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Cancer is a leading cause of death worldwide, and its incidence is rising with numbers

expected to increase 70% in the next two decades. The fact that current mainline

treatments for cancer patients are accompanied by debilitating side effects prompts

a growing demand for new therapies that not only inhibit growth and proliferation

of cancer cells, but also control invasion and metastasis. One class of targets

gaining international attention is the aquaporins, a family of membrane-spanning water

channels with diverse physiological functions and extensive tissue-specific distributions

in humans. Aquaporins−1,−2,−3,−4,−5,−8, and−9 have been linked to roles in cancer

invasion, and metastasis, but their mechanisms of action remain to be fully defined.

Aquaporins are implicated in the metastatic cascade in processes of angiogenesis,

cellular dissociation, migration, and invasion. Cancer invasion and metastasis are

proposed to be potentiated by aquaporins in boosting tumor angiogenesis, enhancing

cell volume regulation, regulating cell-cell and cell-matrix adhesions, interacting with

actin cytoskeleton, regulating proteases and extracellular-matrix degrading molecules,

contributing to the regulation of epithelial-mesenchymal transitions, and interacting

with signaling pathways enabling motility and invasion. Pharmacological modulators of

aquaporin channels are being identified and tested for therapeutic potential, including

compounds derived from loop diuretics, metal-containing organic compounds, plant

natural products, and other small molecules. Further studies on aquaporin-dependent

functions in cancer metastasis are needed to define the differential contributions of

different classes of aquaporin channels to regulation of fluid balance, cell volume, small

solute transport, signal transduction, their possible relevance as rate limiting steps, and

potential values as therapeutic targets for invasion and metastasis.
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INTRODUCTION

Aquaporins
Aquaporins (AQPs) are a family of water channels that also include a subset of classes
shown to mediate transport of glycerol, ions, and other molecules (Li and Wang, 2017).
The first aquaporin to be cloned, aquaporin-1 (AQP1), was identified in red blood cells
and renal proximal tubules (Denker et al., 1988; Preston and Agre, 1991). In the Xenopus
laevis expression system, introduced AQP1 channels enabled high osmotic water flux
across the plasma membrane as compared to non-AQP control oocytes (Preston et al.,
1992), explaining the mechanism enabling rapid transmembrane passage of water in certain
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types of cells. To date, 15 classes of aquaporin genes have
been identified in mammals (AQP0–AQP14), with AQPs 13
and 14 found in older lineages of mammals (Metatheria and
Prototheria) (Ishibashi et al., 2009; Finn et al., 2014; Finn and
Cerda, 2015). The first 13 aquaporins (AQP0–AQP12) have
been divided into categories based on functional properties
(Li and Wang, 2017). One comprises the classical aquaporins
(AQP0,−1,−2,−4,−5,−6,−8), which were thought initially to
transport only water, though some also transport gases, urea,
hydrogen peroxide, ammonia, and charged particles (Ehring and
Hall, 1988; Preston et al., 1992; Fushimi et al., 1993; Hasegawa
et al., 1994; Raina et al., 1995; Ma et al., 1996, 1997a; Chandy
et al., 1997; Ishibashi et al., 1997b; Yasui et al., 1999; Anthony
et al., 2000; Nakhoul et al., 2001; Bienert et al., 2007; Herrera
and Garvin, 2011; Almasalmeh et al., 2014; Rodrigues et al.,
2016). A second category consists of the aquaglyceroporins
(AQP3,−7,−9, and−10), which are permeable to water and
glycerol, with some also exhibiting urea, arsenite, and hydrogen
peroxide permeability (Ishibashi et al., 1997a, 1998, 2002; Yang
and Verkman, 1997; Liu et al., 2002; Lee et al., 2006; Rojek
et al., 2008; Miller et al., 2010; Watanabe et al., 2016). A possible
third category consists of AQP11 and AQP12, distantly related
paralogs with only 20% homology with other mammalian AQPs
(Ishibashi, 2009), which appear to carry both water and glycerol
(Yakata et al., 2011; Bjørkskov et al., 2017). The permeability of
AQP11 to glycerol could be important for its function in human
adipocytes, in which it is natively expressed (Madeira et al.,
2014). Aquaporins assemble as homo-tetramers, with monomers
ranging 26–34 kDa (Verkman and Mitra, 2000). In most AQPs,
each monomer is composed of six transmembrane domains and
intracellular amino and carboxyl termini, with highly conserved
asparagine-proline-alanine (NPA) motifs in cytoplasmic loop B
and in extracellular loop E (Jung et al., 1994). The NPA motifs
in loops B and E contribute to a monomeric pore structure that
mediates selective, bidirectional, single-file transport of water in
the classical aquaporins (Sui et al., 2001), and water and glycerol
in aquaglyceroporins (Jensen et al., 2001).

Intracellular signaling processes regulate AQP channels by
altering functional activity, intracellular localization, and levels
of expression in different cells and tissues. For example, the
peptide hormone vasopressin regulates excretion of water in
the kidney by augmenting water permeability of collecting duct
cells. Vasopressin induces phosphorylation of AQP2 (Hoffert
et al., 2006), stimulating the reversible translocation of AQP2
from intracellular vesicles to the apical plasma membrane
(Nielsen et al., 1995). Guanosine triphosphate (GTP) stimulates
AQP1-induced swelling of secretory vesicles in the exocrine
pancreas (Cho et al., 2002), with functional implications in
pancreatic exocrine secretions. Additionally, AQP1 ion channel
activity is activated by intracellular cGMP (Anthony et al.,
2000), and phosphorylation of Y253 in the carboxyl terminal
domain regulates responsiveness of AQP1 ion channels to
cGMP (Campbell et al., 2012). Given the diverse array of
functional properties, mechanisms of regulation, and tissue-
specific distributions being discovered for aquaporins, it is
not surprising that different classes of aquaporins (AQP-
1,−2,−3,−4,−5,−8, and−9) have been implicated specifically in

the complex steps associated with cancer invasion and metastasis
(Table 1), suggesting specialized roles for these channels have
been arrogated into the pathological processes.

Cancer Invasion and Metastasis
Cancer is a leading cause of death worldwide, accounting for
8.2 million deaths in 2012 (Ferlay et al., 2015). The incidence
of cancer is rising steadily in an aging population, with
numbers expected to increase 70% in the next two decades
(Ferlay et al., 2015). Current treatments involve chemotherapy,
radiation therapy, and surgery (Miller et al., 2016), associated
with an array of side effects including nausea (Koeller et al.,
2002), impaired fertility and premature menopause (Howard-
Anderson et al., 2012; Wasilewski-Masker et al., 2014), painful
neuropathy (Gamelin et al., 2002; Rivera and Cianfrocca, 2015),
increased risk of cardiovascular disease (Monsuez et al., 2010;
Willemse et al., 2013), and loss of bone density (Gralow et al.,
2013). Inhibiting proliferation remains the primary focus of
cancer treatments, although the predominant cause of death is
cancer metastasis (Yamaguchi et al., 2005; Spano et al., 2012).
Less devastating cancer therapies might be achievable via a
combination of strategies that not only inhibit proliferation,
but also control metastasis of tumor cells from their primary
site to distant organs (Friedl and Wolf, 2003). Cancer cell
migration through the body exploits pathways including blood
stream, lymphatic system, and transcoelomic movement across
body cavities (Wyckoff et al., 2000; Pepper et al., 2003; Tan
et al., 2006). The hierarchical nature of the metastatic cascade
suggests it should be vulnerable to intervention at multiple levels
including angiogenesis, detachment of cells from the primary
tumor, and infiltration of dissociated tumor cells into and out
of circulatory pathways via intravasation and extravasation,
respectively (Figure 1). AQPs that serve as rate-limiting steps in
themetastatic cascade should have substantial value as prognostic
markers and pharmacological targets for treatments.

