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Per- and polyfluoroalkyl substances (PFAS) represent a versatile group of ubiquitously

occurring chemicals of increasing regulatory concern. The past years lead to an ever

expanding portfolio of detected anthropogenic PFAS in numerous products encountered

in daily life. Yet no clear picture of the full range of individual substance that comprise

PFAS is available and this challenges analytical and engineering sciences. Authorities

struggle to cope with uncertainties in managing risk of harm posed by PFAS. This is a

result of an incomplete understanding of the range of compounds that they comprise in

differing products. There are analytical uncertainties identifying PFAS and estimating the

concentrations of the total PFAS load individual molecules remain unknown. There are

four major trends from the chemical perspective that will shape PFAS research for the

next decade.

1. Mobility: A wide and dynamic distribution of short chain PFAS due to their high polarity,

persistency and volatility.

2. Substitution of regulated substances: The ban or restrictions of individual molecules

will lead to a replacement with substitutes of similar concern.

3. Increase in structural diversity of existing PFAS molecules: Introduction of e.g.,

hydrogens and chlorine atoms instead of fluorine, as well as branching and

cross-linking lead to a high versatility of unknown target molecules.

4. Unknown “Dark Matter”: The amount, identity, formation pathways, and

transformation dynamics of polymers and PFAS precursors are largely unknown.

These directions require optimized analytical setups, especially multi-methods, and

semi-specific tools to determine PFAS-sum parameters in any relevant matrix.

Keywords: per- and polyfluoroalky substances, PFAS, analytical chemistry, consumer products, PMT substances,

PBT substances

INTRODUCTION

Per- and Polyfluoroalkyl Substances (PFAS) have been a challenging subject of technical and
scientific disciplines for the last decades. And they will be for the next. PFAS represent a vast
group of different molecules with a great variety of applications and physicochemical properties.
Key characteristic is their strong C-F bond, the resulting inertness, and stability. When scanning
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scientific search engines for the keyword “perfluorinated” several
thousand hits for scientific contributions arise (PubMed: 2292;
Web of Science: 8396). This huge investigative pressure does
not only show the scientific interest in the topic, but also the
economic, societal and political relevance. For 2017 only, Web
of Science identified 575 hits, which indicates ongoing research
actions. PFAS-research is influenced by many contributing
factors and perspectives, such as the variable amounts of
fluorinated substances produced. Furthermore, their commercial
and environmental transport routes across the globe–as pure
industrial chemicals or as fabrics - or in trace amounts on
consumer products play a role. Moreover, the used substance
portfolio is influenced constantly by improved production
technologies, legal status of individual compounds, design of
new molecules with optimized characteristics, new fields of
application, and the availability of new research methods.
A couple of recent reviews specify current analytical methods
(Ruan and Jiang, 2017), substance spectra (Xiao, 2017), and
resulting environmental challenges (Shi and Cai, 2014; Krafft and
Riess, 2015). The relevance of PFAS research is underlined by
multiple adverse effect routes that are described upon human
PFAS exposure (Bach et al., 2016; Ballesteros et al., 2017).

From the literature published in the past years, from
discussions and presentations, four major trends can be drawn
for PFAS-related research needs. So far, the main perfluorinated
structural elements used for the production of water repellent
materials were based on chain lengths (the carbon atom
backbone) above six. This led to an abundance of C8-
based perfluoroalkylic acids (PFCAs), especially perfluorooctane
sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA).
Manufacture and use of PFOS was prohibited in the EU from
2006 (2006/122/EC) and is listed in Annex B of the Stockholm
convention. PFOA has been regulated in 2017 to phase out
in 2020, and was nominated a candidate for Annex B of the
Stockholm convention. The efficiency of such ban was shown,
as it already led to a decreasing trend of PFOS in human blood
serum samples in a retrospective study from 2011 (Schröter-
Kermani et al., 2013).

