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Powdery photocatalysts seriously restrict their practical application due to the difficult

recycle and low photocatalytic activity. In this work, a monolithic g-C3N4/melamine

sponge (g-C3N4/MS) was successfully fabricated by a cost-effective ultrasonic-coating

route, which is easy to achieve the uniform dispersion and firm loading of g-C3N4 on

MS skeleton. The monolithic g-C3N4/MS entirely inherits the porous structure of MS

and results in a larger specific surface area (SSA) than its powdery counterpart. Benefit

from this monolithic structure, g-C3N4/MS gains more exposed active sites, enhanced

visible-light absorption and separation of photogenerated carriers, thus achieving

noticeable photocatalytic activity on nitric oxide (NO) removal and CO2 reduction.

Specifically, NO removal ratio is as high as 78.6% which is 4.5 times higher than that

of the powdery g-C3N4, and yield rate of CO and CH4 attains 7.48 and 3.93 µmol g−1

h−1. Importantly, the features of low-density, high porosity, good elasticity, and firmness,

not only endow g-C3N4/MS with flexibility in various environmental applications, but also

make it easy to recycle and stable for long-time application. Our work provides a feasible

approach to fabricate novel monolithic photocatalysts with large-scale production and

application.

Keywords: g-C3N4/melamine sponge, photocatalysis, NO removal, monolith, visible light

INTRODUCTION

Semiconductor photocatalysis is one of the promising strategies for pollutants abatement
(Maggos et al., 2007; Huang et al., 2013, 2016; Zhao et al., 2015) and has attracted intense
investigation in the past decades. Up to now, hundreds of semiconductors have been explored
and applied in the field of environmental remediation (Liu et al., 2008; Hossain and Mukherjee,
2013; Huang et al., 2015a, 2017a; Zhou et al., 2016). However, only a few of them have
been considered as potential candidates for practical application in view of their nontoxic,
suitable band gap, band edge energy, good stability and earth-abundant source. g-C3N4 is
one of those semiconductors, which possesses graphene-like structure and constituted mainly
by carbon and nitrogen. Since g-C3N4 was first reported to photocatalytic water splitting
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by Wang et.al (Wang et al., 2009), it quickly becomes a hot
material in photocatalysis. Afterwards, g-C3N4 has already been
applied in various reactions such as CO2 photoreduction, NO
removal, and dye degradation (Yan et al., 2009; Dong et al., 2014a;
Sun H. et al., 2017). However, extensive studies revealed that g-
C3N4 suffers from fast photo-generated carriers recombination,
limited visible-light absorption, and low surface area. Various
strategies have been carried out to overcome these intrinsic
drawbacks of g-C3N4, such as elemental doping, composite with
other materials and morphology control synthesis, etc. (Liu
et al., 2010; Zhao et al., 2012; Hou et al., 2014; Cheng et al.,
2015; Han Q. et al., 2015; Li et al., 2017; Yang et al., 2017).
Besides above disadvantages, as a potential photocatalyst for
practical application, g-C3N4 is also hindered by difficult recycle
originating from particle heavy loss during its complicated
recovery process, inefficient utilization of active sites and light
energy resulting from particle aggregation. Comparison with the
intrinsic drawbacks of g-C3N4, these problems are vital to achieve
successful application of photocatalyst on actual environmental
issues, but they are rarely studied and generally beyond the
aforementioned strategies to overcome.