ANGIOGENESIS

Both cancer invasion and metastasis are enhanced by
angiogenesis. Angiogenesis, activated in response to inadequate
oxygen perfusion, triggers extracellular matrix breakdown;
endothelial cell proliferation, differentiation, and migration; and
recruitment of periendothelial cells (Clapp and de la Escalera,
2006) which form discontinuous layers around vessels and exert
developmental and homeostatic control (Njauw et al., 2008).
Under physiological conditions, angiogenesis is seen in the
proliferative phase of the menstrual cycle (Demir et al., 2010),
development of fetal and placental vasculature (Demir et al.,
2007), and skeletal muscle following physical activity (Egginton,
2009). In pathological scenarios such as tumorigenesis, tissue
hypoxia stimulates the formation of new vasculature, enabling
tumors to better obtain nutrients, exchange gases, and excrete
waste (Nishida et al., 2006). Folkman et al. (1966) showed
that tumors up to 2mm in diameter could survive via passive
diffusion from surrounding tissue; but angiogenesis was essential
for support of larger tumors.
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TABLE 1 | Key roles of AQPs involved in cancer invasion and metastasis.

AQP Permeable to: Key physiological role(s) Cancer(s) up-regulated Key role(s) in cancer invasion and
metastasis

AQP1 • Water (Preston et al., 1992),
monovalent cations (Anthony et al.,
2000), CO2 (Nakhoul et al., 1998),
H2O2 (Almasalmeh et al., 2014), NO
(Herrera et al., 2006), and NH3

(Nakhoul et al., 2001)

• Water reabsorption in proximal
tubule of the kidney for
concentrating urine (Ma et al.,
1998; Schnermann et al., 1998)

• Secretion of aqueous fluid from
ciliary epithelium in the eye, and
cerebrospinal fluid from the
choroid plexus (Zhang et al.,
2002; Oshio et al., 2005)

• Perception of thermal
inflammatory pain and
cold-induced pain (Zhang and
Verkman, 2010)

Glioma (Saadoun et al., 2002a; El
Hindy et al., 2013), mammary
carcinoma (Endo et al., 1999),
lung adenocarcinoma (Hoque
et al., 2006), colorectal carcinoma
(Moon et al., 2003),
hemangioblastoma (Chen et al.,
2006), and multiple myeloma
(microvessels) (Vacca et al., 2001)

• Upregulated in response to tumor
tissue hypoxia. Enables recruitment of
new tumor vasculature by enhancing
endothelial cell migration

• Polarizes to leading and trailing edge of
migrating cell, and enhances tumor cell
migration and invasion by enabling rapid
membrane protrusion formation via cell
volume regulation and interaction with
cytoskeletal dynamics

• Enhances mesenchymal stem cell
migration via FAK and β-catenin pathways

• Might contribute to EMT
• Possible interaction with ECM-degrading

proteases

AQP2 • Water (Fushimi et al., 1993) • Water reabsorption in collecting
duct of the kidney to
concentrate urine (Rojek et al.,
2006)

Endometrial carcinoma (Zou et al.,
2011)

• Enables “traction” for migrating cell by
contributing to the regulation and recycling
of focal adhesion proteins (e.g., integrin)

• Necessary in estradiol-induced invasion
and adhesion of endometrial carcinoma
cells, through reorganization of F-actin

AQP3 • Water (Echevarria et al., 1994),
glycerol, urea (Ishibashi et al., 1994),
H2O2 (Miller et al., 2010), arsenite
(Lee et al., 2006), and NH3 (Holm
et al., 2005)

• Water reabsorption in collecting
duct of the kidney to
concentrate urine (Ma et al.,
2000)

• Skin hydration (Ma et al., 2002)
• Skin wound healing

(Hara-Chikuma and Verkman,
2008a)

Lung cancer (Liu et al., 2007),
hepatocellular carcinoma (Guo
et al., 2013), gastric cancer (Shen
et al., 2010), prostate cancer
(Hwang et al., 2012), oesophageal
and oral squamous cell carcinoma
(Kusayama et al., 2011),
colorectal carcinoma (Moon et al.,
2003), skin squamous cell
carcinoma (Hara-Chikuma and
Verkman, 2008b), ovarian cancer
(Ji et al., 2008), pancreatic cancer
(Direito et al., 2017), and breast
cancer (Mobasheri and
Barrett-Jolley, 2014)

• Upregulated by EGF, and contributes to
EGF-induced EMT and cancer migration

• Contributes to chemokine-dependent
cancer migration via enabling H2O2 influx
and its downstream cell signaling

• Interacts with ECM-degrading proteases
• Might enhance tumor cell migration and

invasion via regulation of cell protrusion
formation

AQP4 • Water (Hasegawa et al., 1994) • Water reabsorption in collecting
duct of the kidney to
concentrate urine (Ma et al.,
1997b)

• Transport of water into and out
of the brain and spinal cord via
blood-brain barrier (Manley
et al., 2000)

• Neuroexcitation (Binder et al.,
2006)

• Enables astrocyte cell migration
following injury (Saadoun et al.,
2005b)

Glioma (Saadoun et al., 2002b)
and meningioma (Ng et al., 2009)

• Co-localizes with ion channels at leading
and trailing edges of migrating cancer cells

• Enhances tumor cell migration and
invasion by enabling rapid membrane
protrusion formation via cell volume
regulation and interaction with cytoskeletal
dynamics

• Might interact with ECM-degrading
proteases

AQP5 • Water (Raina et al., 1995) and H2O2

(Rodrigues et al., 2016)
• Secretion of saliva (Ma et al.,

1999) and airway mucus (Song
and Verkman, 2001)

Prostate cancer (Li et al., 2014),
chronic myelogenous leukemia
(Chae et al., 2008a), colorectal
carcinoma (Wang et al., 2012),
hepatocellular carcinoma (Guo
et al., 2013), lung cancer (Chae
et al., 2008b), cervical cancer
(Zhang et al., 2012), pancreatic
cancer (Direito et al., 2017), and
breast cancer (Jung et al., 2011)

• Promotes EMT
• Co-localizes with ion channels at leading

and trailing edges of migrating cancer cells
• Enhances tumor cell migration and

invasion by enabling rapid membrane
protrusion formation via cell volume
regulation