MOBILITY

The phase out and ban of specific substances did not change
principals of PFAS chemistry, but let to an increased usage of
”alternatives,” including short chain PFAS with chain lengths
below six carbon atoms. However, besides these developments,
short chain PFCAs did not receive the same scientific and
public attention. Today, we know that short chain PFCAs are
produced and emitted in significant amounts, e.g., for use in
formulations replacing the C8 based chemistry (Wang et al.,
2016). Thus more attention will be directed to substances such
as trifluoroacetic acid (TFA), perfluoropropanoic acid (PFPrA),
perfluorobutanoic acid (PFBA), and perfluorobutane sulfonic
acid (PFBS). In addition to PFBA and PFBS which sources are
known and their use is intentional, several studies have shown
the worldwide occurrence of TFA and also PFPrA in aqueous
environmental samples (Wujcik et al., 1997, 1998, 1999; Scott

et al., 2006a,b; Taniyasu et al., 2008; Kwok et al., 2010; Yeung
et al., 2017). While it is suspected that the abundance of TFA
originates from HFC-1234yf (2,3,3,3-tetrafluoropropene) and
HFC-134a (1,1,1,2-tetrafluoroethane) used as cooling agents in
mobile air conditioners (Henne et al., 2012; Russell et al., 2012),
the origin of PFPrA is yet unknown (Yeung et al., 2017). The
key difference between long chain and short chain PFAS is their
mobility: While long chain PFAS strongly absorb to solid mater,
such as soil, which renders them practically immobile, short
chain PFAS show a high mobility via water bodies and leachates,
and can thus be detected in ground water samples (Gellrich et al.,
2012). Moreover, very short chain PFAS are also volatile and can
be distributed within atmospheric routes and enter water cycles
and other environmental compartments in remote regions far
from areas of direct exposure (Hu et al., 2013; Scheurer et al.,
2017). These factors, promote recent efforts to shift the focus
toward mobility as a key chemical parameter of concern, besides
the established criteria persistent (P), bioaccumulative (B), and
toxic (T) toward persistent mobile organic chemicals (PMOCs)
(Reemtsma et al., 2016) and persistent, mobile (M), or toxic (PM
or PMT) (Arp et al., 2017; Neumann et al., 2017). The future
importance is to recognize the “M” criterion to be more than
the reciprocal “B” criterion. The property of a substance not
being “B” does not automatically induce mobility and, moreover,
mobility may cause environmental and health concerns even
exceeding those of the “B” criterion.

The importance of the mobility criterion is becoming
increasingly clear considering environmental damages caused by
a number of accidental or intentional incidents. Wang et al.
(2017) mentioned incidents in Australia, Germany, Norway,
Sweden, United Kingdom, and the United States. Severe issues
are dealt with in the German states of North Rhine-Westfalia
(Lanuv, 2017) and Baden-Wuerttemberg (Regierungspräsidium
Karlsruhe, 2017). The wide-spread impacts to ground and
drinking water with long chain PFAS result in the need for
soil remediation, while the short chain PFAS cause the need
for drinking water treatment, and shutdown of several drinking
water supplies.

The toxicity of only a few PFAS compounds has been
investigated and safe PFAS exposure levels are not commonly
agreed upon. Short chain PFASs are considered to be of similar
concern and as persistent as long chain PFAS, but may have
shorter half lives in organisms (Olsen et al., 2007, 2009). However,
their toxicity is still not well understood. Therefore, according to
the precautionary principle the use of short chain PFAS e.g., as
alternatives for long chain PFAS should be avoided.