Recently, monolithic or integrated photocatalysts are found
to be a plausible way to solve the practical application problem
of photocatalyst (Cheng et al., 2016; Wan et al., 2018). The so-
called monolithic photocatalyst usually consists of two parts,
one is a macroscopical support with porous three-dimensional
(3D) skeleton, and the other is the loaded photocatalyst particles.
After integrating powdery catalysts on its support, their recycling
becomes easy to achieve by a tweezer (Liu W. J. et al., 2015;
Tang et al., 2017). Meanwhile, the 3D porous structure of support
gives the powdery catalysts a high dispersion and exposes more
active sites by avoiding particles agglomeration. Moreover, this
structure also benefits light energy harvest and transportation of
liquid or gas pollutants. Until now, graphene aerogels are the
most studied monolithic photocatalyst supports because of their
inherent large surface area, high porosity and low density. We
have fabricated monolithic C3N4/graphene oxide aerogel (GOA)
in our previous work and found obvious activity enhancement
(Wan et al., 2016), which is in line with the results from other
monolithic photocatalyst/graphene aerogels (Fan et al., 2015; Cui
et al., 2017; Wang et al., 2017). However, the intrinsic brittleness
and weak firmness of aerogels make it easy to break into
pieces during mechanical deformation, which seriously restrict
its potential in practical application. Other firm supports, such as
carbon foam and Al2O3 ceramic foam with hard 3D framework,
are also selected to fabricate monolithic photocatalyst (Dong
et al., 2014b; Lin et al., 2016). Nevertheless, it is very difficult
to achieve uniform loading by directly mixing photocatalyst
with these hard supports. To overcome this problem, special
strategies with high cost and energy consumption, like in-situ
immobilizing approach and laser ablating deposition (Liang et al.,
2015; Lin et al., 2016), are used to achieve the good catalyst
dispersion. The sophisticated preparation method severely limits
the hard supports to be extensively utilized in fabrication of
monolithic photocatalyst. Based on the above considerations, the
proper support remains an obstacle for the practical application
of monolithic photocatalyst. Lately, melamine sponge (MS), a

cheap commercial polymer foam which is widely used as kitchen
and construction materials, is successfully used for oil-water
separation by integrating with graphene (Liu T. T. et al., 2015;
Zhao et al., 2016). The fabricated graphene/MS exhibits low-
density, high porosity and high elasticity inherited from MS,
which exactly match the support characteristics of the monolithic
photocatalyst. Importantly, the good elasticity makes MS more
ductile and avoids the drawbacks of brittle and hard materials.
Therefore, MS is a potential alternative and selected as the
support for monolithic photocatalyst fabrication.

Herein, we prepare a monolithic g-C3N4/MS by a facile
ultrasonic-coating method at room temperature, which is very
easy to achieve mass production. The monolithic structure
endows g-C3N4/MS with enhanced light harvest and more
exposed active sites, ensuring its good photocatalytic activity.
Importantly, the as-prepared monolithic photocatalyst exhibits
low-density, high porosity, high elasticity and good firmness,
which not only make it flexible in various environmental
applications including NO removal, and CO2 photoreduction,
but also make it easy to recycle and suitable for practical
application. Overall, our results provide a novel strategy to
develop monolithic photocatlyst for practical application with
large-scale production.

EXPERIMENTAL

Synthesis of g-C3N4
The polymeric g-C3N4 was prepared by pyrolysis of urea (Liu
et al., 2011). In a typical process, 15 g urea was added into
an alumina crucible with a cover and then heated to 550◦C
in a muffle furnace for 1 h with a heating rate of about 55◦C
min−1. After cool down to room temperature, the final yellow
agglomerates were the pristine g-C3N4 and subsequently ground
into powder for further use.

Preparation of Monolithic g-C3N4/MS
For the preparation of monolithic g-C3N4/MS, 2.5 g g-C3N4

powder was dispersed in 500mL water and sonicated for 1 h
to form a g-C3N4 suspension. MS was cut into suitable size
and washed with deionized water and alcohol in order, then
dried at room temperature. Next, the clean MS was immersed
into g-C3N4 suspension for 30min, and then squeezed out the
excess solution. After that, the sample was transferred into a
culture dish and freeze-dried (−70◦C pre-freezing) for 48 h to
obtain g-C3N4/MS. For comparison, powdery g-C3N4 without
MS was processed through the same procedures and denoted
as sonicated g-C3N4. To obtain the best photocatalytic activity
of monolithic g-C3N4/MS, we finely investigated the effect of g-
C3N4 suspension concentration (3mg mL−1-40mg mL−1) and
MS thickness (0.5–2.5 cm). The sizes of monolithic g-C3N4/MS
varied with different experiments and were stated at their first
appearance in the text.