• Might interact with EGFR/ERK1/2
signaling pathway

AQP8 • Water, urea (Ma et al., 1997a), H2O2

(Bienert et al., 2007), and NH3 (Holm
et al., 2005; Saparov et al., 2007)

• Canalicular bile water secretion
(Calamita et al., 2005)

• Colonic water reabsorption
(Yamamoto et al., 2007)

Cervical cancer (Shi et al., 2012,
2014)

• Not yet known

(Continued)
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TABLE 1 | Continued

AQP Permeable to: Key physiological role(s) Cancer(s) up-regulated Key role(s) in cancer invasion and
metastasis

AQP9 • Water, urea (Ishibashi et al., 1998),
glycerol (Tsukaguchi et al., 1998),
arsenite (Liu et al., 2002), and H2O2

(Watanabe et al., 2016)

• Hepatic glycerol uptake and
metabolism for glucose
production (Kuriyama et al.,
2002; Rojek et al., 2007;
Maeda et al., 2009)

• Route for excretion of arsenic
by the liver (Carbrey et al.,
2009) and modulates arsenic
sensitivity in leukemia
(Bhattacharjee et al., 2004;
Leung et al., 2007)

Glioblastoma (Fossdal et al.,
2012), astrocytoma (Tan et al.,
2008), prostate cancer (Chen
et al., 2016)

• Overexpression might correspond with
reduced EMT and growth in hepatocellular
carcinoma

• Might interact with ERK1/2 and MMP9 to
enhance prostate cancer invasion and
migration

FIGURE 1 | Flow diagram summarizing the steps in cancer metastasis. Metastasis involves the migration of cells from the primary tumor to distant organs. Large

tumors with tissue hypoxia rely on angiogenesis for vascular exchange of nutrients and waste. Primary tumor cells undergo phenotypic changes including loss of

cell-cell adhesions which enables cells to dissociate from primary tumor, invade the adjacent extracellular matrix (ECM), and intravasate into the blood or lymph

systems. Circulating tumor cells extravasate to seed secondary sites at which the process can reoccur.

AQP1, expressed in peripheral vascular endothelial cells, is
involved in tumor angiogenesis (Nielsen et al., 1993; Endo
et al., 1999; Saadoun et al., 2002a; El Hindy et al., 2013;
Verkman et al., 2014). AQP1 knock-down in chick embryo
chorioallantoic membrane resulted in a dramatic inhibition of
angiogenesis (Camerino et al., 2006). Saadoun et al. (2005a)
found AQP1-deficient mice exhibited reduced tumor growth and
angiogenesis as compared to wild type, following subcutaneous
or intracranial B16F10 melanoma cell implantation. Their
work showed AQP1-null endothelial cells from mouse aorta
had reduced motility as compared to wild-type, suggesting
AQP1 was needed to facilitate cell migration for angiogenesis.
Monzani et al. (2009) confirmed a reduced migration capacity
in human microvascular endothelial cells (HMEC-1) after
AQP1 knockdown by siRNA. AQP1 mRNA and protein
levels are increased in response to tissue hypoxia (Kaneko
et al., 2008; Abreu-Rodríguez et al., 2011). AQP1 facilitates

hypoxia-induced angiogenesis by enhancing endothelial cell
migration.

Angiogenesis is regulated by growth factors such as vascular
endothelial growth factor (VEGF), which stimulates endothelial
cell proliferation and angiogenesis in response to hypoxia (Suzuki
et al., 2006), through processes that could augment AQP1 activity
indirectly. Pan et al. (2008) found a positive correlation between
levels of AQP1 expression, intratumoral microvascular density,
and VEGF in endometrial adenocarcinoma. Similarly, AQP1
gene deletion correlated with reduced VEGF receptor expression
in mouse primary breast tumor cells (Esteva-Font et al., 2014),
and knockdown of AQP1 in human retinal vascular endothelial
cells with concurrent inhibition of VEGF caused an additive
inhibition of hypoxia-induced angiogenesis (Kaneko et al., 2008).
However, application of VEGF-neutralizing antibodies did not
alter AQP1 expression (Kaneko et al., 2008), and levels of VEGF
in primary breast tumors were not different between AQP1-null
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and wild-type mice (Esteva-Font et al., 2014), supporting the idea
that VEGF is regulated independently of AQP1 expression or
activity.

Other angiogenic factors, such as hypoxia-inducible factor
1-alpha (HIF-1α), induce AQP1 expression in low oxygen
conditions (Abreu-Rodríguez et al., 2011). The AQP1 gene
promoter carries a HIF-1α binding site which drives AQP1
expression in response to hypoxia in cultured human retinal
vascular endothelial cells (HRVECs) (Tanaka et al., 2011),
and involves phosphorylation of p38 mitogen-activated protein
kinase (MAPK) (Tie et al., 2012). Estrogen signaling also targets
the promoter region of the AQP1 gene to increase transcription,
inducing enhanced tubulogenesis of vascular endothelial cells as
a model for angiogenesis (Zou et al., 2013). In summary, AQP1
is upregulated by angiogenic factors in response to hypoxia,
and necessary for endothelial cell migration and angiogenesis.
Therapies aimed at blocking transcriptional activation of AQP1
could impede cancer angiogenesis, if the treatment could be
spatially limited to the tumor site without impacting normal cell
functions.

CELLULAR DISSOCIATION AND
EPITHELIAL-MESENCHYMAL TRANSITION

Epithelial-mesenchymal transition (EMT) occurs in normal
physiological conditions such as implantation, embryogenesis,
and organ development, as well as pathological processes
such as cancer invasion and metastasis (Vićovac and Aplin,
1996; Thiery, 2002). During EMT, polarized epithelial cells
undergo biochemical changes to adopt a mesenchymal
phenotype, characterized by a loss of cell polarity, reduced
cell-cell adhesiveness, and enhanced invasive capacity (Thiery,
2002, 2003; Cavallaro and Christofori, 2004; Kalluri and
Weinberg, 2009; van Zijl et al., 2011). Epithelial cadherin
(E-cadherin), a transmembrane glycoprotein, enables calcium-
dependent tight adhesions between epithelial cells and links
to cytoskeletal elements (Angst et al., 2001; Alizadeh et al.,
2014). Downregulation of E-cadherin is a hallmark feature
of EMT (Cano et al., 2000; Chua et al., 2007; Korpal et al.,
2008). EMT in cancer is induced by signals from the tumor-
associated stroma, including epidermal growth factor (EGF),
platelet-derived growth factor (PDGF), hepatocyte-derived
growth factor (HGF), and transforming growth factor beta
(TGF-β) (Miettinen et al., 1994; Pagan et al., 1999; Lo et al.,
2007; Kong et al., 2009; Xu et al., 2009). These signals stimulate
transcription factors such as SNAI1 (SNAIL), SNAI2 (SLUG),
zinc finger E-box binding homeobox 1 (ZEB1), Mothers against
decapentaplegic homolog 2 (SMAD-2) and Twist, which are all
E-cadherin transcription repressors (Yang et al., 2004; Medici
et al., 2008).

