from 0 to 6 mmol L−1. Average

values (three replicates), with coefficients of variation <5%.
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F− Sorption in Competition With As(V)
Figure 3 shows that F− sorption decreased very slightly when the
amount of added As(V) increased, thus suggesting the absence
of competition for sorption sites in the materials assayed. Similar
results were found byWu et al. (2007), who indicated the possible
existence of heterogeneous sorption sites on the surface of the
sorbent, causing no interferences with F− sorption even when a
high As(V) concentration was added.

Figure 4 shows that the presence or absence of 3 mmol
of As(V) did not affect sorption of increasing concentrations
of F− added to the various soil samples, by-products and
waste materials studied. Dadwhal et al. (2011) found that
competition between F− and As(V) for sorption on an oxide-
based material was very low. Liu et al. (2012) did not
find competitive effect between As(V) and F− for sorption
sites on Fe, Al, and Fe-Al oxi-hydroxides, concluding that
Fe oxi-hydroxides have a high As(V)-sorption potential, but
very low F− sorption capacity. In addition, these authors
indicate that Al oxi-hydroxides can sorb both anions (but
the efficiency largely depends on the pH, and there is a

competition between both anions for sorption sites), and Fe-
Al oxi-hydroxides have a great capacity to adsorb both anions
in a wide range of pH. Notably, all soil samples, by-products
and waste materials tested in the present study have relevant
concentrations of Fe and Al oxy-hydroxides (see Supplementary
Material).

CONCLUSIONS

In this study we tested the effect of pH, incubation time and
As(V) competition on F− sorption, using a forest soil sample,
a vineyard soil sample, pyritic material, granitic material, fine
mussel shell, coarse mussel shell, mussel shell ash, oak wood ash,
pine sawdust, and slate processing fines. As regards the effect
of pH, F− sorption clearly diminished in most materials when
pH increased, notably from pH 6, although wood ash and shell
ash maintained high F− sorption even at alkaline pH, and pine
sawdust showed low F− sorption at any pH value. Incubation
time (from 30min to 30 days) did not affect substantially to both

FIGURE 4 | Sorption results (mmol kg−1) for F− on the soils, by-products and waste materials studied, for increasing F− concentrations added, both in absence of

As(V) or when 3 mmol L−1 of As(V) are added. Average values (three replicates), with coefficients of variation <5%.
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soil samples, pyritic material, granitic material and both kinds of
ashes, which showed very rapid F− sorption, whereas the other
materials (slate fines, sawdust, and both kinds of mussel shell)
showed a first phase of rapid F− sorption and a second phase
characterized by slower sorption. In addition, no remarkable
competition was detected between F− and As(V) for sorption
sites. These results could aid to correctly manage soils, by-
products and waste materials when focusing on F− removal in
circumstances where pH changes, contact time may vary from
hours to days, and F− and As(V) are present simultaneously in
the affected media. Further future research would aid to deepen
understand each of the relevant processes taking place during the
sorption/desorption phases, and for each of the circumstances
here considered. For instance, complementary research and
determinations would be needed in order to elucidate actual
adsorption sites involved in fluoride removal for the variety of
sorbent materials investigated.
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