Characterization
Powder X-ray diffraction (PXRD) was performed on a
PANalytical X’pert diffractometer with a Cu Ka radiation.
Transmission electron microscopy (TEM) was performed on
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a FEI tecnai G2 F30 microscope operated at 200 kV. The
morphology of g-C3N4/MS was observed through scanning
electron microscopy (SEM) on a ZEISS EVO MA15 microscopy.
The Fourier transform infrared (FT-IR) spectra were measured
using a Nicolet 6700 spectrometer on samples embedded in
KBr pellets. UV-vis diffuse reflectance spectrum (DRS) data
were recorded on a Shimadzu UV-2600 spectrophotometer.
Photoluminescence spectra were recorded on F-7000 FL
spectrofluorometer with an excitation wavelength at 320 nm.
X-ray photoelectron spectroscopy (XPS) was performed by
using a Thermo Scientific Escalab 250Xi spectrometer. The
specific surface area (SSA) was determined via using methylene
blue (MB) adsorption method on a UV-vis spectrophotometer
(UV-5100, Anhui Wanyi; Tran et al., 2015), the SSA of g-C3N4

and g-C3N4/MS were calculated by the following equation:

SSA =
NAAMB(C0 − Ce)V

MMBms

Where NA represents Avogadro’s constant (6.02×1023 mol−1),
AMB represents the covered area of per MB molecule (typically
assumed to be 1.35 nm2), Co and Ce are the initial and
equilibrium concentrations of MB, V is the volume of MB
solution, MMB is the relative molecular mass of MB, and ms is
the mass of the sample.

Evaluation of Photocatalytic Activity
The photocatalytic activity of g-C3N4/MS was evaluated in both
gaseous systems. Photocatalytic removal of NO at ppb level was
previously reported in details (Zhang et al., 2014). Typically, A
150W metal halide lamp with a visible light filter (>420 nm)
was employed to operate the experiment. A piece of g-C3N4/MS
was put into the reactor for photocatalytic activity test. The light
intensity is 35.88 mW cm−2 measured by a light intensity meter.
The initial concentration of NO was diluted to 500 ppb by drying
air. The flow rates of dry air and NO are set at 2 L min−1 and
9.5mL min−1, respectively. The formula of degradation rate of
NO was counted by the following equation:

ω (%) =
[C (NOX) − C (NO) − C0(NO2)

C (NOX)
× 100%

Where C (NOx) represents the concentration of total nitric oxide
(NO2 andNO), while C0 is the initial concentration of NO2 when
reaching the adsorption-desorption equilibrium.

The photocatalytic reduction of CO2 was performed in
a 380mL home-made reactor at ambient temperature and
pressure. A 300W Xe lamp was used as a light source and
positioned 8 cm above the photocatalytic reactor. In a typical
test, a plastic beaker with 20mL deionized water was deposited
at the bottom of the reactor, and a culture dish with 100mg
g-C3N4 powder or g-C3N4/MS (38.5 cm2) was placed on the
plastic beaker. Before irradiation, the reactor was sealed and
vacuumed by a pump, then removed air by blowing argon for
15min. Subsequently, 1mL CO2 was injected into the reactor.
After 4 h irradiation, 1mL of gas was taken out from the reactor
and analyzed by using a gas chromatograph (TechcompGC7900)

equipped with a flame ionized detector (FID) and a thermal
conductivity detector (TCD). CO and CH4 were analyzed by the
FID, and H2 was analyzed by TCD.

RESULTS AND DISCUSSION

Fabrication and Physical Properties of
g-C3N4/MS
The general preparation approach of g-C3N4/MS was illustrated
in Figure 1A. Direct mixture of powdery g-C3N4 and MS
is hard to gain a monolithic g-C3N4/MS with good particle
dispersion and well contact between particle and MS skeleton.
Therefore, the g-C3N4 powder was firstly added into water
and sonicated for 30min to form uniform suspension, which
make the particle diffusion easy and fast in the porous structure
of MS. Then, the pretreated MS was immersed into this
suspension through dipping and squeezing procedures until
MS was fully covered by g-C3N4 particles. Finally, followed
by a conventional freezing-drying process, the monolithic g-
C3N4/MS was obtained. Obviously, no large particles were
observed on the cross-section photo in Figure 1A, indicating
that the g-C3N4 powder was uniformly coated on MS skeleton.
For comparison, we also dipped MS in a saturated solution of
urea, which is the g-C3N4 precursor. After removing the water
by freeze-drying, we attempted to fabricate the monolithic g-
C3N4/MS by in-situ immobilizing approach at 550◦C. However,
the obtained monolithic composite became very fragile due to
the carbonization of MS skeleton. Moreover, the g-C3N4 powder
gathered on the composite surface with an inhomogeneous
dispersion (Figure S1). The failed trial illustrated the mild
ultrasonic-coating approach is superior to other methods for
monolithic g-C3N4/MS fabrication. Importantly, the facile
ultrasonic-coating approach developed here is also adapted to
other porous supports, such as nickel foam, Al2O3 ceramic foam,
glass fiber and polyester fiber, and the corresponding monolithic
products of g-C3N4 are shown in Figure S2.