Classes of aquaporins such as AQP3 have been implicated
in the EMT process. AQP3 up-regulation in response to EGF
in colorectal, gastric, and pancreatic cancers, is associated
with augmented cell migration, invasion, and metastasis
(Huang et al., 2010; Liu et al., 2012; Li et al., 2013). In
gastric cancer, EGF-induced AQP3 upregulation enhances

the mesenchymal transformation (Chen et al., 2014). Chen
et al. (2014) determined that mRNA and protein levels
of vimentin and fibronectin (proteins associated with
mesenchymal phenotype) were significantly increased in
cells with high levels of AQP3 expression but decreased in
AQP3-deficient cells. Conversely, E-cadherin expression was
significantly lower in cells with high AQP3 and increased
in AQP3-knockdown cells. The mechanisms for AQP3-
facilitated pancreatic and colorectal cancer cell migration
have not yet been determined. It will be interesting
to investigate whether AQP3 promotes EMT in these
cancers.

In addition to AQP3, AQPs 1, 4, 5, and 9 also have
been linked to EMT in different types of cancer cells. In
lung adenocarcinoma cells, AQP1 overexpression correlated
with the down-regulation of E-cadherin, and up-regulation of
vimentin (Yun et al., 2016). AQP4 knockdown in human breast
cancer was associated with increased levels of E-cadherin, and
in glioma cells with increased β-catenin (involved in actin
reorganization and cell-cell adhesion) and connexin-43 (a gap
junction protein that contributes to cell-cell signaling and
adhesion) (Ding et al., 2011; Li Y. et al., 2016), suggesting
AQP4 might enhance cell detachment from primary tumors.
However, opposing evidence showed knockdown of AQP4 in
primary human astrocytes correlated with down-regulation of
connexin-43 (Nicchia et al., 2005); and transfection of wild
type AQP4 into glioma cell lines caused enhanced adhesion
(McCoy and Sontheimer, 2007). In primary glial cells, AQP4
expression levels had no appreciable effect on cell-cell adhesion
under the conditions tested (Zhang and Verkman, 2008). In
human non-small cell lung cancer cells (NSCLCs), AQP5
increased invasiveness; conversely, expression of AQP5 mutant
channels lacking membrane targeting signals or the S156
phosphorylation site did not augment invasiveness (Chae et al.,
2008b). Overexpression of AQP5 in NSCLCs was associated with
a reduction in epithelial cell markers such as E-cadherin, α-
catenin, and γ-catenin, and an increase in mesenchymal cell
markers such as fibronectin and vimentin, concomitant with
a mesenchymal change in morphology. Similarly, AQP3 and
AQP5 overexpression in pancreatic ductal adenocarcinoma is
accompanied by downregulation of E-cadherin and upregulation
of vimentin (Direito et al., 2017). The invasion-promoting
properties of AQP5 expression appear to depend on the c-Src
signaling pathway, a potent trigger of EMT (Guarino et al.,
2007; Chae et al., 2008b). High AQP5 expression correlated
with an increase in phosphorylated SMAD2, promoting EMT
in colorectal cancer, whereas AQP5 silencing was associated
with a down-regulation of phosphorylated SMAD2, and a
repressed EMT response (Chen et al., 2017). AQP9 is
downregulated in hepatocellular carcinoma; overexpression
corresponds to reduced growth and EMT, thus reducing
cancer invasion and metastasis (Li C. F et al., 2016; Zhang
et al., 2016). Evidence suggests that AQPs have different
effects depending on the type of cancer. Moreover, the state
of cancer progression, environmental factors, and the types
of assays used will be complicating factors; nevertheless,
AQPs have clear potential as diagnostic and prognostic
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biomarkers, and as therapeutic targets for modulation of
EMT, cell-cell adhesion, and dissociation phases of cancer
progression.

INVASION AND CELL MIGRATION

Cell migration involves the translocation of individual and
collective groups of cells through fluid or tissues, relevant for
survival in multicellular and single-celled organisms (Klausen
et al., 2003; Friedl et al., 2004). Migration enables physiological
morphogenesis, immunity, and tissue repair (Friedl et al.,
2004; Friedl and Weigelin, 2008). In most mammalian cells,
migration is highest during development and morphogenesis
and decreases after terminal differentiation. In pathological
circumstances such as cancer, migration machinery can be
reactivated. AQPs−1,−3,−4, and−5,−8, and−9 are known to
contribute to cancer cell migration and invasion. Translocation
of cancer cells can be initiated by chemokines released from host
tissues, and growth factors such as EGF secreted by stromal cells
(Dittmar et al., 2008; Roussos et al., 2011).

AQP3 has been suggested to increase EGF-induced cancer
growth and migration by mediating H2O2 flux (Miller et al.,
2010; Hara-Chikuma et al., 2016). H2O2 is known as an
oxidative stressor, but is also a second messenger in cell
proliferation, differentiation and migration (Thannickal and
Fanburg, 2000; Rhee, 2006). AQP3 knockdown in skin and
lung cancer cell lines reduced EGF-induced H2O2 influx,
and attenuated EGF signaling cascades (Hara-Chikuma et al.,
2016), reducing migration and growth. H2O2 also influenced
chemokine-dependent migration of T-cells and breast cancer
cells (Hara-Chikuma et al., 2012; Satooka and Hara-Chikuma,
2016). AQP1,−3,−5,−8, and−9 have all been suggested to
transport H2O2 (Bienert et al., 2007; Miller et al., 2010;
Almasalmeh et al., 2014; Rodrigues et al., 2016; Watanabe et al.,
2016). All of these classes also have been linked with cancer cell
migration (Hu and Verkman, 2006; Shi et al., 2013; Li et al., 2014;
Chen et al., 2015; Zhang et al., 2016); however, H2O2 transport
has thus far been linked only to AQP3 as a control mechanism in
cancer cell migration. Further work might show H2O2 transport
in other classes of AQPs regulates cell motility and invasion.

Polarization
Key molecular and cellular events involved in cell migration
can be classified into five inter-dependent stages, which
are polarization, protrusion, cell-matrix adhesion, extracellular
matrix (ECM) degradation and retraction (Figure 2). Cell
polarization provides functionally specialized domains in the
membrane and cytoplasm (Drubin and Nelson, 1996), typified
by asymmetric distributions of organelles, signaling mechanisms,
and membrane channels, transporters and receptors (Swaney
et al., 2010). In movement, changes in cell polarization generate
leading and trailing edges, predominantly regulated by small
GTPases such as CDC42 (Johnson and Pringle, 1990; Allen
et al., 1998), which controls the recruitment of partitioning-
defective (PAR) proteins, atypical protein kinase C (aPKC),
and actin polymerization machinery (Etienne-Manneville and
Hall, 2003; Goldstein and Macara, 2007). AQPs−1,−4,−5,

and−9 have been shown to show polarized localization at
the leading edges of migrating cells. Specific co-distributions
with ion transporters such as the Na+/H+ exchanger, the
Cl−/HCO−

3 exchanger, and the Na+/-HCO3 co-transporter,
suggest sophisticated mechanisms for regulation of fluid influx
and efflux (Loitto et al., 2002; Verkman, 2005; Hara-Chikuma and
Verkman, 2006; Papadopoulos et al., 2008; Stroka et al., 2014),
potentially driving membrane protrusions for cell locomotion
(Schwab et al., 2007).