SUBSTITUTION OF REGULATED

SUBSTANCES

While for PFOA and PFOS concentrations in human samples
show declining trends, this is not the case for other substances
(Land et al., 2017). A restriction in the use of short chain
PFASs, as described above, not only leads to a shift in the
observed chain lengths but also to a diversification of the
used molecules. By engineering the molecular structure,
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substances that exhibit very similar or even more desired
characteristics than PFOA and PFOS, but are not regulated and
not yet integral part of authority initiated monitoring studies
can be synthesized. Typical structural components are ether
functions (Perfluoropolyethers, PFPEs), single positions that
are chlorinated instead of fluorinated, or branched molecules
(Wang et al., 2013; Rotander et al., 2015). The currently most
popular substitutive for PFOA is probably 3H-perfluoro-3-
[(3-methoxy-propoxy)propanoic acid] (ADONA), a PFPE.
ADONA has already been detected in a variety of environmental
samples (Heydebreck et al., 2015) and also recently in plasma of
German blood donors (Fromme et al., 2017). Other prominent
emerging substances are perfluoro-2-propoxypropanoic
acid (PFPrOPrA), known as GenX, a technical mixture of
chlorine substituted perfluoro sulphonic acid ethers, known as
F53-B, and hydrogen substituted polyfluoroalkyls, like 2,3,3,3-
tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)propanoic
acid (HFPO-DA) (Heydebreck et al., 2015). To cope with
the dynamic industrial novelty, the scientific community will
quickly have to adopt analytical methods and monitoring
programs which need to include these compounds into the
target lists. Besides the newly designed substitutes, PFAAs
(perfluoroalkyl acids) and PFAS of varying chain lengths and
mixtures of those are of course also candidates to replace
banned and regulated chemicals. Despite the ban of PFOS and
the regulation of PFOA, similar unbranched substances, and
also uneven chained PFASs remain unaffected and are found
in the environment, consumer products and human samples
(Joyce Dinglasan-Panlilio et al., 2014; Zafeiraki et al., 2014;
Kotthoff et al., 2015; Yeung et al., 2017). These are especially
perfluorobutane sulphonic acid (PFBS), perfluoroheaxane
sulphonic acid (PFHxS), perfluorobutanoic acid (PFBA),
perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid
(PFHpA), and perfluorononanoic acid (PFNA). The efficiency
of such singular regulatory measures is thus questionable.
However, it can be an initiation to promote and support the
efforts regulating PFAS subclasses as a whole. It’s notable
that PFHxS and PFOA, “their salts and related substances”
have recently been listed as candidates for the Stockholm
convention (Stockholm_Convention, 2017). The definition
of the mentioned related substances will be interesting, as to
whether this may also include molecules such as ADONA, GenX
or F53-B, or at least pave the way to regulate them in the near
future.

INCREASE IN STRUCTURAL DIVERSITY

OF EXISTING PFAS MOLECULES

A recent study identified as many as 2060 PFASs that are or
were marketed for intentional applications, and that there are
at least 3000 PFASs on the global market [KEMI (Swedish
Chemicals Agency), 2015]. Many of these commercial products,
and technical grade chemicals may contain unintended by-
products in significant amounts (Wang et al., 2017).

Even well-known individual substances may appear as
mixtures of several specific isomers. In the case of PFOS and

PFOA, for example, major part of the whole relevant substance
are the linear molecules, but also up to 10 branched isomers
may account for the total amount of PFOS and PFOA. In
contaminated ground water, these branched isomers account
for up to 35% of the total long chain homologs (Pellizzaro
et al., 2017). From studies with biosolids-amended soils, it was
recently reported that the plant uptake and translocation for
branched isomers is even higher than for the linear isomers. This
renders the branched isomers a research subject with individual
hazards on their own (Zhang et al., 2018). Many chemical
and biochemical reactions, such as microbially mediated bio-
transformations in soil and groundwater (Benskin et al., 2013)
will lead to the formation of more unknown intermediate PFAS,
such as the fluorotelomer sulphonates (Liu and Mejia Avendano,
2013), and persistent terminal transformation products. Using
modern analytical techniques such as high resolution mass
spectrometry in non-targeted and suspect screening approaches
are leading to the discovery of more and more individual
molecules (Rotander et al., 2015; Baduel et al., 2017; Newton
et al., 2017; Xiao et al., 2017; Xu et al., 2017). Is this, because
better and more sensitive instruments and analytical methods
are available? Only in parts: a study of PFAS levels in German
and Chinese human serum and blood samples indicates an
increase in unidentified organofluorine compounds after the
year 2000 (Yeung and Mabury, 2016). The authors analyzed
the same set of retrospective samples with a specific and an
unspecific Extractable Organic Fluorine (EOF) method (see
below). This indicates an increase in human exposure toward
new and unidentified PFASs that is irrespective of analytical
techniques.