Physical properties of materials are pivotal to their practical
application. As shown in Figure 1B, the monolithic g-C3N4/MS
has an ultra-low density (11.5mg cm−3), which can stay on
dog tail grass and remarkably lighter than that of reported
BiOBr/reduced GOA (50mg cm−3) (Liu W. J. et al., 2015),
TiO2/graphene aerogel (19mg cm−3) (Qiu et al., 2014), and
MoS2/reduced GOA (56.1mg cm−3) (Zhang R. Y. et al., 2017).
Moreover, SSA of g-C3N4/MS (7.6 m2 g−1) is much more
larger than that of the pristine g-C3N4 (0.9 m2 g−1), which
not only offer more active sites but also have larger absorption
capacity than its powdery counterpart. In addition, facile
modification of shapes and sizes endows g-C3N4/MS with a good
flexibility to handle different situations in practical application
(Figures 1C,D). More importantly, the g-C3N4/MS presents
excellent elasticity. As revealed in Figure 1E, the g-C3N4/MS
can instantaneously recover and maintain its integrity after
removing of the heavy loading (410 g counterweight), suggesting
that g-C3N4/MS possesses enough mechanical strength to deal
with intricate operation in environmental abatement. To further
ensure the firmness of g-C3N4 on MS skeletons, a test is carried
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FIGURE 1 | (A) Preparation process of g-C3N4/MS photocatalyst; (B) Ultra-light g-C3N4/MS resting on dog tail grass; (C) g-C3N4/MS with various shapes;

(D) g-C3N4/MS with large area (12.0 × 12.0 × 0.5 cm3); (E) Mechanical property of g-C3N4/MS.

out by blowing the g-C3N4/MS with a strong airflow for 12 h,
the detailed simulation device diagram is shown in Figure S3a.
The dropping g-C3N4 powder from g-C3N4/MS is collected
and weighted up. The final weight loss is less than 7.60mg,
which account for 1.15% of g-C3N4 loaded on MS skeletons
(Figure S3b). The above result demonstrates that g-C3N4 is firmly
distributed on MS even under extreme work condition, which is
pivotal to the recycle in practical application.

Photocatalytic Activity
Benefit from the characteristics of low-density, high porosity
and good elasticity, the monolithic g-C3N4/MS can be used
to removal gaseous pollutants. Therefore, two different
photocatalysis applications including NO removal, dye
degradation, and CO2 photoreduction, are selected to test
the photocatalytic activity of the as-prepared monolithic g-
C3N4/MS. NO, a typical air contaminants, mostly produced
from the combustion of fossil fuels and the emission of vehicle
exhaust, can cause a series of atmosphere pollution problems
such as acid rain, photochemical smog and haze (Wang et al.,
2016). Photo-oxidation technique is considered an alternative

to remove NO at low concentration (Zhou et al., 2014).

Therefore, the g-C3N4/MS samples are firstly investigated by
NO removal at the indoor ppb level. Figure 2A shows the
effect of g-C3N4 concentration on NO photo-removal ratio
occurring on g-C3N4/MS. Notably, the MS coated with 5mg

mL−1 suspension achieves the highest removal ratio of 45%
within 30min. As the concentration of g-C3N4 suspension
less than 5mg mL−1, the photocatalytic activity of g-C3N4/MS

gradually enhanced with the increased concentration of g-C3N4

suspension. With a concentration higher than 5mg mL−1, the
photocatalytic activity of the g-C3N4/MS slightly decreased,