Protrusion
A migrating cell extends its leading edge into the ECM by
assembling a branched network of intracellular actin filaments,
predicted to yield a physical force that dynamically pushes
the membrane out, alternating with relaxation and actin
depolymerization (Wang, 1985; Theriot and Mitchison, 1991;
Pollard and Borisy, 2003). Membrane expansion requires the
vesicle fusion to support the increase in surface area (Bretscher
and Aguado-Velasco, 1998; Pierini et al., 2000; Fletcher and
Rappoport, 2010). Three types of protrusions found in motile
cells are lamellipodia, filopodia, and invadopodia. Lamellipodia
are broad, flat, actin-rich protrusions that extend in the direction
of locomotion and provide a foundation on which the cell
moves forward (Cramer et al., 1997). Filopodia are long,
thin protrusions of the membrane thought to be exploratory,
“sensing” the local environment (Mattila and Lappalainen, 2008).
Lamellipodial and filopodial formations are modulated by small
GTPases in the Rho family, such as Rac1 and CDC42 (Ridley
et al., 1992; Allen et al., 1997; Hall, 1998; Machesky, 2008), which
stimulate actin polymerization in response to growth factor
(Hall, 1998) and integrin receptor activations (Price et al., 1998).
Interestingly, AQP9-facilitated water flux appears to critical for
filopodial protrusion formation in fibroblasts, via the CDC42
pathway (Loitto et al., 2007). The Arp2/3 (actin-related protein
2/3) complex regulates the formation of new actin filaments in
migrating cancer cells, and is regulated by Scar/WAVE complex
(otherwise known as WANP), which interacts with the small
GTPase Rac1 for lamellipodial assembly (Ibarra et al., 2005).
Invadopodia are actin-rich, matrix-degrading protrusions that
appear when ECM degradation and cell adhesion are needed to
create space for movement, involving proteases such as MMP2,
MMP9, and MT1-MMP and src tyrosine kinase (Weaver, 2006).
Changes in cell volume during protrusion are assumed to require
rapid water flow (Condeelis, 1993), and could occur in part in
response to osmotic gradients governed by ion transport and
actin polymerization state (Diez et al., 2005; Disanza et al., 2005;
Schwab et al., 2007).

AQPs at the leading edges of migrating cells are well
positioned to facilitate cell volume changes and cytoskeletal
modifications during protrusion formation (Monzani et al.,
2009; Jiang and Jiang, 2010; Klebe et al., 2015; Wei and Dong,
2015; Pelagalli et al., 2016). AQP1 overexpression in B16F10
melanoma cells and 4T1 mammary gland tumor cells enhanced
cell migration and lamellipodial width in vitro, and augmented
metastasis in a mouse model (Hu and Verkman, 2006). AQP1
is proposed to enhance lamellipodial formation by increasing
membrane osmotic water permeability (Verkman, 2005; Hu
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FIGURE 2 | Key contributions of aquaporins in cell migration. (A) Forward

movement is preceded by establishing specialized loci within the cell, with

redistribution of aquaporins, ion transporters/exchangers, and actin

polymerization machinery to the leading edge. AQP-1,−4,−5, or−9 can be

found on leading edges of migrating cancer cells. (B) Protrusions of the

membrane might use water influx (down an osmotic gradient established by

ion transporters/exchangers) and actin polymerization beneath the plasma

membrane to dynamically push the membrane forward. AQP-1,−4, and−5

are implicated in water influx for protrusion extension in cancer cells; AQPs-1

and−4 also appear to interact with actin cytoskeleton. (C) Protrusions adhere

to the ECM using integrin to generate “traction” for cellular movement. AQP2

might modulate turnover of integrin at adhesion sites, enabling forward cellular

movement. (D) ECM degradation by enzymes can widen gaps through which

the cell body can penetrate. AQP-1,−3,−4 and−9 are suggested to interact

with ECM-degrading enzymes. (E) The final step is retraction of the cell trailing

edge, thought to use aquaporins for water efflux following by K+ export.

and Verkman, 2006; Jiang, 2009), allowing water entry at the
leading edge to impose hydrostatic pressure, drive membrane
extension, and create space for actin polymerization. In addition

to water channel activity, AQP1 is also thought to be an ion
channel, proposed to allow gated conduction of monovalent
cations through the central tetrameric pore (Anthony et al., 2000;
Yu et al., 2006). The dual water and ion conductance of AQP1
is essential for colon cancer cell migration in vitro (Kourghi
et al., 2015). Conversely, in clinical cases of cholangiocarcinoma,
high AQP1 expression has been correlated with low metastasis
(Aishima et al., 2007; Sekine et al., 2016), suggesting that AQP1
might play different roles in different types of cancers.

Other classes of AQP water channels are not necessarily
interchangeable with AQP1 in facilitating cell migration (McCoy
and Sontheimer, 2007), suggesting features of AQP1 other than
simple osmotic water permeability are involved. AQP1-enhanced
cell migration might also be due to interactions with cytoskeletal
proteins. For example, Monzani et al. (2009) demonstrated
that AQP1 knockdown dramatically impeded actin cytoskeletal
organization in migrating human melanoma and endothelial cell
lines via interaction with Lin-7/β-catenin. The Lin-7/β-catenin
complex enables asymmetrical organization of filamentous actin
(F-actin). AQP1 might act as a scaffolding protein at the
leading edges. Jiang (2009) found that knocking down AQP1
was associated with re-localization of actin in migrating HT20
colon cancer cells, and a reduction in the activity of actin
regulatory factors RhoA and Rac. A PDZ domain in Lin-7 could
mediate interaction with rhotekin protein, which inhibits Rho
GTPase signaling that is involved in cell migration, invasion, and
cytoskeletal reorganization (Sudo et al., 2006). Rhotekin merits
further evaluation in models of AQP1-dependent cytoskeletal
organization.

A role for AQP4 in glioma cell migration has similarly
been proposed to occur through regulation of cell volume
and cytoskeletal interactions. Protein kinase C (PKC)-mediated
phosphorylation of AQP4 at serine 180 correlated with a
decreased glioma cell invasion (McCoy et al., 2010). AQP4-
facilitated glioma invasion is dependent on co-expression
of chloride channels (ClC2) and the potassium-chloride co-
transporter 1 (KCC1) in invadopodia, which could provide the
ionic driving force for water efflux leading to cell shrinkage
that could augment invasiveness through ECM (Mcferrin and
Sontheimer, 2006; McCoy et al., 2010). AQP4 effects on actin
cytoskeleton suggest a role for α-syntrophin, interacting with the
C-terminal domain of AQP4 at a PDZ-binding site (Neely et al.,
2001). In human glioma and primary astrocytes, reduced AQP4
expression correlated with dramatic morphological elongation,
reduced invasiveness, and impaired F-actin polymerization
(Nicchia et al., 2005; Ding et al., 2011).