UNKNOWN “DARK MATER”

As the structural diversity of produced and marketed PFASs
increases and many degradable polymers add to the complexity
of the substance pattern, the amount of structures that are not
captured with established analytical methods increases. Besides
specific research oriented analytical methods for individual
molecules or specific subgroups, few routinized off-the-shelf
methods exist. Current analytical multi methods rely on (ultra)
high performance liquid chromatography coupled to tandem
mass spectrometry [(U)HPLC-MS/MS] and capture hardly more
than 30 PFAS in one run. These methods usually detect C4
to C10 PFAA and C4, C6, and C8 PFSA, as they are also
included in the present DIN guidance documents for water
and sludge (DIN, 2011a,b). Recently published methods cover
also precursor substances and substitutes that are extractable
with conjoint methods. A draft ISO method for water actually
aims to include 31 substances and will yet be extended with
some target molecules (ISO, 2017). Its final validation would
at least lead to these roughly 30 substances beingroutinely
captured, and in future methods also for more complicated
matrices than water, e.g., soil, blood or serum, and plant
materials.

This analytical limitation does not allow to get a fast
overview of the degree of exposure or contamination in terms
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of quantity and quality. In environmental incidents, even the
identification of sources by means of the substance pattern may
take valuable time. The complex mixture of substances used in
aqueous film forming foam (AFFF) used as fire extinguishing
foams, but also in other industrial branches is composed of
numerous individual derivatives of PFCAs and PFSAs and other
PFASs.

All the unknown substances and those not captured with
the applied analytical methods will not be accounted for and
balanced and can, consequently, not be considered for health and
environmental assessments. Moreover, since there are numerous
and diverse sources of PFAS, the nature of molecules released into
the environment are not known and not part of commercial or
academic methods, and consequently incidents of PFAS release
can go undetected or will at least be underestimated. To cope with
this gap, various non-specific methods were established allowing
to estimate the total load of PFAS.

One method is to determine the sum of extractable or
absorbable organic fluorine compounds (EOF or AOF; Yeung
et al., 2008). This analytical method, based on Combustion
Ion Chromatography, is just being standardized. However, the
individual PFAS cannot be differentially determined and so, the
EOF or AOF can only be used as an orientation value and support
the specific analysis using targeted methods such as UHPLC-
MS/MS. Another sum parameter is the determination of total
fluorine using Particle-Induced Gamma Ray Emission (PIGE)
Spectroscopy (Hashiguchi et al., 2013). This method is suited to
generate a fast overview of the total fluorine load, but similar
to EOF, AOF, and PIGE does not allow for the speciation of
chain lengths and structural details. The disadvantage of both
PIGE and EOF/AOF is that the detection limits are in the µg/L
range, whereas regulatory standards are now increasingly at ng/L
levels.