attributing to agglomeration of the excessive g-C3N4 which
not only hinder the NO transport by blocking pore channels
in MS, but also cause a reduced light transmittance. Moreover,
the thicknesses of MS have also been investigated, which is

closely associated with the light utilization. Benefit from the
good transparence of MS, the activity of g-C3N4/MS enhanced

along with increased MS thickness in Figure 2B, but the
corresponding best unit mass rate constant (0.868 min−1 g−1)

of NO removal is belong to g-C3N4/MS with 0.5 cm thickness

(As shown in Figure S4). Based on above results, the optimal
concentration and thickness were fixed at 5mgmL−1 and 0.5 cm,
respectively.
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FIGURE 2 | Photocatalytic NO removal ratios in presence of g-C3N4/MS fabricated with (A) different concentrations and (B) different thicknesses under visible light

irradiation.

FIGURE 3 | Photocatalytic activity of g-C3N4/MS under visible-light irradiation: (A) NO removal ratios of different samples; (B) Photocatalytic recycling test on large

area g-C3N4/MS; (C) Production rate of CO, CH4 and H2 on g-C3N4, g-C3N4/MS respectively in photocatalytic CO2 reduction under UV-Vis light irradiation.

The fabrication and utilization of monolithic photocatalysts
with large area on macro-scale is significant to their practical
application. Therefore, a monolithic g-C3N4/MS with area of
12.0 × 12.0 cm2 is prepared for further test of NO removal
under visible-light illumination (Figure 3A). For comparison,
the NO removal on powdery g-C3N4 and pristine MS are also
performed under the same conditions, respectively. Surprisingly,
monolithic g-C3N4/MS presents the highest NO removal ratio
of 78.6% in initial 5min which is about 4.5 times higher than

that of powdery g-C3N4 (17.6%), while no NO removal occurs
on the pristine MS. After initial 5min, NO removal ratio of
g-C3N4/MS tends to be steady, which could be interpreted as
partial active sites replaced by adsorptive NO−

3 or NO (Ai et al.,
2009; Huang et al., 2010; Liu et al., 2017) and finally reached
an adsorption and desorption equilibrium of these oxynitrides.
Moreover, comparison with other photocatalysts in our previous
work, large area g-C3N4/MS exhibits optimum activity (78.6%),
which is approximate 4.25, 2.25 and 2.32 times higher than
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that of Bi2WO6/graphene (Zhou et al., 2014), C3N4/GOA
(GOA) (Wan et al., 2016), and N-Bi2O2CO3/graphene quantum
dots (Liu et al., 2017), respectively. Notably, the fraction of
generated NO2 is lower than 5.4% over all our samples (as
shown in Figure S5a), indicating those samples selectively
oxidize NO to NO−

3 rather than NO2. Based on above results,
the g-C3N4/MS with large area shows obviously enhanced
photocatalytic activity than its powdery counterpart, indicating
the monolithic photocatalyst is an effective strategy to solve the
problems encountered by powdery photocatalysts in large-scale
application.

The stability and recyclability of photocatalysts are also
important to their practical applications (Hu et al., 2017).
Here, we carried out cycle and long-time tests to further
evaluate the performance of the monolithic g-C3N4/MS.
The result of cycle test is listed in Figure 3B. It can be
seen that the NO removal ratio of g-C3N4/MS dropped
quickly during the first two cycles. After that, the NO
removal ratio approached to stabilization within third
cycle and slightly decreased with incremental cycle-index,
which attributed to temporary absorption equilibrium of
oxynitrides (NO, NO−

3 ) in third cycle and their continuous
accumulation on g-C3N4/MS. Fortunately, after UV lamp
irradiation for 5min, the adsorbed oxynitrides are desorbed
and results in an immediate recovery of sample activity
(Figure 3B). Furthermore, result of long-time test is displayed
in Figure S5b. The g-C3N4/MS can achieve a stable catalytic
performance after 1 h and keep a relatively high activity
in the 2 h test interval. All above results confirm that
the large area g-C3N4/MS has a superior recyclability and
stability for NO removal, confirming its potential in practical
application.