AQP5 facilitates protrusion formation, volume regulation,
cell migration, and metastasis. AQP5 expression is correlated
with cell invasiveness and metastasis of human prostate cancer
(Li et al., 2014), lymph node metastasis in patients with colon
cancer (Kang et al., 2015), and metastatic potential of lung
cancer cells (Zhang et al., 2010). Moreover, Jung et al. (2011)
showed that a shRNA-induced reduction in AQP5 expression
in MCF7 breast cancer cells was associated with significantly
reduced cell proliferation and migration. The mechanism of
AQP5-facilitated cancer cell invasion and metastasis might be
due to its direct or indirect interaction with the epidermal growth
factor receptor/extracellular signal-regulated kinase (ERK1/2)
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pathway (Kang et al., 2008; Zhang et al., 2010), known to be
important in cancer metastasis and aggressiveness (Vicent et al.,
2004). Additionally, AQP5 mediates lung cancer cell membrane
osmotic water permeability, and has been suggested to contribute
to cancer cell migration and invasion by enabling rapid cell
volume regulation and subsequent protrusion formation (Chen
et al., 2011). The complementary role of ion transport for
migration in AQP5-expressing cells was supported by Stroka
et al. (2014), who found that cell migration through physically
confined spaces occurred despite block of actin polymerization
and myosin contraction, but relied on co-expression of the
Na+/H+ exchanger with AQP5, supporting AQP5-induced cell
volume regulation and its importance in cell motility.

AQP8 expression influences migration and invasion of
cervical cancer cells, and AQP3 expression enhances pancreatic
and colorectal cancer cell invasion and metastasis (Liu et al.,
2012; Li et al., 2013; Shi et al., 2013). Further work is needed
to investigate whether mechanisms of AQP3- and AQP8-
facilitated cancer cell migration and invasion involve cell volume
regulation, protrusion formation, cytoskeletal interaction, or
other functional properties of the AQP channels that remain to
be defined.

Cell-Matrix Adhesion
Cell-matrix adhesions, first observed in cultured fibroblasts,
connect the extracellular matrix to the actin cytoskeleton
(Curtis, 1964). During migration, contacts with substratum
must form to facilitate extension, and must detach to allow
forward displacement of the cell. Insufficient anchoring causes
protrusions to collapse, leading to a “membrane ruffling”
phenomenon (Vicente-Manzanares and Horwitz, 2011).
Protrusions adhere to ECM via integrin receptors, in turn
linked to intracellular actin filaments (Ridley et al., 2003).
The extracellular binding of integrin receptors to ECM ligands
initiates integrin clustering, and activates protein tyrosine kinases
and small GTPases. The organization of actin cytoskeleton and
cell polarity controls the positions of focal adhesions for cell
locomotion (Geiger et al., 2001; Martin et al., 2002). Cell-matrix
adhesions create the focal points for generation of traction to
pull the cell forward over the substratum.

Classes of aquaporins (AQP1-4) have been shown to interact
with adhesion molecules and to influence adhesive properties
of migrating cells. Increased AQP1 in mesenchymal stem cells
enhances migration by a mechanism involving β-catenin and the
focal adhesion kinase (FAK) (Meng et al., 2014), which regulates
integrin signaling at focal adhesion sites (Schaller et al., 1992;
McLean et al., 2005; Zhao and Guan, 2011). Whether AQP1
and FAK also interact in cancer cell migration remains to be
tested. AQP2 appears to promote cell migration by modulating
integrin β1 at focal adhesion sites, by a mechanism thought to
involve an arginine-glycine-aspartate (RGD) motif in the second
extracellular loop of AQP2 (Chen et al., 2012). When AQP2 is
absent, integrin β1 is retained at focal adhesion sites, delaying
recycling of focal adhesions, thus reducing migration rate.
AQP2 also enables estradiol-induced migration and adhesion of
endometrial carcinoma cells by mechanisms involving annexin-2
and reorganization of F-actin (Zou et al., 2011). Knockdown of

AQP3 in human esophageal and oral squamous cell carcinoma
with siRNA correlated with reduced phosphorylation of FAK,
impaired cell adhesion and cell death (Kusayama et al., 2011);
these effects would be predicted to impair cancer cell migration.
AQP4 expression has been suggested to enhance cell-matrix
adhesion in cancer cells (McCoy and Sontheimer, 2007).
More research is needed to identify the intracellular signaling
mechanisms and to determine whether other AQP classes alter
cell migration via modulation of cell adhesion.

ECM Degradation
Extracellular matrix degradation widens pathways through
which cells can penetrate tissues, and reduces the distortion of
the rounded cell body needed for physical progress (Brinckerhoff
and Matrisian, 2002; Mott and Werb, 2004). Invadopodia sprout
from leading edge filopodia, extending through tiny channels
in the ECM, and adhere to ECM collagen fibers (Weaver,
2006; Friedl and Wolf, 2009). To accommodate displacement
of the cell body, constraining ECM fibers are cleared by local
proteolysis, using surface proteases such as zinc-dependent
matrix metalloproteinases (MMP) and serine proteases (Nagase
and Woessner, 1999; Netzel-Arnett et al., 2003; Wolf et al.,
2007). AQPs−1,−3,−4, and−9 have been shown to interact with
specific MMPs to facilitate ECM degradation and invasion.

In lung cancer cells, migration was facilitated by AQP1
expression, linked to expression of MMP2 and MMP9 (Wei and
Dong, 2015). In gastric cancer cells (SGC7901), AQP3 levels
were correlated with MMP2, MMP9, and MT1-MMP levels, and
enhanced invasiveness via phosphoinositide 3-kinase signaling
(Xu et al., 2011). Positive correlations between AQP3, MMP2,
and MMP9 and cancer invasiveness also occur in lung cancer
(Xia et al., 2014; Xiong et al., 2017). In prostate cancer, AQP3
expression is correlated with up-regulation of MMP3 via ERK1/2
signaling, with increased cell motility and invasion (Chen et al.,
2015). In glioma, AQP4 levels correlated with migration and
invasiveness in vitro and in vivo through a mechanism involving
MMP2 (Ding et al., 2011). AQP9 upregulation in prostate
cancer could enhance growth, migration, and invasion involving
ERK1/2 signaling; reduced levels of phosphorylated ERK1/2 and
MMP9 were observed in AQP9-deficient cell lines (Chen et al.,
2016). These studies suggest one of the key components of AQP-
mediated facilitation of cancer cell invasion is the regulation of
MMP proteases needed for degradation of ECM.

Retraction
Following integrin-ligand binding, cross-linking proteins such
as myosin II contract the actin filament strands (Vicente-
Manzanares et al., 2009), developing tension against the intact
adhesion points (Chrzanowska-Wodnicka and Burridge, 1996).
The final step in the cycle of cell movement is retraction of the
trailing edge. A working model is that membrane tension opens
stretch-activated Ca2+ channels, activating calpain and triggering
disassembly of focal adhesion proteins on the trailing edge, while
concurrent K+ efflux drives volume loss at the cell rear, resulting
in detachment and net translocation along the substrate. In this
model, the role of AQP channels is to facilitate osmotic water
efflux in response to K+ efflux (Huttenlocher et al., 1997; Palecek
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et al., 1998; Schwab et al., 2007) presumably in parallel with
electroneutral efflux of chloride ions.