The determination of Total Oxidizable Precursors (TOP) is
an alternative, which involves the oxidation of all precursors
present in samples during sample preparation to form PFCAs
and PFSAs, which can then be quantified by conventional
analysis (Houtz and Sedlak, 2012). Analysis of the sample before
and after this oxidative pretreatment allows for a quantitative
estimate of the precursor content of the sample. This method
can provide limits of detection in the 1–2 ng/L range, as
seen with conventional analysis for PFAAs using LC-MS/MS.
Moreover, the resulting PFCAs (and less frequently observed
the PFSAs) partly reflect the structural composition of the
precursors. However, with fluorotelomers this does not occur
in a manner which necessarily preserves the chain length
of the PFAAs evolved after the oxidative digest. Thus, the
resulting PFAAs may be shortened by one or two carbon
atoms. This chain shortening effect is however analogous to
the natural partial defluorination and shortening exhibited due
to microbial attack of PFAAs (Liu and Mejia Avendano, 2013).
The measurement of slightly shorter chain length PFAAs from
the perflouroalkyl groups in the fluorotelomer precursors, still
allows a stoichiometric estimate of the precursor concentrations.
Then, as shorter chain PFCAs are generally less bioaccumulative
and thus can be excreted more quickly than longer chain,
their toxicity is generally diminished. An assumption that

the slightly shorter chain PFAAs are representative of the
toxicity of the slightly longer chain fluorotelomer precursors
will therefore not be overestimated. One difference between
the PFAAs formed from the TOP assay and those occurring
via natural biotransformation is that the TOP assay tends to
generate PFCAs from sulphonamide precursors, whereas micro-
organisms generate PFSAs. However, with the sulphonamide
precursors the TOP assay digest retains the perflouroalkyl chain
length of the precursors, as also seen with microbial attack.
This may only be relevant for risk assessment purposes when
considering the C6 PFAAs and PFHxA is classed as short
chain with diminished bioaccumulation potential compared to
PFHxS, which is classed as long chain. However, to be able
to determine whether the PFHxA generated after TOP assay
of a sulphonamide precursor would occur as PFHxS in the
environment, it should be possible tomeasure the branched chain
PFHxA after TOP assay. This will provide a good indication
of whether the precursor was a sulphonamide [synthesized via
electrochemical fluorination (ECF)] or a fluorotelomer (made
via fluorotelomerisation), as only ECF generates branched chain
isomers. Branched chain isomers were typically present at 30–
35% of straight chain (Benskin et al., 2010; Pellizzaro et al., 2017)
so the concentration of the branched PFHxA could be multiplied
by 3.3 to give an estimate the concentration of the PFHxA that
should be assessed as if it is long chain PFHxS. These calculations
should also consider that differential transport of branched vs.
linear compounds is known to occur in many systems (Benskin
et al., 2010, 2013), so the branched vs. linear composition
is not typically preserved at exactly 30% in environmental
samples. In order to use this method not only as a tool of
approximation, but to assess potential toxicity and thus form
part of a regulatory framework to manage risks from PFASs,
these pragmatic assumptions considering interpretation of TOP
assay data could be adopted. Given the major advantages of
using TOP assay it is seen as the most promising method for
future improvements in environmental management of PFASs
and could be considered as the analytical method of choice for
future research projects.

CONCLUSION

The growing knowledge and understanding of precursors
indicates a potential presence in consumer products such as food
packaging materials and outdoor clothing. Prior assessments of
PFAAs in products may have failed to detect many unknown
PFASs (Kotthoff et al., 2015). In order to be aware of realistic
exposures and resulting risks, future work, also with respect to
specific toxicological impacts, has to be directed to understanding
both of PFAAs and their precursors and to answer some key
questions: What are the more abundant PFASs, moreover, which
are the abundant precursors and how quickly do they transform
to the persistent PFAAs? How do mobile PFASs distribute
from commodities into drinking water and produce? Which
evolving analytical methods to measure total PFAS (including
precursors) are most promising? What needs to be optimized
to have cost effective and fast screening methods that provide
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a comprehensive assessment of PFASs, with output data that
can be pragmatically integrated into environmental management
strategies to allow risk based management of potential for
harm?

These new, more comprehensive, analytical techniques make
a huge stride in taking PFASs assessment forward. However, in
agreement with Wang et al. (2017) for the foreseeable future, and
unless safe and known alternatives are available, PFASs research
will not be an ending story, as PFASs are here to stay for future
millennia (Allen, 2018).
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