Apart from the photo-oxidation availability, the monolithic
g-C3N4/MS also exhibits good ability of CO2 photoreduction.
CO2 is the main greenhouse gas that generation from human
activity and the combustion of fossil fuels which is responsible
for global warming (Norby and Luo, 2004). As displayed in
Figure 3C, the g-C3N4/MS shows higher photocatalytic activity
(7.48 µmol g−1 h−1 CO, 3.93 µmol g−1 h−1 CH4 and 0.26
µmol g−1 h−1 H2) than that of powdery g-C3N4 (6.27 µmol
g−1 h−1 CO, 0.52 µmol g−1 h−1 CH4 and 0 µmol g−1 h−1

H2). Notably, yield of CO is higher than that of CH4 on both
two samples, because the conversion from CO2 to CO is 4-
electron process, whereas that from CO2 to CH4 is 8-electrons
process, obviously, the former is easier than the latter which
can account for higher yield of CO. No H2 generated on g-
C3N4 and traced H2 appeared on g-C3N4/MS indicate that all
samples have high selectivity for CO2 reduction rather than H2

reduction.
In view of above results of NO removal, and CO2

photoreduction, the monolithic g-C3N4/MS does show practical
potential in various applications and enhanced photocatalytic
activity than its powdery counterpart. The large SAA must be
responsible for this activity enhancement. However, to get a deep
insight into the reasons of the improved performance, more
investigations further carried out on the monolithic g-C3N4/MS.

Structure and Morphology
The PXRD patterns of MS, g-C3N4/MS, sonicated g-C3N4 and
g-C3N4 are displayed in Figure 4. The peaks at ca. 13.1 and
27.3◦ can be assigned to (100) and (002) crystal planes of g-
C3N4, respectively (Gholipour et al., 2016). Obviously, the PXRD
patterns of g-C3N4 are consistent before and after ultrasonic
process, confirming the crystal structure of g-C3N4 is very stable.
Moreover, no difference is found in the PXRD patterns of g-
C3N4/MS and MS, indicating the g-C3N4 particles are uniformly
dispersed on the porous framework of MS rather than aggregated
on its surface.

To reveal the microstructure and morphology of samples,
TEM and SEM were conducted as shown in Figure 5. The
TEM images of g-C3N4 and sonicated g-C3N4 show similar
thin nano-flake structure with some mesopores (Figures 5A,B),
which derived from gases releasing such as NH3 and CO2

during the pyrolysis of urea (Mao et al., 2013). Combination
with PXRD results, it is sure no noticeable change appeared
on the structure and morphology of g-C3N4 before and after
the ultrasonic. In Figure 5C, the SEM image of MS reveals
an interconnected 3D network structure with abundant open-
cell pores, which not only offer sufficient channels for reactant
transport, but also offer enough locations for photocatalyst
particle dispersion. It is notable that the g-C3N4 was successfully
coated on the smooth skeleton of MS according to the g-
C3N4/MS image in Figure 5D. Based on the analysis of structure
and morphology, the uniform dispersion of g-C3N4 achieves in
monolithic g-C3N4/MS, confirming the feasibility of our coating
strategy.

Figure 6 shows the FT-IR spectra of g-C3N4, g-C3N4/MS and
MS. The spectrum of g-C3N4 displays typical peaks at 3000-3600
cm−1, 1200-1700 cm−1, and 811 cm−1, which are ascribed to
the vibrational absorption of N-H and O-H, CN heterocycles
and triazine unit (Kang et al., 2015; Wei et al., 2016; Sun Z. X.
et al., 2017). Moreover, in the spectrum of MS, the prominent

FIGURE 4 | PXRD patterns of g-C3N4, sonicated g-C3N4, g-C3N4/MS

and MS.
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FIGURE 5 | TEM images of samples: (A) g-C3N4; (B) sonicated g-C3N4. SEM images of samples: (C) MS; (D) g-C3N4/MS.

FIGURE 7 | (A) UV-vis DRS of g-C3N4, g-C3N4/MS and MS; (B) PL spectra of g-C3N4, g-C3N4/MS.

peaks located at 808, 1154, 1545, and 3422 cm−1, attributing to
triazine ring bending, C-O stretching, C=N stretching and N-
H stretching, while peaks centered at 988, 1329, and 1466 cm−1

corresponding to C-H bending vibrations (Pham and Dickerson,
2014; Zhang W. B. et al., 2017). Particularly, a new peak and
an intensive peak appeared at 1334 cm−1 and 813 cm−1 in
g-C3N4/MS spectrum, indicating a weak chemical interaction
exists between g-C3N4 and MS skeletons. The above results
reveal both van der waals and chemical interactions between g-
C3N4 and MS, which explain the good firmness of monolithic
g-C3N4/MS.