AQP PHARMACOLOGY AND
THERAPEUTIC IMPLICATIONS IN CANCER
INVASION AND METASTASIS

Aquaporin pharmacological agents have attracted keen interest
for their potential therapeutic uses in diseases involving impaired
fluid homeostasis. Aquaporins in cancer metastasis are new
translational targets for AQP modulators. Known and proposed
inhibitors of AQPs include cysteine-reactive metals such as
mercury (II) chloride (HgCl2) (Preston et al., 1993), gold-
based compounds (Martins et al., 2013), carbonic anhydrase
inhibitor acetazolamide (Ma et al., 2004a; Gao et al., 2006), and
small molecule inhibitors such as tetraethylammonium (TEA+)
(Brooks et al., 2000), although the small molecule blockers
vary in efficacy between preparations. The pharmacological
panel for AQPs has been expanding steadily, with new
compounds being discovered around the world, including for
example the University of Niigata, Japan (Huber et al., 2009),
Radboud University, Netherlands (Detmers et al., 2006), the
Faculty of Pharmacy, University of Lisbon, Portugal (Martins
et al., 2012), the Institute of Food and Agricultural Research
and Technology, Barcelona, Spain (Seeliger et al., 2012), the
University of Adelaide, Australia (Niemietz and Tyerman,
2002; Yool, 2007), the University of Groningen, Netherlands
(Martins et al., 2013), the University of Kiel, Germany (Wu
et al., 2008), and others. This review focuses specifically on
selected AQP pharmacological agents that to date have been
tested in models of cancer cell migration and metastasis
(Table 2).

Acetazolamide and Topiramate
Acetazolamide and topiramate are FDA-approved drugs that
inhibit carbonic anhydrase. Acetazolamide at 100µM was
reported to inhibit water channel activity by 39% for AQP1
expressed in human embryonic kidney (HEK293) cells (Gao
et al., 2006), and by 81% at 10µM in the Xenopus oocyte
expression system (Ma et al., 2004a). AQP4 activity was inhibited
by 47% at 1,250µM in proteoliposomes (Tanimura et al.,
2009). However, acetazolamide (at doses up to 10,000µM)
did not block water flux in erythrocytes with native AQP1
expression, or epithelial cells transfected with AQP1 (Yang
et al., 2006; Søgaard and Zeuthen, 2008). Acetazolamide
inhibited angiogenesis in a chick chorioallantoic membrane
assay, and tumor growth and metastasis in mice with Lewis
lung carcinoma (Xiang et al., 2002, 2004), perhaps as a result of
reduced AQP1 expression (Bin and Shi-Peng, 2011). Topiramate
reduces Lewis lung carcinoma growth and metastasis, with
effects similarly attributed to suppression of AQP1 expression
(Ma et al., 2004b). It will be of interest to compare the
effects of acetazolamide and topiramate on angiogenesis,
tumor growth, and metastasis with those of AQP1 channel
inhibitors.

Tetraethylammonium
TEA+ is an inhibitor of voltage-gated potassium channels,
calcium-dependent potassium channels, the nicotinic
acetylcholine receptor, and it has also been shown to block
AQP-1,−2, and−4 water permeability in Xenopus laevis oocytes
and kidney derived cell lines (Brooks et al., 2000; Yool et al.,
2002; Detmers et al., 2006). However, inhibition of AQP1 water
permeability by TEA+ is variable, having been confirmed by
some groups (Detmers et al., 2006), and challenged by others
(Søgaard and Zeuthen, 2008). Yang et al. (2006) reported no
block of water flux by TEA+ in erythrocytes with native AQP1, or
in epithelial cells transfected with AQP1, and suggested previous
positive results might have been due to inhibition of K+ channels
and altered baseline cell volume; however, the observation
that site-directed mutation of AQP1 altered TEA sensitivity
(Brooks et al., 2000) ruled out this alternative explanation. TEA+

block of AQP1 water permeability reduced cell migration and
invasion in in vitro models of osteosarcoma and hepatocellular
carcinoma (Pelagalli et al., 2016), with outcomes interpreted as
consistent with action of TEA+ as a possible AQP1 inhibitor.
However, given the variability in efficacy and cross-talk with
other channels, TEA+ is not an ideal candidate for clinical
development, although the targets causing the observed block
of cancer cell migration and invasion might merit further
investigation.

Bumetanide Derivatives
Bumetanide is a sulfamoylanthranilic acid derivative used
clinically to increase diuresis by blocking sodium cotransporter
activity at the loop of Henle in the nephron.Molecular derivatives
of bumetanide have been synthesized and found to exhibit
inhibitory effects on classes of AQP channels. For example,
the bumetanide derivative AqB013 blocks osmotic water fluxes
mediated by mammalian AQP1 and AQP4 channels expressed in
Xenopus laevis oocytes (Migliati et al., 2009). The water channel
blocker AqB013 was shown to inhibit endothelial tube formation
and colon cancer cell migration and invasion in vitro (Dorward
et al., 2016). Other bumetanide derivatives, AqB011 and AqB007,
block the AQP1 ion conductance, but not water flux (Kourghi
et al., 2015). In AQP1, the central tetrameric pore is thought to
be permeable to monovalent cations, CO2, and NO (Nakhoul
et al., 1998; Herrera et al., 2006; Yu et al., 2006; Musa-Aziz et al.,
2009), although some work questioned AQP1-mediated CO2 and
cation transport properties (Yang et al., 2000; Fang et al., 2002;
Tsunoda et al., 2004). An ionic conductance in AQP1-expressing
Xenopus oocytes stimulated with forskolin was first reported in
1996 (Yool et al., 1996); however, the forskolin response proved
to be inconsistent when repeated by other groups (Agre et al.,
1997). Further work showed the forskolin effect was indirect; the
direct regulation of the AQP1 cation conductance depended on
cGMP binding (Anthony et al., 2000). The reason that AQP1
cation channels have low opening probability (Saparov et al.,
2001) or are not detectable (Tsunoda et al., 2004) reflects the
availability of AQP1 to be gated by cGMP, which depends
on tyrosine phosphorylation status of the carboxyl terminal
domain, suggesting the AQP1 ion channel function is highly
regulated (Campbell et al., 2012). With the discovery of AQP1
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TABLE 2 | Summary of AQP pharmacology used in cancer invasion and metastasis.

Molecule name Molecular structure AQP activity Effect

TEA+ • Inhibits AQP1, AQP2, and AQP4

water flux (Brooks et al., 2000; Yool

et al., 2002; Detmers et al., 2006)

• Inhibits osteosarcoma

and hepatocellular

carcinoma cell migration

and invasion (in vitro)

(Pelagalli et al., 2016)

Acetazolamide • Inhibits AQP1 and AQP4 water flux

(Ma et al., 2004a; Tanimura et al.,

2009)

• Suppresses AQP1 expression

(Xiang et al., 2004)

• Inhibits angiogenesis and

metastasis in Lewis lung

carcinoma (in vivo) (Xiang

et al., 2002, 2004)

• Suppresses tumor growth

in colon cancer (in vivo)

(Bin and Shi-Peng, 2011)

Topiramate • Suppresses AQP1 expression (Ma

et al., 2004b)

• Suppresses Lewis lung

carcinoma growth and

metastasis (in vivo) (Ma

et al., 2004b)

AqB007 • Inhibits AQP1 ion flux (Kourghi

et al., 2015)

• Inhibits colon cancer cell

migration (in vitro)

(Kourghi et al., 2015)

AqB011 • Inhibits AQP1 ion flux (Kourghi

et al., 2015)

• Inhibits colon cancer cell

migration (in vitro)

(Kourghi et al., 2015)

AqB013 • Inhibits AQP1 and AQP4 water flux

(Migliati et al., 2009)

• Inhibits endothelial tube

formation and colon

cancer cell migration (in

vitro) (Dorward et al.,

2016)

(Continued)
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TABLE 1 | Continued

Molecule name Molecular structure AQP activity Effect

Bacopaside I • Inhibits AQP1 water flux (Pei et al.,

2016)

• Inhibits colon cancer cell

migration (in vitro) (Pei

et al., 2016)

Curcumin • Inhibits EGF-induced AQP3

upregulation (Ji et al., 2008)

• Inhibits ovarian cancer

cell migration (in vitro) (Ji

et al., 2008)

Bacopaside II • Inhibits AQP1 water flux (Pei et al.,

2016)

• Inhibits colon cancer cell

migration (in vitro) (Pei

et al., 2016)

Ginsenoside Rg3 • Suppresses AQP1 expression (Pan

et al., 2012)

• Inhibits prostate cancer

cell migration (in vitro)

(Pan et al., 2012)
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ion blocking agents, AqB011 and AqB007, the physiological
function of the ion channel activity could finally be addressed.
When applied to AQP1-expressingHT29 colon cancer cells, these
inhibitory compounds significantly reduced cancer cell motility
(Kourghi et al., 2015), suggesting a physiological role of AQP1
ion conductance in cell migration. Mutation of the candidate
binding site in the AQP1 intracellular loop D domain removed
sensitivity to AqB011, showing that the inhibitory mechanism
directly involved the AQP1 channel and could not readily be
attributed to off-target actions on other channels or transporters
(Kourghi et al., 2018). Another bumetanide derivative AqB050
was shown to inhibit mesothelioma cell motility and metastatic
potential in vitro, but not in vivo (Klebe et al., 2015). The
mechanism of action of AqB050 in blocking mesothelioma cell
motility in vitro remains to be determined.

Plant-Based Derivatives
Plant-based derivatives that reduce cancer cell migration and
invasion include agents that have also have been found to
inhibit AQPs. Bacopa monnieri is a perennial herb native to
the wetlands of India that is used in alternative medicinal
therapies. Chemical constituents bacopaside-I and bacopaside-
II, were shown to block AQP1 but not AQP4 water channels
(Pei et al., 2016). Pei and colleagues also found that bacopaside-
I and bacopaside-II attenuated migration of colon cancer cell
lines expressing high levels of AQP1, but had no effect on lines
with low AQP1, suggesting the inhibitory effects were AQP1-
specific. Ginsenoside Rg3 from a traditional Asian medicinal
plant Panax ginseng is an intriguing candidate for possible anti-
metastatic therapies. Ginsenoside Rg3 inhibited prostate cancer
cell migration and was associated with downregulation of AQP1
expression via the p38 MAPK pathway and transcription factors
(Pan et al., 2012). Effects of Ginsenoside Rg3 directly on water
channel activity, or on expression levels of other aquaporins,
remain unknown. Curcumin is a naturally occurring ingredient
in turmeric, used as therapeutic tool for pathologies including
cancer (Gupta et al., 2013). Curcumin was found to inhibit
EGF-induced upregulation of AQP3 and migration in human
ovarian cancer cells, via inhibition of AKT/ERK and PI3K
pathways (Ji et al., 2008); however, curcumin affects a number
of biochemical pathways and might not be suited when AQP-
specific modulation is required (Aggarwal et al., 2003). Research
on the effects of curcumin in other cancers such as gastric
cancer, in which EGF-inducedAQP3 up-regulation occurs, might
further understanding of the role of AQP3 in cell migration and
invasion (Huang et al., 2010).

Metal-Based Inhibitors
Mercury has classically been used as an AQP1 inhibitor. In the
human AQP1monomer, the NPAmotif in loop E is near cysteine
189, which is the site at which mercury inhibits osmotic water
permeability (Preston et al., 1993). Lack of a cysteine in the
corresponding position is consistent with mercury insensitivity
in mammalian AQP4 (Preston et al., 1993). However, mercury
is not a promising candidate for AQP-specific modulation or

therapeutic application due to its toxicity and non-specific side-
effects. Metal-based inhibitors that have been tested in models
of cancer include AQP3 inhibitors such as NiCl2 (Zelenina
et al., 2003) and CuSO4 (Zelenina et al., 2004), which inhibited
EGF-induced cell migration in human ovarian cancer cells.
Auphen is a gold-based compound which, when administered
at concentrations of 100µM, blocks AQP3 glycerol transport
by 90%, and water transport by 20% in human red blood cells
(Martins et al., 2012). Auphen also blocks proliferation in various
mammalian cell lines, including human epidermoid carcinoma,
by inhibiting AQP3 glycerol transport (Serna et al., 2014). This
merits more research into the importance of AQP3-facilitated
glycerol transport in cancer invasiveness, andwhether gold-based
compounds such as auphen can also be used to suppress cancer
invasion and metastasis.

CONCLUSION

Aquaporin-dependentmechanisms serve as key steps throughout
the process of metastasis, in angiogenesis, cellular dissociation,
cell migration and invasion. AQPs−1,−2,−3,−4,−5,−8, and−9
contribute to one or more processes, generally potentiating
cancer invasion and metastasis by boosting tumor angiogenesis,
enhancing cell volume regulation, regulating cell-cell and cell-
matrix adhesions, interacting with the actin cytoskeleton,
regulating proteases and ECM degradingmolecules, contributing
to the regulation of epithelial-mesenchymal transition in cancer
cells, and interacting with specific signaling pathways important
in cancer cell motility and invasions. Pharmacological agents
for aquaporin channels have therapeutic promise for improving
cancer treatment, and include derivatives of bumetanide, organic
metal compounds, plant medicinal agents, and other small
molecule compounds. Although conflicting evidence has been
raised for some compounds, there is nevertheless a compelling
need to continue identifying novel candidates for AQP-specific
modulators relevant not only for the treatment of cancer, but
other pathological conditions. In conclusion, although much
remains to be defined for molecular mechanisms in cancer
invasion and metastasis, the roles of AQP channel function
in cancer progression will inspire new therapeutic targets for
improving treatment of malignant and invasive carcinomas.
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