Band Structure and Photocatalytic
Mechanism
The band gap of MS, g-C3N4 and g-C3N4/MS were determined
by the results of UV-vis DRS in Figure 7A. Obviously, g-
C3N4 absorption is located in visible region with a calculated
band gap of 2.99 eV, while MS shows only UV light absorption
with a wide band gap of 4.31 eV. Moreover, the DRS profile
of the g-C3N4/MS exhibits a mechanical combination of the
absorption features of the g-C3N4 and MS alone. Importantly,
visible-light absorption of g-C3N4/MS gets a slight enhancement
(2.79 eV), which may be attributed to the light multistage
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FIGURE 6 | FTIR spectra of g-C3N4, g-C3N4/MS and MS.

FIGURE 8 | Schematic illustration of the photocatalytic process over the

g-C3N4/MS.

refraction and reflection on the MS framework (Dong et al.,
2014b). In addition, the g-C3N4/MS not only enhances the light
absorption, but also significantly suppresses the recombination of
photo-generated carriers according to photoluminescence (PL)
spectra in Figure 7B, which accounts for the enhancement of
photocatalytic activity.

According to the above UV-vis DRS analysis (Figure 7A) and
the XPS valence band spectrum (Figure S6), the band structure
of g-C3N4/MS is proposed in Figure 8 with VB edge and CB
edge located at 2.01 and −0.98 eV, respectively. As shown in
Figure 8, the potential of VB holes (h+) is slight positive than
OH−/OH (1.99 eV), while the potential of CB electron (e−) is
much negative than that of O2/O

−

2 (−0.28 eV). Therefore, the
photogenerated holes can directly oxidize OH− to OH, and
the photogenerated electrons can reduce easily O2 to O−

2 . It
is well known that OH and O−

2 usually have strong oxidative
ability and play the key role in photocatalytic oxidation reaction
(Huang et al., 2015b,c, 2017b). Moreover, in consideration
of the oxidation potentials of NO2/NO (1.03 eV), HNO2/NO

(0.99 eV), HNO3/NO (0.94 eV) (Wan et al., 2016), all OH, O−

2
and hole generated on g-C3N4/MS are able to remove NO. In
addition, the reduction potentials of E (CO2/CH4), E (CO2/CO)
and E (H2O/H2) were located at −0.24, −0.52, and −0.41 eV,
respectively (Yu et al., 2014; Han B. et al., 2015). Comparison with
CB potential (−0.98 eV), the photogenerated electron is capable
of reducing CO2 on g-C3N4/MS. Based on above analyses and the
results in photocatalytic activity part, the possible photocatalytic
mechanism are simply illustrated in Figure 8. In short, there are
three main pathways for NO removal, involving three different
active oxidation species (OH, O−

2 and h+), while there is one
pathway for CO2 photoreduction, involving only one active
species (e−).

CONCLUSIONS

In summary, a novel monolithic g-C3N4/MS was fabricated by
a facile ultrasonic-coating method. This monolithic g-C3N4/MS
possesses a uniform dispersion of g-C3N4 and large SSA,
which not only facilitate exposing more active sites of g-C3N4

but also enhancing the visible-light absorption. Consequently,
monolithic g-C3N4/MS shows obviously improved visible-
light photocatalytic activity. The PL detection further reveals
that enhanced separation of photogenerated carriers is also
responsible for the activity enhancement. More importantly,
the characteristics of low-density and high porosity allow the
monolithic g-C3N4/MS to be applied in various environmental
issues, while the high elasticity, good firmness, and mechanical
strength give it noticeable recyclability and stability, confirming
its feasibility for practical application. All in all, in this
work, we fabricated a monolithic g-C3N4/MS with enhanced
photocatalytic activity which can be easy to achieve large-scale
production for practical photocatalysis application. Our results
provide a low-cost and mild method for mass production of new
monolithic photocatalysts.
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